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For each odd prime power q, let 4 � n � q2 + 1. Hermitian self-orthogonal [n,2,n − 1] codes over Fq2 with
dual distance three are constructed by using finite field theory. Hence, [[n,n − 4,3]]q quantum maximal-distance-
separable (MDS) codes for 4 � n � q2 + 1 are obtained.

DOI: 10.1103/PhysRevA.82.052316 PACS number(s): 03.67.Pp

I. INTRODUCTION

The theory of quantum error-correcting codes (QECCs,
for short) has been exhaustively studied in the literature;
see [1–8]. The most widely studied class of quantum codes
are binary quantum stabilizer codes. A thorough discussion
on the principles of quantum coding theory was given in [3]
and [4] for binary quantum stabilizer codes. An appealing
aspect of binary quantum codes is that there exist links to
classical coding theory which make easy the construction of
good quantum codes [8].

More recently similar theories of nonbinary quantum
stabilizer codes were established in [6–8]; characterization
of nonbinary quantum stabilizer codes over Fq (the finite
field with q elements) in terms of classical codes over Fq2

was also given. Based on [6–8], many nonbinary quantum
stabilizer codes were constructed from classical nonbinary
codes; see [6–8] and references therein.

One central theme in quantum error correction is the
construction of quantum codes with good parameters [1–22].
Among these codes, quantum maximal-distance-separable
(MDS) codes received much attention. Quantum MDS codes
are optimal quantum codes, since they meet the quantum
Singleton bound.

Lemma 1.1 (quantum Singleton bound [5,8]). An [[n,k,d]]q
quantum stabilizer code satisfies

k � n − 2d + 2.

It is known that except for trivial codes (codes with d � 2),
there are only two binary quantum MDS codes, [[5,1,3]]2 and
[[6,0,4]]2; see [3]. Nonbinary quantum MDS codes are much
more complex compared with the binary case. Recently many
families of nonbinary quantum MDS codes have been found
by various approaches [15–18]. In the simplest nontrivial case
d = 3, despite many efforts to construct nonbinary quantum
MDS codes, a systematic construction for all q and all lengths
has not been achieved yet; see [15–18] and [23]. If d � 3,
Ref. [8] proved that the maximal length n of [[n,k,d]]q quantum
MDS codes satisfies n � q2 + d − 2. In [21], we discussed the
construction of quantum MDS codes [[n,n − 4,3]]q for odd
prime power q. The method of [21] has been used by [22] to
construct ternary quantum codes of minimum distance three
for all length n � 4, and some new advancement that following
[21] has been given in [23].
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In this paper (we let q = pr and p be an odd prime), we
will use Hermitian self-orthogonal codes over Fq2 to construct
q-ary quantum MDS codes of distance three. This paper is
a revised version of [21]; some changes in the notation and
proofs are made in this paper. The main result of this paper is
as follows.

Theorem 1.1. If q = pr and p is an odd prime, then there
are [[n,n − 4,3]]q quantum MDS codes for 4 � n � q2 + 1.

This paper is arranged as follows. In Sec. II some prelim-
inary materials are introduced and a method of proving our
main results is explained. In Secs III and IV, the proof of the
main result of this paper is presented. In Sec. V, a concluding
remark is given.

II. PRELIMINARIES

In order to prove our main result, we make some preparation
on quantum codes and finite fields.

Let Fn
q2 be the n-dimensional vector space over the finite

field Fq2 . For X = (x1,x2, . . . ,xn), Y = (y1,y2, . . . ,yn) ∈ Fn
q2 ,

the Hermitian inner product of X and Y is defined as follows:

(X,Y ) = x1y
q

1 + x2y
q

2 + · · · + xny
q
n .

If C is an [n,k]q2 linear code over Fq2 , its Hermitian dual code
is defined by

C⊥h = {
X | X ∈ Fn

q2 ,(X,Y ) = 0 for any Y ∈ C
}
.

C is Hermitian self-orthogonal if C ⊆ C⊥h, and self-dual if
C = C⊥h.

The following theorem is well known for constructing q-ary
quantum codes from Hermitian self-orthogonal codes over Fq2 ,
which was given in [8] and [16].

Theorem 2.1 (Hermitian construction). If C is an [n,k]q2

linear code such that C⊥h ⊆ C, and d = min{wt(v) : v ∈ C \
C⊥h}, then there exists [[n,2k − n,d]]q quantum code.

In the construction of self-orthogonal codes, we also need
the following results on finite fields.

Lemma 2.1. If α is a primitive element of Fq2 , for each
nonzero element ξ of Fq , there are q + 1 elements αi of Fq2

such that (αi)q+1 = ξ .
Proof. Suppose (α)q+1 = β, then β is a primitive element

of Fq . Let ξ = βi , 0 � i � q − 2. Then (αi+(q−1)j )q+1 = ξ for
0 � j � q, thus the lemma holds.

Lemma 2.2. If α is a primitive element of Fq2 , then 1 +
(α)q+1 + (α2)q+1 + · · · + (αq2−2)q+1 = 0.
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Proof. Suppose (α)q+1 = β, then 1 + (α)q+1 + (α2)q+1 +
· · · + (αq2−2)q+1 = (q + 1) (1 + β + β2 + · · · + βq−2) = 0.

Notation 2.1. We divide the nonzero elements of Fq2

into two subsets, say A and B. Let A= {1, − 1,α
q−1

2 ,

−α
q−1

2 ,α
q−1

2 + 1,−α
q−1

2 − 1}, B = {x1,−x1, . . . ,xk, − xk} =
Fq2 \ (A ∪ {0}), where 2k = q2 − 7. For k1 satisfying 0 �
k1 � k, denote the vector (x1, − x1, . . . ,xk1 , − xk1 ) as X2k1 .
And we use Y3 to denote the vector (1,α

q−1
2 , − α

q−1
2 − 1).

Notation 2.2. To save space and simplify statements of the
following two sections, we use 1m to denote the all one vector
of length m. For Z = (z1,z2, . . . ,zm) ∈ Fm

q2 and β ∈ Fq2 , we
use βZ to denote (βz1,βz2, . . . ,βzm).

Using the previous notation, we have the following.
Lemma 2.3. If A and B are defined as previously mentioned,

then 2�k
i=1(xi)q+1 + 2(α

q−1
2 + 1)q+1 = 0.

Proof. Let α be a primitive element of Fq2 . Since

(−αi)q+1 = (αi)q+1 for 0 � i � q2 − 2 and (α
q−1

2 )q+1 = −1.
According to Lemma 2.2, one can deduce that

1q+1 + (α)q+1 + (α2)q+1 + · · · + (αq2−2)q+1

= 2�k
i=1(xi)

q+1 + 2 + 2
(
α

q−1
2

)q+1 + 2
(
α

q−1
2 + 1

)q+1

= 2�k
i=1(xi)

q+1 + 2
(
α

q−1
2 + 1

)q+1

= 0.

Thus the lemma follows.
According to Theorem 2.1, for each n satisfying 4 �

n � q2 + 1, the problem of constructing [[n,n − 4,3]]q quan-
tum MDS codes can be changed into constructing [n,2]q2

Hermitian self-orthogonal code C2,n over Fq2 with dual dis-
tance three. Hence, it is enough to construct a generator matrix
A2,n of C2,n, where A2,n = (

Kn

Ln

)
satisfies that any two columns

of A2,n are linear independent, (Kn,Kn) = (Ln,Ln) = 0 and
(Kn,Ln) = 0.

Our method of constructing A2,n is as follows: For 4 � n �
q2 − 2 and n �= q2 − 3, we construct A2,n by solving equations
over Fq2 . A2,n has the following form:

A2,n =
(

γ | 12k1 | a2k1+2 · · · an−2 0

0 | X2k1 | b2k1+2 · · · bn−2 ε

)
,

where 0 � k1 � k and 4 � n − 2k1 � 6, and each column
( aj

bj
) = δj ( 1

yj
) with yj ∈ A and yj is different for different

j . For n = q2 − 3, q2 and q2 + 1, we construct A2,n with the
following form:

A2,q2−3 =
(

1 | 12k | δ13

0 | X2k | δY3

)
,

where

δ
q+1
1 = 2;

A2,q2 =
(

1 1 1 1 · · · 1 1

0 1 α α2 · · · αq2−3 αq2−2

)
;

A2,q2+1 =
(

1 | 12k | 13 | δ13 | 0

0 | X2k | Y3 | −δY3 | ε

)

for q = 3r � 9, where δ,ε ∈ Fq2 satisfying δq+1 ∈ Fq \ F3,

εq+1 = (1 − δq+1) (α
q−1

2 + 1)q+1;

A2,q2+1 =
(

γ | 12k | 13 | δ13 | 0

0 | X2k | Y3 | −δY3 | ε

)

for q = pr and prime p � 5, where γ,δ,ε ∈ Fq2 such that

γ q+1 = −2, δq+1 = 2, and εq+1 = −(α
q−1

2 + 1)q+1.
According to [24] and notations 2.1 and 2.2, each of the

above matrix A2,n generates an [n,2]q2 code with dual distance
3. In particular, we have the following lemma.

Lemma 2.4. Let q �= 3, n = q2 − 3, q2 or q2 + 1, and A2,n

be given as above. Then the code C2,n generated by A2,n is an
[n,2]q2 Hermitian self-orthogonal code with dual distance 3.
Hence there is [[n,n − 4,3]]q for these n.

Proof. According to notation 2.1 and 2.2, using Lemmas 2.1
and 2.2, one can deduce that for n = q2 − 3, q2, A2,n generates
an [n,2]q2 Hermitian self-orthogonal code over Fq2 with dual
distance 3.

For n = q2 + 1, let the rows of A2,q2+1 be Kn and
Ln, respectively. If q = 3r � 9, then there is b ∈ Fq \ F3.
According to Lemma 2.1, one can choose δ,ε ∈ Fq2 sat-

isfy δq+1 = b and εq+1 = (1 − δq+1) (α
q−1

2 + 1)q+1. Using
Lemma 2.3, we can deduce (Kn,Kn) = (Ln,Ln) = 0 and
(Kn,Ln) = 0. Thus, for q = 3r � 9, we have proved that
A2,q2+1 generate an [n,2]q2 Hermitian self-orthogonal code
with dual distance 3.

If q = pr and prime p � 5, the proof can be given similarly.
Summarizing the previous discussion, the lemma holds.

III. [[n,n − 4,3]]q FOR q = 3r

In this section, we will prove Theorem 1.1 holds for q = 3r .
First we discuss the construction of the [[n,n − 4,3]]3

quantum code.
Let F3 = {0,1,2} = {0,1, − 1} be the Galois field with

three elements. Then f (x) = x2 + x + 2 is irreducible over
F3. Using f (x), one can construct the Galois field Fq2 with nine
elements as F9 = {0,1,2,α,α + 1,α + 2,2α,2α + 1,2α + 2},
where α is a root of f (x) = x2 + x + 2. It is easy to check
that α is a primitive element of F9, α2 = 2α + 1, α3 = 2α + 2,
α4 = 2, α5 = 2α, α6 = α + 2, and α7 = α + 1. It is obvious
that α4+i = −αi for 0 � i � 7.

Construct

G2,4 =
(

1 1 1 0

0 1 −1 1

)
,

G2,5 =
(

1 1 α α 0

0 1 α2 α3 α

)
,

G2,6 =
(

1 1 1 | α13

0 α2 α6 | αY3

)
,

G2,7 =
(

1 1 1 1 1 1 0

0 1 α1 α2 α5 α7 1

)
,

G2,8 =
(

1 1 1 1 1 α α 0

0 1 2 α1 α5 1 2 1

)
,
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G2,9 =
(

1 1 1 · · · 1

0 1 α1 · · · α7

)
,

G2,10 =
(

1 1 1 | 13 | α13 | 0

0 1 α | α4Y3 | αY3 | 1

)
.

For 4 � n � 10, let G2,n = (
Kn

Ln

)
and C2,n be the code

generated by G2,n. Using the arithmetic of F9, one can
check that (Kn,Kn) = (Kn,Ln) = (Ln,Ln) = 0. Thus, C2,n is
an Hermitian self-orthogonal code over F9 and d⊥ = 3, hence
there is an [[n,n − 4,3]]3 quantum MDS code.

Second, we discuss the construction of the [[n,n − 4,3]]q
quantum code for q = 3r � 9. To achieve this, we consider
the construction of the [n,2]q2 Hermitian self-orthogonal codes
with dual distance three in three cases separately.

Case 3.1. 4 � n � q2 − 4 and n ≡ 0 (mod 2).
Let n − 4 = 2k1, u = 2�

k1
i=1(xi)q+1. Since q � 9, there

is b ∈ Fq \F3 such that 2b + u �= 0 and 2k1 + 2b �= 0.
According to Lemma 2.1. one can choose γ,δ,ε ∈
Fq2 such that δq+1 = b, γ q+1 = −(2k1 + 2δq+1), εq+1 =
−(u + 2δq+1). Construct

A2,n =
(

γ | 12k1 | δ δ 0

0 | X2k1 | δ −δ ε

)
=

(
Mn

Nn

)
.

Lemma 3.1. Let 4 � n � q2 − 4 and n ≡ 0 (mod 2) and
A2,n be as previously mentioned. Then the code C2,n generated
by A2,n is an [n,2]q2 Hermitian self-orthogonal code with dual
distance 3.

Proof. Since (Mn,Mn)= γ q+1 + 2k1 + 2δq+1 = −(n − 4+
2δq+1) + 2k1 + 2δq+1 = 0, (Mn,Nn)= γ × 0 + �

k1
i=1[(xi)q +

(−xi)q] + [δq+1 − δq+1] + 0 × εq = 0, and (Nn,Nn) = 0
+2�

k1
i=1(xi)q+1 + 2δq+1 + εq+1= 0. Hence C2,n is an [n,2]q2

Hermitian self-orthogonal code. It is obviously that any
two columns of A2,n are not parallel, thus they are linear
independent. Therefore the dual distance of C2,n is 3, and the
lemma follows.

Case 3.2. 4 � n � q2 − 4 and n ≡ 1(mod 2).
Let n − 5 = 2k1, u = 2�

k1
i=1(xi)q+1. Similar to the

discussion of Case 3.1, one can choose γ,δ,ε ∈ Fq2 , such that

δq+1 ∈ Fq \F3 and u + δq+1[(α
q−1

2 + 1)q+1 − 2] �= 0, γ q+1 =
−(2k1 + δq+1), εq+1 = −(u + δq+1[(α

q−1
2 + 1)q+1 − 2]).

Construct

A2,n =
(

γ | 12k1 | δ(α
q−1

2 1 1) | 0

0 | X2k1 | δ(α
q−1

2 −α
q−1

2 α
q−1

2 + 1) | ε

)
.

Let C2,n be the code generated by A2,n, and Mn and Nn be
the first and second row of A2,n, respectively. As in the proof
of Lemma 3.1, one can check that (Mn,Mn) = (Mn,Nn) =
(Nn,Nn) = 0; this proves that C2,n is an Hermitian self-
orthogonal code. Therefore, we have proved that C2,n is an
Hermitian self-orthogonal code with dual distance 3.

Case 3.3. q2 − 2 � n � q2 − 1.
If n = q2 − 1, similar to the discussion of Case 3.1,

we can choose γ,δ,ε ∈ Fq2 such that δq+1 ∈ Fq \F3 and

1 − δq+1 − (α
q−1

2 + 1)q+1 �= 0, γ q+1 = 5 − 2δq+1, εq+1 =
2[δq+1 + (α

q−1
2 + 1)q+1 − 1]. Construct

A2,n =
(

γ | 12k | 1 1 δ δ 0

0 | X2k | 1 −1 δα
q−1

2 −δα
q−1

2 ε

)
.

If n = q2 − 2, choose ε = α
q−1

2 + 1, and construct

A2,n =
(

1 | 12k | 13 | 0
0 | X2k | Y3 | ε

)
.

Let C2,n be the code generated by A2,n in each of the
previously mentioned two subcases. As in the proof of
Lemma 3.1, one can check that C2,n is an Hermitian self-
orthogonal code with dual distance 3.

In the previously mentioned three Cases 3.1–3.3, we have
proved that the code generated by A2,n is an [n,2]q2 Hermitian
self-orthogonal code over Fq2 , and its dual distance is 3. Hence,
there are [[n,n − 4,3]]q quantum MDS codes for 4 � n � q2 +
1, where q = 3r � 9.

Summarizing the previous discussion and Lemma 2.4,
Theorem 1.1 holds for q = 3r .

IV. [[n,n − 4,3]]q FOR q = pr AND PRIME p � 5

In this section, we will prove Theorem 1.1 holds for q = pr ,
and we always assume that p � 5 is an odd prime and α is a
primitive element of Fq2 . To give the construction of quantum
[[n,n − 4,3]]q codes, we consider three cases separately.

Case 4.1. 4 � n � q2 − 4 and n ≡ 0 (mod 2).
Let n − 4 = 2k1 and w = 2�

k1
i=1(xi)q+1. Since q � 5, there

is b ∈ Fq and b �= 0, such that 2b + w �= 0 and 2k1 + 2b �=
0. Choose γ,δ,ε ∈ Fq2 such that δq+1 = b, γ q+1 = −(2k1 +
2δq+1), and εq+1 = −(w + 2δq+1). Construct

A2,n =
(

γ | 12k1 | δ δ 0

0 | X2k1 | δ −δ ε

)
=

(
Pn

Qn

)
.

Lemma 4.1. Let q = pr and prime p � 5, 4 � n � q2 − 4
and n ≡ 0(mod 2), and A2,n be as previously mentioned. Then
the code C2,n generated by A2,n is an [n,2]q2 Hermitian self-
orthogonal code with dual distance is 3.

Proof. Since 2δq+1 + 2k1 �= 0, w + 2δq+1 �= 0, γ q+1 =
−(n − 4 + 2δq+1), and εq+1 = −(w + 2δq+1). We have
(Pn,Pn) = γ q+1 + 2k1 + 2δq+1 = −(n − 4 + 2δq+1) + 2k1 +
2δq+1 = 0, (Pn,Qn) = γ × 0 + �

k1
i=1[(xi)q + (−xi)q] +

[δq+1 − δq+1] + 0 × εq = 0, and (Qn,Qn) = 0 + 2�
k1
i=1

(xi)q+1 + 2δq+1 + εq+1 = 0. Hence C2,n is an [n,2]q2

Hermitian self-orthogonal code with dual distance 3, and the
lemma holds.

Case 4.2. 4 � n � q2 − 4 and n ≡ 1(mod 2).
Let n − 5 = 2k1 and w = 2�

k1
i=1(xi)q+1. Similar to the

discussion of Case 4.1, we can choose nonzero elements
γ,δ,ε ∈ Fq2 such that 3δq+1 + 2k1 �= 0 and w + δq+1

(α
q−1

2 + 1)q+1 �= 0, γ q+1 = −(n − 5 + 3δq+1), εq+1 =
−[w + δq+1(α

q−1
2 + 1)q+1]. Construct

A2,n =
(

γ | 12k1 | δ13 | 0

0 | X2k1 | δY3 | ε

)
.

Similarly to the proof of Lemma 4.1, it is easy to prove that
the code generated by A2,n is an Hermitian self-orthogonal
code with dual distance 3.

Case 4.3. q2 − 2 � n � q2 − 1.
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If n = q2 − 1, choose γ,ε ∈ Fq2 such that γ q+1 = 3,

εq+1 = 2(α
q−1

2 + 1)q+1, and construct

A2,n =
(

γ | 12k | 1 1 1 1 0

0 | X2k | 1 −1 α
q−1

2 −α
q−1

2 ε

)
.

If n = q2 − 2, choose γ,ε ∈ Fq2 such that γ q+1 = 4,

εq+1 = (α
q−1

2 + 1)q+1. Construct

A2,n =
(

γ | 12k | 13 | 0

0 | X2k | Y3 | ε

)
.

Let C2,n be the code generated by A2,n in each of the
previously mentioned two subcases. As in the proof of
Lemma 4.1, using Lemma 2.3 one can check that C2,n is an
Hermitian self-orthogonal code with dual distance 3.

In the previously mentioned three Cases 4.1–4.3, we have
proved that the code generated by A2,n is an [n,2]q2 Hermitian
self-orthogonal code with dual distance 3. Hence, there are
[[n,n − 4,3]]q quantum MDS codes for 4 � n � q2 − 1, where
q = pr and p � 5.

Summarizing the previous discussion and Lemma 2.4,
Theorem 1.1 holds for q = pr and odd prime p � 5.

V. CONCLUDING REMARKS

For each odd prime power q, we have constructed an
[[n,n − 4,3]]q quantum MDS code for 4 � n � q2 + 1. In June
2010 (after we submitted this paper), we knew that [23] gave
the construction of [[n,n − 4,3]]q quantum MDS codes for
q = 2r � 4 and 4 � n � q2 + 1 by using our method given
in [21] and other technical. For d � 4, using generalized
Reed-Solomon codes and algebraic geometry, Ref. [23] also
discussed constructing quantum MDS codes with distance d

from Hermitian self-orthogonal codes.
For given q � 3 and d � 4, how one can use our method

given in this paper to construct q-nary quantum MDS codes
with distance d needs further study.
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