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For a given graph G with (0, 1)-adjacency matrix AG , the general-

ized characteristic polynomial of G is defined to be φG = φG(λ, t) =
det(λI − (AG − tDG)), where I is the identity matrix and DG is the

diagonal degree matrix of G. In this paper, we are mainly concerned

with the problem of characterizing a given graph G by its general-

ized characteristic polynomial φG . We show that graphs with the

same generalized characteristic polynomials have the same degree

sequence, based on which, a unified approach is proposed to show

that some families of graphs are characterized by φG . We also pro-

vide a method for constructing graphs with the same generalized

characteristic polynomial, by using GM-switching.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Given a graph G = (V, E) with adjacency matrix AG , let DG be the diagonal matrix with the (i, i)th
entry being equal to the degree of the ith vertex. In [4], Cvetković et al. introduced a bivariate polyno-

mial, denoted by φG(λ, t) = det(λIn − (AG − tDG)) (or φG or simply φ is no confusion arises), which

will be referred to as the generalized characteristic polynomial of G in the paper.

The polynomial φG(λ, t) generalizes some well known characteristic polynomials of graph G, e.g.

the characteristic polynomial of graph G is φG(λ, 0); the characteristic polynomial of the Laplacian

matrix DG−AG of graphG is (−1)|V |φG(−λ, 1); the characteristic polynomial of the sign-less Laplacian

matrixDG+AG of graphG isφG(λ,−1); the characteristicpolynomial of thenormalized Laplacianmatrix

I − D
−1/2
G AGD

−1/2
G of graph G is (−1)|V |φG(0, −λ + 1)/det(DG).
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In this paper, we are mainly concerned with the problem of characterizing graphs by their gener-

alized characteristic polynomials. The motivations for us to study this problem are twofold:

First, our original interests come from the problem of spectral characterization of graphs – an old

problem in spectral graph theory, which is far from resolved. The problem goes back to more than 50

years andoriginates fromchemistry; recently, it has receiveda lot of attention fromresearchers.Most of

theexistingworkhas concentratedonshowing somespecific (new) families of graphs tobedetermined

by the spectrumwith respect to various matrices (e.g. the adjacency matrix, Laplacian matrix and the

sign-less Laplacian matrix); see [3,10,11,13,15,19,21]. We refer the reader to the excellent surveys

[6,7] for a background and related results on this topic.

The problem of spectral characterization of graphs clearly depends on the spectrum concerned.

However, it turns out that characterizing graphs by a single kind of spectrum is generally a very hard

problem and proving a given graph to be determined by its spectrum is usually quite complicated

and involved. So it would be interesting to consider a mild modification of this problem – charac-

terizing graphs by the spectrum with respect to several matrices associated with the given graph,

simultaneously (see also [20]).

Actually, our problemof characterizing a graphby its generalized characteristic polynomial is equiv-

alent to the spectral characterization of a graphwith respect to the family ofmatrices AG− tDG (t ∈ R),
simultaneously. Note that the spectrum of AG − tDG (t ∈ R) includes the spectrum of all the conven-

tional matrices, e.g. the spectrum of the adjacency matrix, the spectrum of Laplacian matrix, the

spectrum of the sign-less Laplacian matrix and the spectrum of the normalized Laplacian matrix, etc.

On the other hand, the generalized characteristic polynomial φG(λ, t) has also an amazing combi-

natorial interpretation as being equivalent to the Bartholdi zeta function. In [1], Bartholdi introduced a

zeta function, known as the Bartholdi zeta function, which generalizes the well known Ihara–Selberg

zeta function (see [12]) of a graph G. In particular, the reciprocal of the Bartholdi zeta function of a

graph G is given as follows:

ZG(u, t)
−1 =

(
1 − (1 − u)2t2

)|E|−|V |
det

[
I − tAG + (1 − u)(DG − (1 − u)I)t2

]
.

It is not difficult to show that φG(λ, t) determines the reciprocal of the Bartholdi zeta function and

vice versa (see also [14]). Thus, it would be interesting to know graphs (or family of graphs) that are

determined by their Bartholdi zeta functions.

In this paper,wefirst investigate some invariants of graphswith the samegeneralized characteristic

polynomial, by using linear algebraic tools, and in particular, we show that the degree sequence of a

graph G is determined by φG . Based on these properties, a unified approach is proposed to show that

some families of graphs are characterized by φG .

As it can be expected, we are able to give some general results for graphs determined by φG ,

which are not available for any single kind of spectrum. For example, we show that the graph G

obtained from a graph Γ by adding some isolated vertices is still determined by φG , provided that Γ

is determined by φΓ . It follows immediately that the disjoint union of the cycles and some isolated

vertices G := Cn1 ∪ Cn2 ∪ · · · ∪ Cns ∪ mK1 is determined by φG . We remark that however, this is in

general not true for a single kind of spectrum such as the adjacency spectrum, the Laplacian spectrum,

or the sign-less Laplacian spectrum.

Finally, we also provide a method for constructing graphs with the same generalized characteristic

polynomial.

The rest of the paper is organized as follows: In Section 2, we give some properties of graphs with

the same generalized characteristic polynomial. In Section 3, we present several methods to show that

some family of graphsG to be determined byφG . In Section 4,we give amethod for constructing graphs

with the same φ-invariant. Conclusions are given in Section 5.

2. Some invariants of φ-cospectral graphs

In this section, we give some invariants of graphs with the same generalized characteristic polyno-

mial. We start by fixing some notations.
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Throughout the paper, we consider only simple graphs, i.e., undirected graphs without loops or

multiple edges. For a given graph G with vertex set V(G) = {1, 2, . . . , n} and edge set E(G), the
adjacency matrix AG = (aij) is an n by n matrix, where aij = 1 if i and j are adjacent; and aij = 0

otherwise. The characteristic polynomial of G is PG(λ) = det(λIn −AG), and themultiset of eigenvalues

of AG is called the spectrum (or A-spectrum) of graph G.

Besides the adjacency matrix, there are other well known matrices associated with graph G. For

example, the Laplacian matrix L = DG − AG , the sign-less Laplacian matrix Q = AG + DG and the

normalized Laplacian matrix L̃ = I − D
−1/2
G AGD

−1/2
G . The multiset of eigenvalues of the corresponding

matrices is referred to as the L-spectrum, the Q-spectrum and the L̃-spectrum, respectively. In this paper,

we are particularly interested in the spectrum with respect to a family of matrices AG − tDG (t ∈ R),
which will be referred to as the φ-spectrum in the sequel.

TwographsG andH are cospectral if they share the same spectrum.AgraphG is said to bedetermined

by the spectrum (DS for short) if any graph H that is cospectral with G is necessarily isomorphic to G.

Of course, the spectrum concerned should be specified. So we have “determined by the spectrum of

A (A-DS)", “determined by the spectrum of L (L-DS)", “determined by the spectrum of Q (Q-DS)", and

“determined by the spectrum of AG − tDG for any t ∈ R (φ-DS)", etc. Moreover, it is not difficult to

verify that if two graphs are φ-cospectral, then they are A-cospectral, L-cospectral, Q-cospectral and

L̃-cospectral, simultaneously (the L̃-cospectrality is less obvious, which is a simple consequence of the

following Theorem 2.1).

It is clear that two graphs are cospectral with respect to the φ-spectrum iff they have the same

generalized characteristic polynomial, and a graph G is characterized by φG iff G is φ-DS. For the ease

of presentation, we will use the term “G is characterized by φG" and “G is φ-DS" interchangeably.

The following theorem shows that φ-cospectral graphs share the same degree sequence. This is

usually quite useful in proving the φ-DS property of graphs.

Theorem 2.1. If φG = φH, then graphs G and H have the same degree sequence.

To prove Theorem 2.1, we need several lemmas below. The proof of the first lemma can be found in

any linear algebra text book, and is omitted.

Lemma 2.2. Let U and V be two n by n matrices. Then we have det(λIn + UV) = det(λIn + VU).

Lemma 2.3. Let ui and vi be n-dimensional column vectors. Let D be an n by n diagonal matrix. Then, we

have

det

⎛
⎝In + t

n∑
i=1

Duiv
T
i

⎞
⎠ =

n∑
k=0

tk
∑

1�i1<i2<···<ik�n

∣∣∣∣∣∣∣∣∣∣∣∣∣

uTi1Dvi1 uTi1Dvi2 · · · uTi1Dvik

uTi2Dvi1 uTi2Dvi2 · · · uTi2Dvik

· · · · · · . . . · · ·
uTikDvi1 uTikDvi2 · · · uTikDvik

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Define U := [Du1,Du2, . . . ,Dun] and V := [v1, v2, . . . , vn]. Let M := ∑n
i=1 Duiv

T
i = UVT

and N := UTV . Then it follows from Lemma 2.2 that

det(In + tM) = det
(
In + tUVT

)

= det
(
In + tVTU

)

= det

[(
In + tVTU

)T]

= det
(
In + tUTV

)
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= det(In + tN)

= tndet

(
1

t
In + N

)
.

The coefficient of tk in det(In + tM) equals the coefficients of
(
1
t

)n−k
in det

(
1
t
In + N

)
, which in

turn equals the sum of all principal minors of N of order k. Then the lemma follows by noticing that∣∣∣∣∣∣∣∣∣∣∣∣∣

uTi1Dvi1 uTi1Dvi2 · · · uTi1Dvik

uTi2Dvi1 uTi2Dvi2 · · · uTi2Dvik

· · · · · · . . . · · ·
uTikDvi1 uTikDvi2 · · · uTikDvik

∣∣∣∣∣∣∣∣∣∣∣∣∣
is actually the principal minor of N with row and column indices being

i1, i2, . . . , ik , respectively. �

Lemma 2.4 [8, p. 186]. Let ξi be the normalized eigenvectors of the adjacency matrix AG of graph G with

associated eigenvalues λi (i = 1, 2, . . . , n). Then (λIn − AG)
−1 = ∑n

i=1

ξiξ
T
i

λ−λi
.

Proofof Theorem2.1. Suppose thatdet(λIn−(AG−tDG)) = det(λIn−(AH−tDH)) for anyλ and t. Then

it is clear that graphs G and H are A-cospectral. Let λi be the common eigenvalues of their adjacency

matrices. Let ξi and ηi be the normalized eigenvectors of G andH associatedwithλi, respectively. Then

we have

det(λIn − (AG − tDG)) = det(λIn − AG)det
(
In + tDG(λIn − AG)

−1
)

= det(λIn − AG)det

(
In + ∑n

i=1

tDGξiξ
T
i

λ−λi

)
.

(1)

Similarly, we have

det(λIn − (AH − tDH)) = det(λIn − AH)det

⎛
⎝In +

n∑
i=1

tDHηiη
T
i

λ − λi

⎞
⎠ . (2)

Note that det(λIn − AG) = det(λIn − AH), it follows from Eqs. (1) and (2) that

det

⎛
⎝In +

n∑
i=1

tDGξiξ
T
i

λ − λi

⎞
⎠ = det

⎛
⎝In +

n∑
i=1

tDHηiη
T
i

λ − λi

⎞
⎠ . (3)

Comparing the coefficients of tk in both sides of Eq. (3) gives that

∑
1�i1<···<ik�n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ T
i1
DGξi1 ξ T

i1
DGξi2 · · · ξ T

i1
DGξik

ξ T
i2
DGξi1 ξ T

i2
DGξi2 · · · ξ T

i2
DGξik

· · · · · · . . . · · ·
ξ T
ik
DGξi1 ξ T

ik
DGξi2 · · · ξ T

ik
DGξik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(λ − λi1)(λ − λi2) · · · (λ − λik )

= ∑
1�i1<···<ik�n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ηT
i1
DHηi1 ηT

i1
DHηi2 · · · ηT

i1
DHηik

ηT
i2
DHηi1 ηT

i2
DHηi2 · · · ηT

i2
DHηik

· · · · · · . . . · · ·
ηT
ik
DHηi1 ηT

ik
DHηi2 · · · ηT

ik
DHηik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(λ − λi1)(λ − λi2) · · · (λ − λik )

,

(4)

for k = 1, 2, . . . , n and where we have used Lemma 2.3.
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Multiplying on both sides of Eq. (4) by (λ−λ1)(λ−λ2) · · · (λ−λn) and comparing the coefficients

of λn−k gives that

∑
1�i1<···<ik�n

∣∣∣∣∣∣∣∣∣∣∣∣

ξ T
i1
DGξi1 ξ T

i1
DGξi2 · · · ξ T

i1
DGξik

ξ T
i2
DGξi1 ξ T

i2
DGξi2 · · · ξ T

i2
DGξik

· · · · · · . . . · · ·
ξ T
ik
DGξi1 ξ T

ik
DGξi2 · · · ξ T

ik
DGξik

∣∣∣∣∣∣∣∣∣∣∣∣
= ∑

1�i1<···<ik�n

∣∣∣∣∣∣∣∣∣∣∣∣

ηT
i1
DHηi1 ηT

i1
DHηi2 · · · ηT

i1
DHηik

ηT
i2
DHηi1 ηT

i2
DHηi2 · · · ηT

i2
DHηik

· · · · · · . . . · · ·
ηT
ik
DHηi1 ηT

ik
DHηi2 · · · ηT

ik
DHηik

∣∣∣∣∣∣∣∣∣∣∣∣
(5)

for k = 1, 2, . . . , n.
Define

P1 := [ξ1, ξ2, . . . , ξn], P2 := [η1, η2, . . . , ηn]. (6)

Then P1 and P2 are orthogonal matrices. Let

MG :=
(
ξ T
i DGξj

)
n×n

= PT1DGP1 and MH :=
(
ηT
i DHηj

)
n×n

= PT2DHP2.

Then by Eq. (5), we have det(λI−MG) = det(λI−MH), i.e., MatricesMG andMH are similar (since both

of them are symmetric matrices). Therefore, there exists an orthogonal matrix Q such that QTMGQ =
MH . That is, Q

TPT1DGP1Q = PT2DHP2 or equivalently,
(
P1QP

T
2

)T
DG

(
P1QP

T
2

)
= DH . It follows from(

P1QP
T
2

)T =
(
P1QP

T
2

)−1
that DG and DH are similar. Moreover, note that both of them are diagonal

matrices, and hence, the set of diagonal entries of DG and that of DH must be equal. This completes the

proof. �
By the lemma above, we can assume without loss of generality that G and H are indexed such that

DG = DH . The following lemma shows that by appropriately choosing the orthonormal eigenvectors ξi
of the adjacencymatrix AG of graph G, ξ T

i DGξi (i = 1, 2, . . . , n) are invariants forφ-cospectral graphs.

Lemma 2.5. Suppose that φG = φH and DG = DH. Let λ1, λ2, . . . , λn be the common eigenvalues of the

adjacency matrices of G and H. Then there exist normalized eigenvectors ξi (resp. ηi) of matrices AG (resp.

AH) associated with λi such that

ξ T
i DGξi = ηT

i DGηi, for i = 1, 2, . . . , n. (7)

Proof. Let ξi (resp. ηi) be any normalized eigenvectors of the adjacency matrix AG (resp. AH) of graph

G (resp. H) associated with λi, for i = 1, 2, . . . , n.
Then according to the proof of Theorem 2.1, Eq. (4) holds. Let k = 1 in Eq. (4), we have

n∑
i=1

ξ T
i DGξi

λ − λi

=
n∑

i=1

ηT
i DGηi

λ − λi

. (8)

Ifλ1, λ2, . . . , λn are all distinct, then by Eq. (8), the lemma clearly holds. Next, we show that if graphG

(resp. H) has multiple eigenvalues, we can always choose the corresponding eigenvectors of AG (resp.

AH) appropriately such that the lemma holds.

Assume without loss of generality that λ1 is a multiple eigenvalue of graph G with multiplicity

m1 � 2. Then it follows from Eq. (8) that

m1∑
j=1

ξ T
j DGξj =

m1∑
j=1

ηT
j DGηj. (9)
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Note that the eigenspace Vλ1
= {x ∈ Rn|AGx = λ1x} of AG corresponding to λ1 ism1-dimensional.

Similarly, the eigenspace Wλ1
= {x ∈ Rn|AHx = λ1x} of AH corresponding to λ1 is also

m1-dimensional. We have to choose orthonormal eigenvectors ξj (resp. ηj), j = 1, 2, . . . ,m, from

Vλ1
(resp. Wλ1

) to meet the requirements that ξ T
j DGξj = ηT

j DGηj for j = 1, 2, . . . ,m. We show that

this is always possible.

Let m = minj

{
ηT
j DGηj

}
and M = maxj

{
ηT
j DGηj

}
. Since every ξ T

j DGξj (resp. η
T
j DGηj) is positive,

theremust exists a term on the left hand side of Eq. (9), say ξ T
1 DGξ1, which satisfiesm � ξ T

1 DGξ1 � M.

Next, we show that there exists a unit vector η̃1 ∈ Wλ1
with ξ T

1 DGξ1 = η̃T
1DGη̃1.

Let η̃1 = (η1, . . . , ηm1
) x, where x = (x1, x2, . . . , xm1

)T . Then η̃T
1DGη̃1 = xTBx, where B =⎡

⎢⎢⎢⎣
ηT
1DGη1 · · · ηT

1DGξm1

· · · · · · · · ·
ηT
m1

DGη1 · · · ηT
m1

DGηm1

⎤
⎥⎥⎥⎦ is a positive-definite matrix.

Let ηT
kDGηk = m = minj

{
ηT
j DGηj

}
and ηT

l DGηl = M = maxj

{
ηT
j DGηj

}
. Then the quadratic form

f (x) = xTBx attains values m and M at x = ek and x = el , respectively, where ek and el are the kth

and the lth vectors of the standard orthonormal basis of Rm1 . Note that f (x) is continuous on the unit

sphere ||x||2 = 1 (here and below || · ||2 is the Euclidean norm), and ξ T
1 DGξ1 lies between m and M.

There must exist an x̃ with ||x̃||22 = x̃21 + · · · + x̃2m1
= ||η̃1||22 = 1 such that x̃T Bx̃ = ξ T

1 DGξ1, i.e.,

ξ T
1 DGξ1 = η̃T

1DGη̃1. Still use the same notation η1 to denote the η̃1 that we found.

Now choose orthonormal eigenvectors, still denoted by ξ2, . . . , ξm1
, from Vλ1

∩ (span ξ1)
⊥, choose

orthonormal eigenvectors, still denoted by η2, . . . , ηm1
fromWλ1

∩ (span η1)
⊥. Then eliminating the

identical terms ξ T
1 DGξ1 = ηT

1DGη1 from both sides of Eq. (9), we get that

m1∑
j=2

ξ T
j DGξj =

m1∑
j=2

ηT
j DGηj. (10)

Using the same arguments as above, we can find η̃2 ∈ Wλ1
∩ (span η1)

⊥ such that η̃2
T
DGη̃2 =

ξ T
2 DGξ2, . . ., continuing this process, we will find ξi and ηi satisfying the requirements of the lemma

for i = 1, 2, . . . ,m1.

Similar arguments can be applied to all the other multiple eigenvalues, and this completes the

proof. �

3. Methods for finding φ-DS graphs

Based on the previous analysis, in this section, we provide a unified approach to show that some

family of graphs are determined by the φ-spectrum. Our main observation is that if two graphs G

and H are φ-cospectral, then they have the same degree sequence and we can choose the normalized

eigenvectors ξi (resp. ηi) of the adjacency matrix AG (resp. AH) of graph G (resp. H) such that Eq. (7)

holds. This turns out to be useful in showing a graph to be φ-DS.

First, we give a method for constructing large φ-DS graphs from smaller φ-DS graphs. Given k

disjoint graphs Gi, i = 1, 2, . . . , k, V(Gi) ∩ V(Gj) = φ for i �= j. The sum (or disjoint union) of graphs

Gi is a graph G with vertex set V(G) = ∪k
i=1V(Gi) and edge set E(G) = ∪k

i=1E(Gi). When all Gi’s are

identical, we use kG1 to denote the sum of k copies of graph G1.

A natural question is: Is the disjoint union of DS graphs still DS? Generally, we cannot expect an

affirmative answer. The following theorem shows that a φ-DS graph is still φ-DS after adding some

isolated vertices.

Theorem 3.1. Let Γ be a φ-DS graph. Let G be a graph obtained from Γ by adding m isolated vertices, i.e.,

G = Γ ∪ mK1. Then G is φ-DS.
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Proof. Suppose that H is a graph with φG = φH . We show that H is isomorphic to G.

By Theorem 2.1, G and H have the same degree sequence. Note that G contains at least m isolated

vertices, it follows thatH must have at leastm isolated vertices. Therefore, we canwriteH = H′ ∪mK1

for some graph H′.
Moreover, it is easy to verify that

φG(λ, t) = φΓ (λ, t)φmK1(λ, t), φH(λ, t) = φH′(λ, t)φmK1(λ, t).

It follows that φΓ (λ, t) = φH′(λ, t). Thus, Γ and H′ are φ-cospectral. By the assumption that Γ is

φ-DS, we get that H′ is isomorphic to Γ and, hence H is isomorphic to G. �

Example 1. It is known (see e.g. [6]) that the sum of disjoint cycles Γ := Cn1 ∪ Cn2 ∪ · · · ∪ Cns is A-DS

and hence φ-DS. It follows from Theorem 3.1 that Γ ∪ mK1 is φ-DS.

We remark that in general, Theorem 3.1 is not true for a single kind of spectrum. For example, as

pointed out in [6], the graph C4 ∪ K1 is not A-DS (since C4 ∪ K1 and K1,4 are A-cospectral but non-

isomorphic), although C4 is A-DS. The graph C3 ∪ K1 is not Q-DS, which has a Q-cospectral mate K1,3.

Nevertheless, C3 is Q-DS. The graph C̄6 ∪ K1 is not L-DS, which has a L-cospectral mate 2K2 ∪ K1 ∪ K2.

However, C̄6 is L-DS, since C6 is A-DS and hence L-DS (for regular graphs, A-DS, L-DS and Q-DS are all

equivalent).

We mention in passing that a similar result was shown in [7], that is, if a graph G with the largest

Laplacian eigenvalue being equal to the order n ofG (which is equivalent to that the complement Ḡ ofG

is disconnected) is L-DS, then G∪mK1 is L-DS. The last example mentioned above provides a situation

that this proposition is in general not true for an arbitrary L-DS graph G.

Next, we give a method for obtaining φ-DS graphs by using another kind of graph operation.

Let G be a graph with degree sequence (dn−1
1 , d2), where the exponents denote the multiplicity

and d1 �= d2. We call such a graph a bi-degree graph with a dominating vertex. A graph G is said to be

almost d-regular if its degree sequence is (dk, (d + 1)n−k). The following theorem gives a method for

determining whether a bi-degree graph with a dominating vertex is φ-DS.

Theorem 3.2. Let Gi (i = 1, 2, . . . , s) be almost d-regular graphs. Let G be obtained from the disjoint

union ∪s
i=1Gi by adding a new vertex v, which is connected to all the vertices of graph Gi with degree d.

Suppose that the degree d̃ of v in G is not equal to d+1. If the disjoint union∪s
i=1Gi is A-DS, then G isφ-DS.

Proof. Let H be a graph with φH = φG . We show that H is isomorphic to G.

Assume without loss of generality that v is indexed as n = 1 + ∑s
i=1 ni, where ni is the order of

graph Gi. Then the degree sequence of H is ((d + 1)n−1, d̃). Assume that w is the vertex in H with

degree d̃, which is also indexed as n.

Letλi (i = 1, 2, . . . , n)be the eigenvalues ofAG . By Lemma2.5, there exist normalized eigenvectors

ξi (resp. ηi) of graphs G (resp. H) associated with λi such that ξ T
i DGξi = ηT

i DHηi for each i. Note that

DG = DH = diag(d + 1, d + 1, . . . , d + 1, d̃). It follows that

(d + 1)ξ T
i ξi + (d̃ − d − 1)

(
ξ T
i en

)2 = (d + 1)ηT
i ηi + (d̃ − d − 1)

(
ηT
i en

)2
.

Since d̃ − d − 1 �= 0 and ξ T
i ξi = ηT

i ηi = 1, we get that
(
ξ T
i en

)2 =
(
ηT
i en

)2
for each i, where

en = (0, 0, . . . , 1)T is the nth vector of the standard orthonormal basis of Rn.

Choose the sign of ηi appropriately such that ξ T
i en = ηT

i en for each i. Let P1 and P2 be defined as in

Eq. (6). Let Q = P1P
T
2 . Then it follows that

QTAGQ = AH, QTen = en. (11)

By the second equality in Eq. (11), we get that Q is of the form Q = diag(Q1, 1), where Q1 is an

orthogonal matrix of order n − 1. By the first equality in Eq. (11), we get QT
1 AG−vQ1 = AH−w , i.e., the
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Fig. 1. (A) The rose graph R(6, 5, 4, 4) and (B) the wheel graphW8.

two graphs G − v and H − w are A-cospectral. Since G − v = ∪s
i=1Gi is A-DS, H − w is isomorphic to

G− v. Thus, H −w is the disjoint unions ∪s
i=1Hi of s graphs Hi, where Hi is isomorphic to Gi. Note that

Hi is almost d-regular, and the degree sequence of H is ((d + 1)n−1, d̃). It follows that w is adjacent

to all vertex of degree d in Hi. Since v is also adjacent to all the vertex of degree d in Gi. Therefore, H is

actually isomorphic to G. �

Let G1 and G2 be two disjoint graphs. The product of G1 and G2, denoted by G1 × G2, is defined to

be a graph G obtained from G1 + G2 by adding all the edges between V(G1) and V(G2). The following

theorem shows that if Gi’s are di-regular graphs and the disjoint union ∪s
i=1Gi is A-DS, then the graph

obtained by adding a new vertex v connecting with all the vertices of Gi, is φ-DS.

Theorem 3.3. Let Gi (i = 1, 2, . . . , s) be d-regular graphs. Let G = (G1 + G2 + · · · + Gs) × v. Assume

that G is irregular. If the disjoint union ∪s
i=1Gi is A-DS, then G is φ-DS.

The proof of the Theorem 3.3 is similar to that of Theorem 3.2, and is omitted. We remark that as

mentioned in [6], if s > 1, Theorem 3.3 holds for L-spectrum. However, it is generally not true for

L-spectrum when s = 1. Next, we give some examples to illustrate Theorems 3.2 and 3.3 (Fig. 1).

Example 2. The wheel graph Wn+1 on n + 1 vertices is a graph obtained from the cycle Cn by adding a

new vertex connecting with all the other vertices. It was shown in [21] that the wheel graph (except

for W7) is L-DS. Let G1 = Cn. Note that Cn is A-DS, it follows from Theorem 3.3 thatWn+1 is φ-DS.

Example 3. Let vi be any vertex in the cycle Cli , i = 1, 2, . . . , p. The rose graph , denoted by

R(l1, l2, . . . , lp), is a graph obtained from the cycles Cl1 , Cl2 , . . . , Clp by identifying vi (i = 1, 2, . . . , p)
as one vertex. When p = 2, the so-called ∞-graphs without triangles were shown in [17] to be L-DS;

when p = 3, the rose graph with three petals were shown in [18] to be Q-DS.

Take Gi = Pli−1. Note that G1 + G2 + · · · + Gp is A-DS (see e.g. [7]). It follows from Theorem 3.2

that the rose graph R(l1, l2, . . . , lp) (li � 3) is φ-DS.

4. Construction of graphs with the same φ-spectrum

In this section, we give a method for constructing non-regular and cospectral graphs with respect

to the φ-spectrum, which is based on a method of Godsil and McKay [9]. Note that two graphs are

cospectralwith respect to theφ-spectrummeans that they areA-cospectral, L-cospectral,Q-cospectral

and L̃-cospectral, simultaneously. In [2], the author asked the question of how to construct pairs of

non-regular graphs which are cospectral with respect to the adjacency spectrum, the Laplacian and

the normalized Laplacian spectrum, simultaneously. The method in this section also gives an answer
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Fig. 2. A pair of non-regular, non-isomorphic φ-cospectral graphs.

to this question in a stronger sense. (As pointed out by the reviewer, our construction is essentially

equivalent to GM*-switching in [5].)

Theorem 4.1 cf. [5]. Let G1 be a d-regular graph with adjacency matrix A1, and G2 be an arbitrary graph

with adjacency matrix A2. Suppose the order m (resp. k) of G1 (resp. G2) is even. Let C be an m × k (0,1)-

matrix such that Cem = k
2
em and CTek = m

2
ek, where em (resp. ek) is all-one vector of order m (resp. k).

Let the adjacency matrices of graphs G and H be given as follows:

AG =
⎡
⎣ A1 C

CT A2

⎤
⎦ , AH =

⎡
⎣ A1 J − C

JT − CT A2

⎤
⎦ , (12)

where J is an m by k all-one matrix. Then φG = φH.

Proof. The proof is similar to that in [5], and is omitted. �

As an illustration, we give a concrete example of φ-cospectral graphs, which is taken from Fig. 3 in

[5].

Example 4. Let A1 and A2 be the adjacency matrices of graphs 2K2 and P3
⋃

3K1, respectively. Let

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 1

1 1 1 0 0 0

0 0 1 1 0 1

1 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. Then, Eq. (14) gives a pair of non-regular, non-isomorphicφ-cospectral graphs

(see Fig. 2).

5. Concluding remarks

The problem of characterizing graphs by their generalized characteristic polynomial (or equiva-

lently, by their φ-spectrum) is considered in the paper. As we have shown, it is comparatively easier

to characterize graphs using a family of spectrum simultaneously, rather than by a single kind of spec-

trum, and we have given several methods for finding graphs that are determined by the φ-spectrum.

However, there are many problems needed to be further explored in the future:

1. Does there exist a simple characterization of graphswith the sameφ-spectrum? Clearly, if there

exists an orthogonal matrix Q such that QTAGQ = AH and QTDGQ = DH , then φG = φH . Is the

converse true? We would like to see a proof or a counterexample.

2. Canmore invariants of φ-cospectral graphs be derived? If so, we could have good chance to find

more φ-DS graphs.

3. Can the combinatorial interpretation of the generalized characteristic polynomial as an equiv-

alence of Bartholdi zeta function be helpful in finding φ-DS graphs? This line of research might

be an interesting future work.
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