Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

FTE REAKSRMHR 10.1 Ak 3R
B NER o o
@ADL) B AR & 8] 18]
B AR AL R (P
B AR I SRR U i — HFrEy
RSB EETEZN
Basic Block Optimizations Basic Block Optimizations
@ Common Sub-Expression Eliminationfij[i: 23 3t 1% @ Copy Propagation2 5% 1%

A # a=x+y,b=a;c=b+z

a=(x+y)+z; b = x+y; # a=x+y;b=a;c=a+z

Ft=xty;a=trz;b=t; @ Dead Code Elimination/Il & ¢ I ACH%
@ Constant Propagation; Hf& 7/ 4 & # a=x+y;b=a c=atz

X =5; b =x+y; 4 a=X+y;Cc=a+z

& b =5+y; @ Strength Reduction /5 Hil 55
@ Algebraic Identities{t i fH 2% /KA St=i*4;

$#a=x*1, Ftzi<<2;

$a=x;

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

B4 RAD A KB 1T P B] AR
FRAGTY S FRATE 0% di0E 1PN
@ HBRIEHT & W BB
@ AT 55 B FEEE
W R4 R
B FAS S
B THEIRFHIE R
@ REDAE BT %
D A ik BB BN BT
@ YRR F EIR R B ANHLEBRES
S B RRRN T & A SLE AT
& L FIERT N BARYLES BB RE B TEEMAYEES
& OERDERRERE, AT REEREE SRR, FEEE
& —fRBA TE R @ YL 4RAHY
BHERER s RBLERES
& HhRIR A B F I RBREIER R ST Huhk

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

HAUE TR

@ IR A B in A F51 B EFARSIHNE, ERFNE— R EE
¢ IRKIZR FERTHRESE
o Fo S BEAK T LIS G S © EREE M F AR R, SRR EREERKEA
o MEABIN AR R G

W EFRMEH TR RENPTE 2
W BN S A A R L e A R R %

HE KT 10.2 AR ALK A& BRI AR A

B T EPAT IR TR B AR R @ CS164: Programming Languages and Compilers,
B HLSEmMFHSERNEE Spring 2008

@ EEBEERFERNPSE4 o] 5 @ University of Berkeley

@ 6.035 Computer Language Engineering (SMA 5502)
Fall 2005

@ MIT OpenCourseWare

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

5B AR

Idea about Basic Blocks

@ A basic block is a maximal sequence of instructions
with:
$no labels (except at the first instruction), and
#no jumps (except in the last instruction)
B SRR AW R TR 2 541
IR AN 2 3R
& AT e N B FEA b 8] 1) 43 3¢
SR PN 2 2 B KAL)
B AT AT R N E IS — RIS TTR

@ Cannot jump in a basic block (except at beginning)
@ Cannot jump out of a basic block (except at end)

@ Each instruction in a basic block is executed after
all the preceding instructions have been executed

Basic Block Example

5 X . Al

@ Consider the basic block

1. L:
2. t:=2*x
3. wi=t+xXx

4. ifw>0gotoL'

@ No way for (3) to be executed without (2) having
been executed right before

#We can change (3) tow :=3 * x
% Can we eliminate (2) as well?

@ A control-flow graph is a directed graph with
4 Basic blocks as nodes

% An edge from block A to block B if the execution
can flow from the last instruction in A to the
first instruction in B

el AR JE—FIEA R jump Lg
S, NERAZIIRBAIBAT 7T BEA LT

WEEMHE AN CFG

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

Control Flow Graphs =0; Basic Block Construction
ad = 4,
int add(n, k) { i=0; @ Start with instruction control-flow graphfis 4 2% 1)
s=0;a=4;i=0; k== CFG .
if (k==0)b=1: @ Visit all gdges in graph
@ Merge adjacent nodes if
else_b:.2; | b=1; | | b=2; | 4 Only one edge from first node
while (i <n) { 4 Only one edge into second node
s =5+ a*b;
i=i+1; s=0:
} > | 2%
return s; v a=4
} a=4;
s=0;
s=0; s=0;
1 " "
a- 4, d = 4, d = 4,
= 0’
:

2;|

(553] [»

return s;

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

Compiler2012RuntimeSystem

return s;

Yinliang Zhao Xi'an Jiaotong University

return s;

Compiler2012RuntimeSystem Yinliang Zhao Xi’an Jiaotong University

s=0;
|

=] .
_m K ==
e -~ =5 oo

return s;

return s;

Optimization Overview AL 23K
@ Optimization seeks to improve a program’s @ For languages like C and Cool there are three
utilization of some resourcefLAL I B S E B X 3 granularities of optimizations$&}i & >k 43+
BEIR A 1.Local optimizations
< Execution time (most often) « Apply to a basic block in isolation
% Code size 2.Global optimizations
« Apply to a control-flow graph (method body) in

% Network messages sent
% Battery power used, etc.

isolation

@ Optimization should not alter what the program 3.Inter-procedural optlmlzatlo_ns
* Apply across method boundaries

computestAb AN %R 7 Ui ilers d do (2 and few d
% The answer must still be the same o '(\él)%t compilers do (1), many do (2) and very few do

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

Cost of Optimizations

Local Optimizations

@ s2BrH, a conscious decision is made not to
implement the fanciest optimization known
@ Why?
% Some optimizations are hard to implement
4 Some optimizations are costly in terms of
compilation time
% The fancy optimizations are both hard and
costly
@ The goal: maximum improvement with minimum
of cost

@ The simplest form of optimizations
@ No need to analyze the whole procedure body
Just the basic block in question

@ Example: algebraic simplification

Algebraic Simplification

Constant Folding# &8

& Some statements can be deleted

X:=x+0
X=x*1

W Some statements can be simplified
X:=x*0 = Xx:=0
y=y*™2 = y:=y*y
X:=X*8 = X:1=X<<3
X:=x*15 = t:=x<<4;x:=t-X

(on some machines << is faster than *; but
not on all!)

@ Operations on constants can be computed at
compile time
@ In general, if there is a statement
X:I=yopz
4 And y and z are constants
4 Then y op z can be computed at compile time
@ Example: x :=2+2 =>x:=4
@ Example: if 2 <0 jump L can be deleted

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

EHITAL

@ Eliminating unreachable code:
4 Code that is unreachable in the control-flow graph

% Basic blocks that are not the target of any jump or
“fall through” from a conditional

% Such basic blocks can be eliminated

@ Why would such basic blocks occur?

@ Removing unreachable code makes the program
smaller

% And sometimes also faster, due to memory cache
effects (increased spatial locality)

Single Assignment Form

@ Some optimizations are simplified if each
assignment is to a temporary that has not appeared
already in the basic blockZE & R EE—iX

@ Intermediate code can be rewritten to be in single
assignment form

X:i=a+y X:i=a+y
a:i=x = a; ==X

X:=a*Xx Xy = a; *X
b:=x+a b:=x+a

(x, and a, are fresh temporaries)

Common Subexpression Elimination

@ Assume
4 Basic block is in single assignment form

@ All assignments with same rhs compute the same
value

@ Example:
Xi=y+z Xi=y+z
. =
Wi=y+z W= X

@ Why is single assignment important here?

Copy Propagation

@ If w := x appears in a block, all subsequent uses of
w can be replaced with uses of x

@ :
bi=z+y b:=z+y
a:=b = a:=b
X:=2%*a X:=2*b

@ This does not make the program smaller or faster
but might enable other optimizations

4 Constant folding
¢ Dead code elimination
@ Again, single assignment is important here.

10

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

Copy Propagation and Constant Folding Dead Code Elimination

@ Example: wIf
a:=5 a:=5 w :=rhs appears in a basic block
X:=2%*a = x:=10 w does not appear anywhere else in the program
y:=X+6 y =16 @ Then
t:=x*y t:=x<<4 the statement w := rhs is dead and can be eliminated

@ Dead = does not contribute to the program’s result
Example: (a is not used anywhere else)

X:1=z+y bi=z+y b:i=z+y
a:=x = a:=b = Xi=2*b
X:=2*a X:=2*b

Applying Local Optimizations An Example

@ Each local optimization does very little by itself
@ Typically optimizations interact
Performing one optimizations enables other opt.

@ Typical optimizing compilers repeatedly perform
optimizations until no improvement is possible
% The optimizer can also be stopped at any time to
limit the compilation time

@ Initial code:

a:;=x**2
b:=3
c:=X
di=c*c
e:=b*2
f:=a+d
g:=e*f

11

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

a:=x**2
b:=3
c:=X
di=c*c
e:=b*2
f:=a+d
g:i=e*f

@ Algebraic optimization:

@ Algebraic optimization:

a:=x*x
b:=3

c:=X

di=c*c
e:=b+b
f:=a+d
g:i=e*f

@ Copy propagation:

a:=x*x
b:=3

c:=X

di=c*c
e:=b+b
f:=a+d
g:=e*f

@ Copy propagation:

a:=x*x
b:=3

c:=X

d:=x*x
e:=3+3
f:=a+d
g:=e*f

12

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

@ Constant folding:

a:=x*x
b:=3

c:=X

d:=x*Xx
e:=3+3
f:=a+d
g:i=e*f

@ Constant folding:

a:=x*x
b:=3
C:=X
d:=x*Xx
e:=
f:=a+d
g:i=e*f

@ Common subexpression elimination:

a:=x*x
b:=3
C:=X
d:=x*Xx
e:=
f:=a+d
g:=e*f

@ Common subexpression elimination:

a:=x*x
b:=3
c:=X
d:=a
e:=6
f:=a+d
g:=e*f

13

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

@ Copy propagation:

a:=x*x
b:=3
c:=X
d:=a
e:=6
f:=a+d
g:=e*f

@ Copy propagation:

a:=x*x
b:=3
c:=X
d:=a
e:=6
f:i=a+a
g:=6*f

@ Dead code elimination:

a:=x*x
b:=3
c:=X
d:=a
e:=6
fi=a+a
g:=6*f

@ Dead code elimination:

a:=x*x

g:=6*f

@ This is the final form

14

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

Peephole Optimizations on Assembly Code

Peephole Optimizations (Cont.)

@ The optimizations presented before work on
intermediate code
4 They are target independent
% But they can be applied on assembly language
also
@ Peephole optimization is an effective technique for
improving assembly codeZi LItk
#The “peephole” is a short sequence of (usually
contiguous) instructions
4 The optimizer replaces the sequence with
another equivalent (but faster) one

@ Write peephole optimizations as replacement rules
iy ey Iy = 01y weos I
where the rhs is the improved version of the lhs
@ Examples:
move $a $b, move $b $a — move $a $b
#Works if move $b $a is not the target of a jump
addiu $a $b Kk, lw $c ($a) — lw $c k($b)
Works if $a not used later (is “dead")

MIPS# 4

Peephole Optimizations (Cont.)

@ addiu d,s,const

@ # $d <-- s + const.

@ # Const is 16-bit two's comp. sign-extended to 32
bits

@ # when the addition is done. No overflow trap.

@ Iw register_destination, RAM_source

@ #copy word (4 bytes) at source RAM location to
destination register.

@ Many (but not all) of the basic block optimizations
can be cast as peephole optimizations
#Example: addiu $a $b 0 — move $a $b
#Example: move aa —
% These two together eliminate addiu $a $a 0

@ Just like for local optimizations, peephole
optimizations need to be applied repeatedly to get
maximum effect

15

Compiler2012RuntimeSystem

Local Optimizations. Notes.

Yinliang Zhao Xi'an Jiaotong University

@ Intermediate code is helpful for many
optimizations

@ Many simple optimizations can still be applied on
assembly language

Local Optimizations. Notes (I1).

@ Serious problem: what to do with pointers?
$*t may change even if local variable t does not:
Aliasing
% Arrays are a special case (address calculation)
@ What to do about globals?
@ What to do about calls?

% Not exactly jumps, because they (almost) always
return.

4 Can modify variables used by caller
@ Next: global optimizations

103 FH BB H #HIK

W & B PR R E IR EF 75
e FEhboi—4H; HPEHE—H; KR
S He—AN B B F A AR A
B ERFFEIT
SR CS SR S B R A B A 75 R 22

==
& REPEFR 2K 8 B R AE [2 K Ao

*EFTHFFRLEILERFREZEITEFH
ook

B % FHF B

@ Outline

@ What is register allocation
@ Webs

@ 7% EInterference Graphs
@ /€% f.Graph coloring

@ ¥ H Spilling

@ 4 %4Splitting

@ More optimizations (%)

W AT AR B 6.035 OMIT Fall 1999

16

Compiler2012RuntimeSystem

Storing values between def and use

@ Program computes with values
4 value definitions (where computed)
% value uses (where read to compute new values)
@ Values must be stored between def and use
@ First Option
% store each value in memory at definition
% retrieve from memory at each use
@ Second Option
% store each value in register at definition
4 retrieve value from register at each use

Yinliang Zhao Xi'an Jiaotong University

Issues

@ On atypical RISC architecture
4 All computation takes place in registers

4 Load instructions and store instructions transfer
values between memory and registers

@ Add two numbers, values in memory
% load r1, 4(sp)
% load r2, 8(sp)
4 add r3,r1,r2
% store r3, 12(sp)

Issues

@ Fewer instructions when using registers
4 Most instructions are register-to-register
4 Additional instructions for memory accesses
@ Registers are faster than memory
< wider gap in faster, newer processors
4 Factor of about 4 bandwidth, factor of about 3 latency

4 Could be bigger if program characteristics were
different

@ But only a small number of registers available
4 Usually 32 integer and 32 floating-point registers
4 Some of those registers have fixed users (r0, ra, sp, fp)

Register Allocation

@ Deciding which values to store in limited number of
registers

@ Register allocation has a direct impact on
performance

4 Affects almost every statement of the program
4 Eliminates expensive memory instructions

% # of instructions goes down due to direct
manipulation of registers (no need for load and
store instructions)

4 Probably is the optimization with the most impact!

17

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

What can be put in a register?

Web-Based Register Allocation

@ Values stored in compiler-generated temps
@ Language-level values
% Values stored in local scalar variables
% Big constants
% Values stored in array elements and object fields
@ Issue: alias analysis
@ Register set depends on the data-type
% floating-point values in floating point registers
% integer and pointer values in integer registers

@ Determine live ranges for each value (web)

@ Determine overlapping ranges (interference)

@ Compute the benefit of keeping each web in a register
(spill cost)

@ Decide which webs get a register (allocation)

@ Split webs if needed (spilling and splitting) % H: 14>

H

@ Assign hard registers to webs (assignment)
@ Generate code including spills (code gen)

Webs

.

@ Starting Point: def-use chains (DU chains)
4 Connects definition to all reachable uses

@ Conditions for putting defs and uses into same web
% Def and all reachable uses must be in same web
4 All defs that reach same use must be in same web

@ Use a union-find algorithm

/\/

def x
defy

use X
usey

\iﬂf-vl_l

def x

usey
use X
def x

use X

18

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

def x
defy

def x

19

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

Webs Convex Sets and Live Ranges

@ Web is unit of register allocation @ Concept of convex set '14E

@ If web allocated to a given register R @ AsetSisconvex if
% All definitions computed into R % A, BinSand Cis on a path from A to B implies
4 All uses read from R # CisinS

@ If web allocated to a memory location M @ Concept of live range of a web
< All definitions computed into M ¢ Minimal convex set of instructions that includes all
4 All uses read from M defs and uses in web

@ Issue: instructions compute only from registers % Intuitively, region in which web's value is live

@ Reserve some registers to hold memory values

20

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

Interference

@ Two webs interfere if their live ranges overlap (have
a nonemtpy intersection)

@ If two webs interfere, values must be stored in
different registers or memory locations

@ If two webs do not interfere, can store values in same
register or memory location

@ Webs S1f1S2TF%
@ Webs S2f1S3F#

Interference Graph

@ Representation of webs and their interference
4 Nodes are the webs
% An edge exists between two nodes if they interfere

21

Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

Register Allocation Using Graph Coloring

Graph Coloring

@ Each web is allocated a register
4 each node gets a register (color)
@ If two webs interfere they cannot use the same register

% if two nodes have an edge between them, they
cannot have the same color

@ Assign a color to each node in graph

@ Two nodes connected to same edge must have
different colors

@ Classic problem in graph theory
@ NP complete
% But good heuristics exist for register allocation

#l. BE

fl. &

@ 1B

22

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

#l. BE #l. BE

@ O ©
© © ©

W 2B w24 Eie
B, B&E & B, B&E &
B 27 Fite B 3 FiE

23

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

#l. BE FHEBECHRRRAT &

@ NP AT S
W RN (A E =% E)
& DU s s A T DA)
& LEXRIRIM S O E, DR DI —Fh
R0 1 T
B W E>=N
& R NFP BRI T 4 (B

B 3NFIE

FHRBEENE LR T Econt. Bl. H&E &6 F
)25 B <N IR A

& PO

B AT AN @'@
& P TRE R A R A 10) @B
7 SEEN

W ORI, FHAEE @B eb
& MR AN
R AL =01 Y 7 N e et 2 A PgeG e

(PHIMIE<N, R A7 ZE KT Fhigien) RN Il | 54;52:81:53

24

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

Bl BE AT e i
@ Option 1

@'@ 4 Pick a web and allocate value in memory

% All defs go to memory, all uses come from memory

@ @ Option 2

% Split the web into multiple webs

@ @ @ In either case, will retry the coloring

@ 3 Fif - D - $4;92:91;93

Which web to pick? Ideal and Useful Spill Costs
@ One with interference degree >= N @ Ideal spill cost -dynamic cost of extra load and store
@ One with minimal spill cost (cost of placing value in instructions. Can’t expect to compute this.
memory rather than in register) 4 Don't know which way branches resolve
@ What is spill cost? % Don’'t know how many times loops execute
4 Cost of extra load and store instructions 4 Actual cost may be different for different
executions

@ Solution: Use a static approximation
% profiling can give instruction execution frequencies
or use heuristics based on structure of control flow
graph

25

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

One Way to Compute Spill Cost Spill Cost Example

@ Goal: give priority to values used in loops @ Spill Cost For x

@ So assume loops execute 10 or 8 times def x storeCost +loadCost

@ Spill cost = defy @ Spill Cost For y
& A def i A7 fiti 1 2 AU R LLLO A SRR A ik , #9*storeCost +9*loadCost
DL Ly I use y @ With 1 Register, Which
4 sum over all use sites of cost of a load instruction defy Variable Gets Spilled?

times 10 to the loop nesting depth power
@ Choose the web with the lowest spill cost L

use X
usey
Splitting Rather Than Spilling Splitting Example
_ Xy z
@ Split the web
4 Split a web into multiple webs so that there will be def z
less interference in the interference graph making it use z
N-colorable
4 Spill the value to memory and load it back at the def x
points where the web is split defy
use X
use X
use y

26

Compiler2012RuntimeSystem

Splitting Example

XYy z
def z
use z
def x
defy
use X
use X
usey
use z

Splitting Example

z

Xy
def z
use z
def x
defy
use X
use X
usey
use z I

Splitting Example

Xy z
def z
use z

def x
defy
use X
use x
use y

use z I

@ 24

Splitting Example

usey

L

use z I

XYy z
def z
use z

r r
def x ry
defy
use X
use X

r

0—O
%)

@ 24N

Yinliang Zhao Xi'an Jiaotong University

27

Compiler2012RuntimeSystem

Splitting Example

Yinliang Zhao Xi'an Jiaotong University

]’ =

defz
use z

strz @
r ry

def x r
defy ° o
use X

use X

usey o

use z

adl e &k A H ik

B A SRR RS (] BRI AR
& RPN ARAERE T s K R e AT)
web
& (EAH N 5L BT 1% web
& FA IR
& R A

Cost and benefit of splitting

@ Cost of splitting a node

% Proportion to number of times splitted edge has to
be crossed dynamically

< Estimate by its loop nesting
@ Benefit

4 Increase colorability of the nodes the splitted web
interferes with

% Can approximate by its degree in the interference
graph
@ Greedy heuristic

% pick the live-range with the highest benefit-to-cost
ration to spill

FHBZER (BFEHE)

B 7E IR, LA T B A AR R IR I B A A
& —ANREE NN LS
& R

B XX EewebE AT P I FORAh AT TS i 76 15 A 1) A
fias

B] LLHBRA L B E HIER A

28

Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

R& Control Flow Analysis

@ A7 i W CFG, MK, &mRREEA, NIRRT
& 7E 2 SR (R 4E s A7 6 4E 25 A7 g W NG A BRI T, A EER gk
& LA/ m T AE PR S

B NS
4 Web
& o
& I

& 7

Data Flow Analysis

o4
& in(by) A Bk BEA Py I PRI R AL A
& out(by) Ay 25 T HEAS Heby I 1 7% R AR A
& def () WAEEEA WD PEE ORED MARREE
& use(by) b 7E LA 5 | AR F A
@ def (b)) A1 use(b;) 55 in(b;) A1 out(b,) [HK R I F:

in(b,) = use(b,) w (out(b,)\ def (b,)
out(b)= U in(x)

xesucc(b;)

29

