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Basic Block Optimizations Basic Block Optimizations
@ Common Sub-Expression Eliminationfij[i: 23 3t 1% @ Copy Propagation2 5% 1%

A # a=x+y,b=a;c=b+z

# a=(x+y)+z; b = x+y; # a=x+y;b=a;c=a+z

Ft=xty;a=trz;b=t; @ Dead Code Elimination/Il & ¢ I ACH%
@ Constant Propagation; Hf& 7/ 4 & # a=x+y;b=a c=atz

# X =5; b =x+y; 4 a=X+y;Cc=a+z

& b =5+y; @ Strength Reduction /5 Hil 55
@ Algebraic Identities{t i fH 2% /KA St=i*4;

$#a=x*1, Ftzi<<2;

$a=x;
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Idea about Basic Blocks

@ A basic block is a maximal sequence of instructions
with:
$no labels (except at the first instruction), and
#no jumps (except in the last instruction)
B SRR AW R TR 2 541
IR AN 2 3R
& AT e N B FEA b 8] 1) 43 3¢
SR PN 2 2 B KAL)
B AT AT R N E IS — RIS TTR

@ Cannot jump in a basic block (except at beginning)
@ Cannot jump out of a basic block (except at end)

@ Each instruction in a basic block is executed after
all the preceding instructions have been executed

Basic Block Example

5 X . Al

@ Consider the basic block

1. L:
2. t:=2*x
3. wi=t+xXx

4. ifw>0gotoL'

@ No way for (3) to be executed without (2) having
been executed right before

#We can change (3) tow :=3 * x
% Can we eliminate (2) as well?

@ A control-flow graph is a directed graph with
4 Basic blocks as nodes

% An edge from block A to block B if the execution
can flow from the last instruction in A to the
first instruction in B

el AR JE—FIEA R jump Lg
S, NERAZIIRBAIBAT 7T BEA LT

WEEMHE AN CFG




Compiler2012RuntimeSystem Yinliang Zhao Xi'an Jiaotong University

Control Flow Graphs =0; Basic Block Construction
ad = 4,
int add(n, k) { i=0; @ Start with instruction control-flow graphfis 4 2% 1)
s=0;a=4;i=0; k== CFG .
if (k==0)b=1: @ Visit all gdges in graph
@ Merge adjacent nodes if
else_b:.2; | b=1; | | b=2; | 4 Only one edge from first node
while (i <n) { 4 Only one edge into second node
s =5+ a*b;
i=i+1; s=0:
} > | 2%
return s; v a=4
} a=4;
s=0;
s=0; s=0;
1 " "
a- 4, d = 4, d = 4,
= 0’
:

2;|

(553 ] [»

return s;
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return s;
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return s;
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s=0;
|
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return s;

return s;

Optimization Overview AL 23K
@ Optimization seeks to improve a program’s @ For languages like C and Cool there are three
utilization of some resourcefLAL I B S E B X 3 granularities of optimizations$&}i & >k 43+
BEIR A 1.Local optimizations
< Execution time (most often) « Apply to a basic block in isolation
% Code size 2.Global optimizations
« Apply to a control-flow graph (method body) in

% Network messages sent
% Battery power used, etc.

isolation

@ Optimization should not alter what the program 3.Inter-procedural optlmlzatlo_ns
* Apply across method boundaries

computestAb AN %R 7 Ui ilers d do (2 and few d
% The answer must still be the same o '(\él)%t compilers do (1), many do (2) and very few do
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Cost of Optimizations

Local Optimizations

@ s2BrH, a conscious decision is made not to
implement the fanciest optimization known
@ Why?
% Some optimizations are hard to implement
4 Some optimizations are costly in terms of
compilation time
% The fancy optimizations are both hard and
costly
@ The goal: maximum improvement with minimum
of cost

@ The simplest form of optimizations
@ No need to analyze the whole procedure body
# Just the basic block in question

@ Example: algebraic simplification

Algebraic Simplification

Constant Folding# &8

& Some statements can be deleted

X:=x+0
X=x*1

W Some statements can be simplified
X:=x*0 = Xx:=0
y=y*™2 = y:=y*y
X:=X*8 = X:1=X<<3
X:=x*15 = t:=x<<4;x:=t-X

(on some machines << is faster than *; but
not on all!)

@ Operations on constants can be computed at
compile time
@ In general, if there is a statement
X:I=yopz
4 And y and z are constants
4 Then y op z can be computed at compile time
@ Example: x :=2+2 =>x:=4
@ Example: if 2 <0 jump L can be deleted
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EHITAL

@ Eliminating unreachable code:
4 Code that is unreachable in the control-flow graph

% Basic blocks that are not the target of any jump or
“fall through” from a conditional

% Such basic blocks can be eliminated

@ Why would such basic blocks occur?

@ Removing unreachable code makes the program
smaller

% And sometimes also faster, due to memory cache
effects (increased spatial locality)

Single Assignment Form

@ Some optimizations are simplified if each
assignment is to a temporary that has not appeared
already in the basic blockZE & R EE—iX

@ Intermediate code can be rewritten to be in single
assignment form

X:i=a+y X:i=a+y
a:i=x = a; ==X

X:=a*Xx Xy = a; *X
b:=x+a b:=x+a

(x, and a, are fresh temporaries)

Common Subexpression Elimination

@ Assume
4 Basic block is in single assignment form

@ All assignments with same rhs compute the same
value

@ Example:
Xi=y+z Xi=y+z
. =
Wi=y+z W= X

@ Why is single assignment important here?

Copy Propagation

@ If w := x appears in a block, all subsequent uses of
w can be replaced with uses of x

@ :
bi=z+y b:=z+y
a:=b = a:=b
X:=2%*a X:=2*b

@ This does not make the program smaller or faster
but might enable other optimizations

4 Constant folding
¢ Dead code elimination
@ Again, single assignment is important here.

10
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Copy Propagation and Constant Folding Dead Code Elimination

@ Example: wIf
a:=5 a:=5 w :=rhs appears in a basic block
X:=2%*a = x:=10 w does not appear anywhere else in the program
y:=X+6 y =16 @ Then
t:=x*y t:=x<<4 the statement w := rhs is dead and can be eliminated

@ Dead = does not contribute to the program’s result
Example: (a is not used anywhere else)

X:1=z+y bi=z+y b:i=z+y
a:=x = a:=b = Xi=2*b
X:=2*a X:=2*b

Applying Local Optimizations An Example

@ Each local optimization does very little by itself
@ Typically optimizations interact
# Performing one optimizations enables other opt.

@ Typical optimizing compilers repeatedly perform
optimizations until no improvement is possible
% The optimizer can also be stopped at any time to
limit the compilation time

@ Initial code:

a:;=x**2
b:=3
c:=X
di=c*c
e:=b*2
f:=a+d
g:=e*f

11
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a:=x**2
b:=3
c:=X
di=c*c
e:=b*2
f:=a+d
g:i=e*f

@ Algebraic optimization:

@ Algebraic optimization:

a:=x*x
b:=3

c:=X

di=c*c
e:=b+b
f:=a+d
g:i=e*f

@ Copy propagation:

a:=x*x
b:=3

c:=X

di=c*c
e:=b+b
f:=a+d
g:=e*f

@ Copy propagation:

a:=x*x
b:=3

c:=X

d:=x*x
e:=3+3
f:=a+d
g:=e*f

12



Compiler2012RuntimeSystem

Yinliang Zhao Xi'an Jiaotong University

@ Constant folding:

a:=x*x
b:=3

c:=X

d:=x*Xx
e:=3+3
f:=a+d
g:i=e*f

@ Constant folding:

a:=x*x
b:=3
C:=X
d:=x*Xx
e:=
f:=a+d
g:i=e*f

@ Common subexpression elimination:

a:=x*x
b:=3
C:=X
d:=x*Xx
e:=
f:=a+d
g:=e*f

@ Common subexpression elimination:

a:=x*x
b:=3
c:=X
d:=a
e:=6
f:=a+d
g:=e*f

13
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@ Copy propagation:

a:=x*x
b:=3
c:=X
d:=a
e:=6
f:=a+d
g:=e*f

@ Copy propagation:

a:=x*x
b:=3
c:=X
d:=a
e:=6
f:i=a+a
g:=6*f

@ Dead code elimination:

a:=x*x
b:=3
c:=X
d:=a
e:=6
fi=a+a
g:=6*f

@ Dead code elimination:

a:=x*x

g:=6*f

@ This is the final form

14
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Peephole Optimizations on Assembly Code

Peephole Optimizations (Cont.)

@ The optimizations presented before work on
intermediate code
4 They are target independent
% But they can be applied on assembly language
also
@ Peephole optimization is an effective technique for
improving assembly codeZi LItk
#The “peephole” is a short sequence of (usually
contiguous) instructions
4 The optimizer replaces the sequence with
another equivalent (but faster) one

@ Write peephole optimizations as replacement rules
iy ey Iy = 01y weos I
where the rhs is the improved version of the lhs
@ Examples:
move $a $b, move $b $a — move $a $b
#Works if move $b $a is not the target of a jump
addiu $a $b Kk, lw $c ($a) — lw $c k($b)
# Works if $a not used later (is “dead")

MIPS# 4

Peephole Optimizations (Cont.)

@ addiu d,s,const

@ # $d <-- s + const.

@ # Const is 16-bit two's comp. sign-extended to 32
bits

@ # when the addition is done. No overflow trap.

@ Iw register_destination, RAM_source

@ #copy word (4 bytes) at source RAM location to
destination register.

@ Many (but not all) of the basic block optimizations
can be cast as peephole optimizations
#Example: addiu $a $b 0 — move $a $b
#Example: move $a$a —
% These two together eliminate addiu $a $a 0

@ Just like for local optimizations, peephole
optimizations need to be applied repeatedly to get
maximum effect

15
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Local Optimizations. Notes.
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@ Intermediate code is helpful for many
optimizations

@ Many simple optimizations can still be applied on
assembly language

Local Optimizations. Notes (I1).

@ Serious problem: what to do with pointers?
$*t may change even if local variable t does not:
Aliasing
% Arrays are a special case (address calculation)
@ What to do about globals?
@ What to do about calls?

% Not exactly jumps, because they (almost) always
return.

4 Can modify variables used by caller
@ Next: global optimizations
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@ Outline

@ What is register allocation
@ Webs

@ 7% EInterference Graphs
@ /€% f.Graph coloring

@ ¥ H Spilling

@ 4 %4Splitting

@ More optimizations (%)

W AT AR B 6.035 OMIT Fall 1999
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Storing values between def and use

@ Program computes with values
4 value definitions (where computed)
% value uses (where read to compute new values)
@ Values must be stored between def and use
@ First Option
% store each value in memory at definition
% retrieve from memory at each use
@ Second Option
% store each value in register at definition
4 retrieve value from register at each use

Yinliang Zhao Xi'an Jiaotong University

Issues

@ On atypical RISC architecture
4 All computation takes place in registers

4 Load instructions and store instructions transfer
values between memory and registers

@ Add two numbers, values in memory
% load r1, 4(sp)
% load r2, 8(sp)
4 add r3,r1,r2
% store r3, 12(sp)

Issues

@ Fewer instructions when using registers
4 Most instructions are register-to-register
4 Additional instructions for memory accesses
@ Registers are faster than memory
< wider gap in faster, newer processors
4 Factor of about 4 bandwidth, factor of about 3 latency

4 Could be bigger if program characteristics were
different

@ But only a small number of registers available
4 Usually 32 integer and 32 floating-point registers
4 Some of those registers have fixed users (r0, ra, sp, fp)

Register Allocation

@ Deciding which values to store in limited number of
registers

@ Register allocation has a direct impact on
performance

4 Affects almost every statement of the program
4 Eliminates expensive memory instructions

% # of instructions goes down due to direct
manipulation of registers (no need for load and
store instructions)

4 Probably is the optimization with the most impact!

17
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What can be put in a register?

Web-Based Register Allocation

@ Values stored in compiler-generated temps
@ Language-level values
% Values stored in local scalar variables
% Big constants
% Values stored in array elements and object fields
@ Issue: alias analysis
@ Register set depends on the data-type
% floating-point values in floating point registers
% integer and pointer values in integer registers

@ Determine live ranges for each value (web)

@ Determine overlapping ranges (interference)

@ Compute the benefit of keeping each web in a register
(spill cost)

@ Decide which webs get a register (allocation)

@ Split webs if needed (spilling and splitting) % H: 14>

H

@ Assign hard registers to webs (assignment)
@ Generate code including spills (code gen)

Webs

.

@ Starting Point: def-use chains (DU chains)
4 Connects definition to all reachable uses

@ Conditions for putting defs and uses into same web
% Def and all reachable uses must be in same web
4 All defs that reach same use must be in same web

@ Use a union-find algorithm

/\/

def x
defy

use X
usey

\iﬂf-vl_l

def x

usey
use X
def x

use X

18
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def x
defy

def x

19
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Webs Convex Sets and Live Ranges

@ Web is unit of register allocation @ Concept of convex set '14E

@ If web allocated to a given register R @ AsetSisconvex if
% All definitions computed into R % A, BinSand Cis on a path from A to B implies
4 All uses read from R # CisinS

@ If web allocated to a memory location M @ Concept of live range of a web
< All definitions computed into M ¢ Minimal convex set of instructions that includes all
4 All uses read from M defs and uses in web

@ Issue: instructions compute only from registers % Intuitively, region in which web's value is live

@ Reserve some registers to hold memory values

20
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Interference

@ Two webs interfere if their live ranges overlap (have
a nonemtpy intersection)

@ If two webs interfere, values must be stored in
different registers or memory locations

@ If two webs do not interfere, can store values in same
register or memory location

@ Webs S1f1S2TF%
@ Webs S2f1S3F#

Interference Graph

@ Representation of webs and their interference
4 Nodes are the webs
% An edge exists between two nodes if they interfere

21
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Register Allocation Using Graph Coloring

Graph Coloring

@ Each web is allocated a register
4 each node gets a register (color)
@ If two webs interfere they cannot use the same register

% if two nodes have an edge between them, they
cannot have the same color

@ Assign a color to each node in graph

@ Two nodes connected to same edge must have
different colors

@ Classic problem in graph theory
@ NP complete
% But good heuristics exist for register allocation

#l. BE

fl. &

@ 1B

22
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Bl BE AT e i
@ Option 1

@'@ 4 Pick a web and allocate value in memory

% All defs go to memory, all uses come from memory

@ @ Option 2

% Split the web into multiple webs

@ @ @ In either case, will retry the coloring

@ 3 Fif - D - $4;92:91;93

Which web to pick? Ideal and Useful Spill Costs
@ One with interference degree >= N @ Ideal spill cost -dynamic cost of extra load and store
@ One with minimal spill cost (cost of placing value in instructions. Can’t expect to compute this.
memory rather than in register) 4 Don't know which way branches resolve
@ What is spill cost? % Don’'t know how many times loops execute
4 Cost of extra load and store instructions 4 Actual cost may be different for different
executions

@ Solution: Use a static approximation
% profiling can give instruction execution frequencies
or use heuristics based on structure of control flow
graph

25
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One Way to Compute Spill Cost Spill Cost Example

@ Goal: give priority to values used in loops @ Spill Cost For x

@ So assume loops execute 10 or 8 times def x storeCost +loadCost

@ Spill cost = defy @ Spill Cost For y
& A def i A7 fiti 1 2 AU R LLLO A SRR A ik , #9*storeCost +9*loadCost
DL Ly I use y @ With 1 Register, Which
4 sum over all use sites of cost of a load instruction defy Variable Gets Spilled?

times 10 to the loop nesting depth power
@ Choose the web with the lowest spill cost L

use X
usey
Splitting Rather Than Spilling Splitting Example
_ Xy z
@ Split the web
4 Split a web into multiple webs so that there will be def z
less interference in the interference graph making it use z
N-colorable
4 Spill the value to memory and load it back at the def x
points where the web is split defy
use X
use X
use y

26
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Splitting Example

XYy z
def z
use z
def x
defy
use X
use X
usey
use z

Splitting Example

z

Xy
def z
use z
def x
defy
use X
use X
usey
use z I

Splitting Example

Xy z
def z
use z

def x
defy
use X
use x
use y

use z I

@ 24

Splitting Example

usey

L

use z I

XYy z
def z
use z

r r
def x ry
defy
use X
use X

r

0—O
%)

@ 24N

Yinliang Zhao Xi'an Jiaotong University
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Splitting Example
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]’ =

defz
use z

strz @
r ry

def x r
defy ° o
use X

use X

usey o

use z

adl e &k A H ik

B A SRR RS (] BRI AR
& RPN ARAERE T s K R e AT )
web
& (EAH N 5L BT 1% web
& FA IR
& R A

Cost and benefit of splitting

@ Cost of splitting a node

% Proportion to number of times splitted edge has to
be crossed dynamically

< Estimate by its loop nesting
@ Benefit

4 Increase colorability of the nodes the splitted web
interferes with

% Can approximate by its degree in the interference
graph
@ Greedy heuristic

% pick the live-range with the highest benefit-to-cost
ration to spill

FHBZER (BFEHE)

B 7E IR, LA T B A AR R IR I B A A
& —ANREE NN LS
& R

B XX EewebE AT P I FORAh AT TS i 76 15 A 1) A
fias

B ] LLHBRA L B E HIER A
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R& Control Flow Analysis

@ A7 i W CFG, MK, &mRREEA, NIRRT
& 7E 2 SR (R 4E s A7 6 4E 25 A7 g W NG A BRI T, A EER gk
& LA/ m T AE PR S

B NS
4 Web
& o
& I

& 7

Data Flow Analysis

o4
& in(by) A Bk BEA Py I PRI R AL A
& out(by) Ay 25 T HEAS Heby I 1 7% R AR A
& def () WAEEEA WD PEE ORED MARREE
& use(by) b 7E LA 5 | AR F A
@ def (b)) A1 use(b;) 55 in(b;) A1 out(b,) [HK R I F:

in(b,) = use(b,) w (out(b,)\ def (b,)
out(b)= U in(x)

xesucc(b;)
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