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Abstract—Detecting intrinsic loop structures of a data manifold is the necessary prestep for the proper employment of the manifold

learning techniques and of fundamental importance in the discovery of the essential representational features underlying the data lying

on the loopy manifold. An effective strategy is proposed to solve this problem in this study. In line with our intuition, a formal definition of

a loop residing on a manifold is first given. Based on this definition, theoretical properties of loopy manifolds are rigorously derived. In

particular, a necessary and sufficient condition for detecting essential loops of a manifold is derived. An effective algorithm for loop

detection is then constructed. The soundness of the proposed theory and algorithm is validated by a series of experiments performed

on synthetic and real-life data sets. In each of the experiments, the essential loops underlying the data manifold can be properly

detected, and the intrinsic representational features of the data manifold can be revealed along the loop structure so detected.

Particularly, some of these features can hardly be discovered by the conventional manifold learning methods.

Index Terms—Isometric feature mapping, loop structure, manifold learning, nonlinear dimensionality reduction

Ç

1 INTRODUCTION

RESEARCH in artificial intelligence in general and machine
learning in particular often encounter high-dimensional

data distributed on a smooth manifold with intrinsic low
dimensionality. Finding the essential low-dimensional
representational features of the raw data is the main task
of manifold learning. If appropriately accomplished, it can
facilitate further tasks in data analysis. In the last decade,
numerous manifold learning methods have been proposed,
including isometric feature mapping (Isomap: [1]), locally
linear embedding (LLE: [2]), Laplacian eigenmap [3], and
others [4], [5], [6], [7], [8], [9], [10]. These methods have
attracted extensive attention in different disciplines because
of their nonlinear nature, geometric intuition and computa-
tional efficiency.

However, when the data manifolds contain intrinsic
loops, such as the sphere, cylinder, or torus shown in Fig.
1, most of the current manifold learning methods become
invalid. This problem has been experimentally discovered
[11], [12], [13], [14], [15], and has become a commonly
encountered situation in manifold learning. Attempts have
been made in the last few years in the development of
effective manifold learning techniques for the analysis of
such loopy manifold data. For instance, local MDS [16] can
split the 3D sphere into two adjacent 2D discs. Riemannian

manifold learning method (RML [17]) can cut the data on
the cylinder manifold along one generatrix line (which is
moved along a fixed curve in a parallel fashion to generate
the cylindrical manifold) and unroll it to form a stripe. The
Cut-Clone-Cut procedure (3C procedure [18]) can effec-
tively find the minimal parameterizations (2D representa-
tions) of the cylinder-like data manifold which varies by
one cyclic and one acyclic parameters. Besides, by utilizing
some tools in graph theory, the method presented in [19],
[20] can deal with data residing on the torus manifold and
the cylindrical manifold with holes.

It should be noted that all of these methods for loopy
manifold learning have been implemented under the
precondition that the data manifold is known to contain
loops. For the image data or the 2D or 3D data, it might be
possible to explore the manifold loops simply by observa-
tion, but for generally hard-to-visualize data (such as the
gene expression data), it is always very difficult to directly
find and analyze loops from the data manifold. To design
an effective automatic algorithm for clarifying and detect-
ing loop structure underlying the data manifold has thus
become, in our view, the gateway to the proper selection of
the manifold learning techniques in practice. Specifically,
we need to employ the manifold learning techniques for
loops only after the loops underlying the input data have
been affirmed. Detecting loops underlying the data
manifold also inclines to help us achieve the manifold
learning task by, for instance, breaking the manifold into
several pieces, each of which could be studied separately
with manifold learning methods. Otherwise, we can just
use the conventional methods. Another motivation for loop
detection is based on the following fact. The ineffectiveness
of the conventional manifold learning methods in loopy
cases results from their inability to reflect the intrinsic
representational features along the loop structure under-
lying the data manifold by the coordinates of the calculated
low-dimensional embeddings. If the loop structure on the
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data manifold can be effectively detected, it can help

explicate such implicit representational features.
Accordingly, how to detect intrinsic loops underlying a

data manifold has thus become, in our view, a crucial issue

in manifold learning. The key to solve this issue is to have

an understanding of the essential properties of the loopy

manifolds, and to develop effective algorithm to detect

loops from the data manifold. Evidently, a proper

definition of a loop lying on a manifold is the first step

to accomplish such task. To the best of our knowledge, a

rigorous definition of a loop in a manifold does not exist.

The understanding of a loop in current works is largely

intuitive. The purpose of this paper is to give a rigorous

and reasonable definition of loops lying on a manifold, and

to perform a theoretical and empirical analysis of loop

detection on a data manifold.
We first give in Section 2 the mathematical definition of a

loop on a manifold that is consistent with our intuition. A

necessary and sufficient (N/S) condition for the detection of

intrinsic loops on a manifold is also presented in this

section. The corresponding loop-detection algorithm is then

constructed in Section 3. In Section 4, the soundness of the

proposed theory and algorithm is validated by a series of

simulations performed on synthetic and real data sets. The

paper is then concluded with a summary and outlook for

future research.

2 DETECTING INTRINSIC LOOPS UNDERLYING A

DATA MANIFOLD: THE THEORY

Given a data set X ¼ fxigli¼1 2 M, where M is a bounded

manifold embedded in Rn with intrinsic dimensionality d

(d� n), our aim is to properly detect the loop structure in

M based only on the input data X. We first give in this

section the N/S condition to detect loops in M. The loop-

detection algorithm is then constructed on the basis of the

theoretical foundation.
In what follows, a formulation of the manifold mapping is

first given. An intuitive but formal definition of a loop on the

manifold is introduced next. Based on the mathematical

formulation of a manifold and the rigorous definition of a

loop, a theorem for detecting the existence of loops in

manifold is then constructed, and the N/S condition is

further set up for loop detection.

2.1 The Convex and Locally Isometric Assumptions
for Manifold Mapping

The basic theory of manifold learning can be cast within the
framework of Riemannian geometry. To avoid unnecessary
abstraction, it is generally considered in manifold learning
that the special case of parameterized manifold is repre-
sented as hypersurfaces of arbitrary codimension in the
euclidean space [9], [21], i.e., there exists a representational
set � 2 Rd and a map f : �! Rn, such that fð�Þ ¼ M.
Throughout the paper, we further assume that there exists a
closed and convex set � 2 Rd, and a surjective map
f : �!M, such that for any y 2 �, kDfðyÞk ¼ 1 holds,
where Df is the Fréchet derivative of f [22]. We denote the
collection of all such ðf;�Þ as ISM.

It should be noted that two assumptions are involved in
the above formulation of the manifoldM and the manifold
mapping f . The first is the convex assumption, i.e., it is
assumed that the inverse image ofM is a closed and convex
set � 2 Rd. Actually, quite a number of the theoretical
investigations employ such convex assumption as the default
precondition [23], [24], [25], [26]. Such assumption also
facilitates our proof of the main theoretical results, and makes
the mathematical analysis more concise and understandable.

The other assumption is the locally isometric assumption,

i.e., it is assumed that kDfðyÞk ¼ 1 for any y 2 �. “Locally

isometric” is named after the fact that kDfðyÞk ¼ 1, i.e.,

limy!y�
fðyÞ�fðy�Þk k

y�y�k k ¼ 1 implies that a small local area on �

isometrically corresponds to a small local area onM. In fact,

the locally isometric assumption has been adopted in many

classical manifold learning methods, such as Isomap [1],

CDA [4], and RML [17], and has also been proved reasonable

in many simulations and applications [1], [4], [26].
The convex and locally isometric assumptions constitute

the fundamentals of our theoretical framework for loopy
manifold. Before getting into the main analysis, it is
necessary to introduce two useful propositions. The first
proposition describes the equivalence between the lengths
of the corresponding curves located on � andM, a natural
result of the locally isometric assumption. The second one
gives the uniform continuous property of the manifold
mapping f , which can be easily deduced from the bounded
and continuous properties of f and the well-known Heine-
Cantor theorem [27].

Proposition 1. For ðf;�Þ 2 ISM and a continuous curve � in �,
denote its curve length asLdð�Þ. Further denote the correspond-
ing curve inM as fð�Þ and its curve length asLnðfð�ÞÞ. Then,
we have
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Fig. 1. Three typical manifolds with intrinsic loop structures, including the sphere, cylinder, and torus manifolds.



Lnðfð�ÞÞ ¼ Ldð�Þ: ð1Þ

Proposition 2. For any ðf;�Þ 2 ISM, f is uniformly
continuous on �.

Both propositions can be easily proved by the funda-
mental theories of mathematical analysis [27], and the proof
is thus omitted here.

2.2 An Intuitive Definition for a Loop on a Manifold

By virtue of the formulation of ISM in the last section, a loop
residing on the manifold M can be intuitively defined as
follows:

Definition 1. For ðf;�Þ 2 ISM and ya; yb 2 � (ya 6¼ yb), if
fðyaÞ ¼ fðybÞ and fðya þ tðyb � yaÞÞ 6¼ fðya þ sðyb � yaÞÞ
(8 0 < t < s � 1), then we call the curve � ¼ ffðya þ tðyb �
yaÞÞj0 < t � 1g a loop on M. The collection of all such loops
composes the loop structure ofM. If the loop structure ofM is
not empty, M is called a loopy manifold.

This definition of a loop on a manifold is very intuitive.
We assume that the manifold M can be formed by
isometrically wrapping the representational set � from the
Rd space to the Rn space. The loop on M can then be
considered as a curve formed by wrapping a line segment of
� and simultaneously sticking its start and end points
together. For illustration, Fig. 2 depicts a loop located on the
cylindrical manifold. It should be noted that we do not
assume a specific ðf;�Þ of ISM in the above definition.
Rather, the curve is defined as a loop onM if the conditions
of Definition 1 hold for any ðf;�Þ 2 ISM. The loop structure
contained in real manifolds can then be faithfully reflected
by this definition to a large extent.

The following theorem provides a simple way to
theoretically judge whether a manifold contains loops:

Theorem 1 (N/S condition of loopy manifold). A manifold
does not contain loops if and only if for any ðf;�Þ 2 ISM, f is
injective.

The proof of Theorem 1 is given in Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2011.191.

The N/S condition, however, still cannot be used to
develop a feasible algorithm for loop detection based only
on a limited number of input data lying on the manifold. In
the next section, a special kind of curve is to be defined and
utilized to realize this goal.

2.3 The Theory on Detecting Loops on Manifold

The manifoldM can be taken as a metric space by defining
the distance of two points xa; xb 2M as the infimum length
of all paths connecting them along M [28], denoted as
distMðxa; xbÞ. Since the euclidean metric kya � ybk corre-
sponds to the shortest length of all curves between points ya
and yb in �, according to Proposition 1, it is apparent that
the two metrics should have a close relationship. The
following result for nonloopy manifolds clarifies this point.
It should be noted that all theoretical results in this section
hold under the precondition that there exists nonempty
ISM for the data manifoldM, i.e., the manifold satisfies the
convex and local isometric assumptions as aforementioned
in Section 2.1.

Lemma 1. If the manifold does not contain loops, then for any
ðf;�Þ 2 ISM and ya; yb 2 �, distMðfðyaÞ; fðybÞÞ ¼ kya �
ybk holds.

Actually, based on Theorem 1, it can be easily examined
that in nonloopy cases, f is bijective from the representa-
tional set � to the manifold set M. Thus, the continuous
curve in � also one-to-one corresponds to the continuous
curve on M, and this correspondence is isometric. There-
fore, the shortest path between ya; yb 2 � should also
correspond to the shortest connection between fðyaÞ; fðybÞ
along the manifold M. That is to say, kya � ybk is equal to
distMðfðyaÞ; fðybÞÞ. Thus, the result of the above lemma can
be naturally obtained.

Next, we give an important definition of the P-curve.
This specific kind of curve is to be further utilized to derive
the crucial theorem for detecting loops on a manifold.

Definition 2. For ðf;�Þ 2 ISM, y 2 � and a unit vector
! 2 Rd, if yþ t! 2 � for all t 2 ½0; ��, then we call the curve
CðtÞ ¼ fðyþ t!Þ ðt 2 ½0; ��Þ a P-curve on M, and denote
GCðtÞ ¼ distMðCð0Þ; CðtÞÞ, t 2 ½0; �� for any P-curve C.

Based on Lemma 1, GCðtÞ ¼ distMðCð0Þ; CðtÞÞ ¼ t is ob-
vious in nonloopy cases. This means that length of a P-curve
C, i.e., GCðtÞ, is monotonically increasing with respect to t.
Then, how about the loopy cases? The following theorem
presents a precise answer to this problem:

Theorem 2 (Loop-detection theorem). A manifold does not
contain loops if and only if for any P-curve CðtÞ (t 2 ½0; ��) of
M, GCðtÞ is monotonically increasing with respect to t in ½0; ��.

The proof of Theorem 2 is given in Appendix B, available
in the online supplemental material.

For a loopy manifold M, it is easy to see that a loop
ffðya þ tðyb � yaÞÞj0 < t � 1; ya; yb 2 �g (ðf;�Þ 2 ISM) cor-
responds to aP-curve CðtÞ alongM. Based on Theorem 2, the
existence of loop structure in M intrinsically leads to the
possible occurrence of a monotonic decrease of GCðtÞ. This
point can be easily observed in Fig. 2. When t starts to
increase from 0, the curve length GCðtÞ tends to be equivalent
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Fig. 2. (a) The 3D cylindrical manifold set M. The solid line depicts a
loop ffðya þ tðyb � yaÞÞj0 < t � 1; ya; yb 2 �g along the manifold, where
ðf;�Þ 2 ISM. Following the terminology to be introduced in Definition 2,
the loop intrinsically corresponds to a P-curve CðtÞ of M, where
CðtÞ ¼ fðya þ t!Þ, ! is the unit vector yb�ya

kyb�yak , and t 2 ½0; kyb � yak�. x0 ¼
Cðt0Þ depicts the point at which GCðtÞ tends to change from monotonically
increasing to decreasing. xaðxbÞ, xi, and xd depict Cð0Þ(Cðkya � ybkÞ),
Cðt0 � "Þ, Cðt0 þ "Þ, respectively, where " is a small positive number.
(b) The 2D representational set � of the manifold set M, where ya, yb,
y0, yi, and yd correspond to xa, xb, x0, xi, and xd, respectively.



to the distance between ya and the inverse image of CðtÞ on �,

and it tends to be monotonically increasing. Yet, when the

variable t attains some value t0 (i.e., CðtÞ attains x0 ¼ Cðt0Þ),
GCðtÞ, the infimum length between xa and CðtÞ, tends to

change to the distance between the inverse image of CðtÞ and

yb, and it tends to be decreasing.
Actually, the above analysis illuminates a heuristic way

to detect implicit loops on a loopy manifold by the
following process: first, find a P-curve CðtÞ started from
xa such that along the curve there exists the point x0 ¼ Cðt0Þ
satisfying that at t0, the monotonically increasing tendency
of GCðtÞ is altered; second, construct two points xi ¼
Cðt0 � "Þ and xd ¼ Cðt0 þ "Þ, where " is a small positive
number (as depicted in Fig. 2); third, compute the shortest
path �1 between xa and xi, �2 between xi and xd, and �3

between xd and xa; and finally, generate a closed path
residing on M by connecting �1, �2, and �3 together. The
path so generated can approximately depict a loop residing
on M, as shown in Fig. 2.

By simulating the above process based only on a given

data set, the algorithm for loop detection is constructed in

the next section.

3 DETECTING INTRINSIC LOOPS UNDERLYING A

DATA MANIFOLD: THE ALGORITHM

Evidently, formulating the P-curve based on the raw data
is the key to construct the loop-detection algorithm. In
what follows, an effective strategy is formulated to realize
such goal.

3.1 Formulating the Approximate P-Curve Based on
the Raw Data

The strategy to construct an approximate P-curve from the

raw data X comprises three stages.
First, we introduce an easy way to obtain four points

located on the same line in the representational set � � Rd:

Result 1. For the ball set BrðycÞ ¼ fy j ky� yck � r; y; yc 2 �g
and a point y0 in � but not inBrðycÞ, if yn is the nearest point and

yf is the farthest point fromy0 inBrðycÞ, respectively, thenyc,y0,

yn, and yf reside on the same line.

Fig. 3a gives the graphical presentation of this result.

Second, based on the one-to-one correspondence (Theo-
rem 1) and isometric property (Lemma 1) between the
representational set � and the nonloopy manifold set M,
the above result can be easily transferred to the manifold
case as follows:

Result 2. For the manifold ball set B0rðxcÞ ¼ fx j distMðx; xcÞ �
r; x; xc 2 Mg and an outside point x0 2 M, if xn; xf are the

nearest and farthest points from x0 in B0rðxcÞ, respectively,

then xc, x0, xn and xf are located on the same P-curve,

expressed as fCðtÞ ¼ fðyf þ t!Þ; t 2 ½0; kyf � y0k�g, where

ðf;�Þ 2 ISM, ! ¼ yn�yf
kyn�yfk , y0, yn, yf are the inverse images

of x0, xn, and xf on �, respectively.

Here, the distances between the pairwise points on the
metric space M is defined in Section 2.3. Result 2 implies
that we can achieve points residing on the similar P-curve
CðtÞ without having to know its mathematical description.
This result is graphically depicted in Fig. 3b.

It should be noted that in loopy cases, Result 2 might not
always be correct. In particular, since the manifold setM is
not one-to-one correspondent to the representational set �
(Theorem 1), Result 2 cannot be rigorously induced by
Result 1 in loopy cases. While on the preconditions that
both the radius r of the ball B0rðxcÞ and the distance between
x0 and the ball set are not very large, the distances between
pairwise points in B0rðxcÞ, and between x0 and points in
B0rðxcÞ are still generally equal to the euclidean distances
between their corresponding points in the representational
set �, i.e., Result 2 still tends to hold in such cases.

Third, an approximate description of Result 2 based only
on the input data X ¼ fxigli¼1 2 M can then be proposed.
Evidently, the distances between pairwise points in X need
to be properly estimated first. This goal can be achieved by
the following two steps [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10]: first, generate the k-NN or "-NN neighborhood graph
G ¼ ðV ;EÞ, where k-NN or "-NN define neighbors of a
datum as its k nearest ones or the ones away from the
datum smaller than the threshold " [1], [2], the vertex set V
consists of the given data set X, and the edge set E contains
the k-NN or "-NN edges of all vertices1; second, estimate
the interpoint distances of X by calculating the lengths
of the shortest paths between the data pairs in the
neighborhood graph. We denote the distance matrix of X
so calculated as DX ¼ fdXðxi; xjÞgl�l. Then, the approxima-
tion of Result 2 can be made as follows:

Approximation of Result 2. For the manifold data ball
set fBrðxcÞ ¼ fxi j dXðxi; xcÞ � r; xi; xc 2 Xg and an outside
point x0 2 X, if xn; xf are the nearest and farthest points from
x0 in fBrðxcÞ, respectively (w.r.t. DX), then xc, x0, xn, and xf
are approximately located on the same P-curve.

Similar to Result 2, the above description is approximately

correct in nonloopy cases. For loopy manifold data, its

correction can only be approximated on the condition that

the radius r of fBrðxcÞ and the distance between x0 and
fBrðxcÞ are not very large.
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Fig. 3. Graphical representations of Results 1 and 2. (a) The
representational set �. The domain inside the circle is the ball set
BrðycÞ as described in Result 1; y0 2 � is a point not in BrðycÞ; yn, yf are
the nearest and farthest points from y0 in BrðycÞ, respectively. (b) The
manifold set M. The domain inside the real curve denotes the ball set
B0rðxcÞ as described in Result 2, and x0; xc; xa; xb correspond to
y0; yc; ya; yb, respectively.

1. The edge set of the k-NN or "-NN neighborhood graph has been
automatically symmetrized in our algorithm since the graph involved is an
undirected graph. Thus, that the point x1 connects another point x2 implies
that x2 also connects x1.



It should be indicated that in the finite-sample case, the

above result approximately holds only under the precondi-
tion that the data are densely distributed on the underlying

manifold such that the interpoint shortest path along the

manifold can be faithfully estimated by virtue of the k-NN

or "-NN neighborhood graph superimposed on the data set.

Such condition also constitutes the basis of many of the

current manifold learning techniques [1], [2], [3], [4]. While

in real cases, this theoretical hypothesis might be broken.
Two typical instances are: 1) when the collection of data is

very sparse such that it cannot be considered as a manifold

anymore; 2) in the context of high-dimensional data, all

pairs of data points tend to be equidistant from one another

for a wide range of data distributions [29] (i.e., the well-

known curse-of-dimensionality problem) such that the

nearest neighbors measured by interpoint distances lose
their significance. Accordingly, it should be emphasized

that the Approximation of Result 2, and further the to-be-

presented loop-detection algorithm is effective only when

the data are densely sampled such that the k-NN or "-NN

can faithfully reflect the local neighborhood configuration of

the underlying manifold.

3.2 The Main Idea for Detecting Loops from Data
Manifold

Based on Approximation of Result 2, the algorithm can then

be constructed to detect manifold loops from the given data

set X by simulating the process described at the end of

Section 2.1. We first give the main idea of the algorithm in

this section, and construct the algorithm for loop detection
in the next section.

In brief, the main idea of the algorithm is to point-by-point

expand the manifold data ball fBrðxcÞ until the loop

information is attained in this iterative process. The major

steps are as follows.
First, estimate the distance matrix DX ¼ fdXðxi; xjÞgl�l of

X by applying the method presented in the last section;

select the appropriate start point xc from X; formulate the

initial manifold ball fBrðxcÞ ¼ fxcg (actually, it holds that
r ¼ 0), and the candidate set eCrðxcÞ, where

eCrðxcÞ ¼ fxi 2 X jxi 62 eBrðxcÞ and xi is a neighbor

of a point in eBrðxcÞg:
ð2Þ

It is easy to see that eC0ðxcÞ is composed by all neighbors of

xc in X.
Second, run the iterative process as follows: 1) find the

current point x0 in the candidate set eCrðxcÞwhich is nearest to

xc (based on DX); 2) search the points xn and xf in fBrðxcÞ
which are nearest and farthest from x0, respectively; 3) detect

whether dXðx0; xfÞ 	 dXðxn; xfÞ. If yes, then add x0 to the ball

set fBrðxcÞ (the ball radius r is then renewed as kx0 � xckÞ);
supplement the neighbors of x0 to the candidate set eCrðxcÞ;
delete x0 from eCrðxcÞ; and then continue the iteration.2 If no,

then a loop is detected by connecting the shortest paths

between x0 and xf , xf and xn, and xn and x0.
To guarantee a more global detection of the manifold

loops, the algorithm further utilizes two strategies: 1) imple-
ment the algorithm multiple times under different starting
points xc; and 2) when a loop is detected, delete the current
x0 from the candidate set and continue to search for the
points from the candidate set and run the iterative process
until the candidate set becomes empty. By applying such
strategies to detect manifold loops, the loop structure of the
manifold can then be more globally detected.

The loop-detection algorithm can thus be summarized in

the following discussion.

3.3 The Algorithm to Detect Manifold Loops

Integrating the above ideas, the corresponding loop-detec-

tion algorithm is constructed as follows:

Algorithm for loop detection from data manifold

Input: Data set X ¼ fxigli¼1; neighborhood size k or ".
Step I: Construct the k-NN or "-NN neighborhood graph G

of X; calculate the distance matrix

DX ¼ fdXðxi; xjÞgl�l of X by applying the method

introduced in Section 3.1; and record the shortest

path P ði; jÞ between any pairwise points xi and xj of

X in the neighborhood graph G. Let L ¼ ;.
Step II: Initiate the starting point set S � X.

For all xc 2 S
Step III: Let fBrðxcÞ ¼ fxcg, and generate the candidate set

eCrðxcÞ as equation (2). Denote the non-detecting set

N ¼ X=
�
fxcg

S eCrðxcÞ
�
.

Do while eCrðxcÞ 6¼ ;
Step IV: Find the point x0 in the candidate set eCrðxcÞ

which is nearest to xc based on DX; search the

points xn and xf in fBrðxcÞ which are nearest and

farthest from x0 respectively.
Step V: If dXðx0; xfÞ 	 dXðxn; xfÞ, then find the

intersection I between N and the k or " nearest

neighbors of x0. Let fBrðxcÞ ¼ fBrðxcÞ
S
fx0g,eCrðxcÞ ¼ eCrðxcÞ=fx0g, N ¼ N =I , and eCrðxcÞ ¼eCrðxcÞS I . Otherwise, generate an approximate

loop � by sticking the shortest paths between x0

and xf , xf and xn, and xn and x0 together, and

let L ¼ L
S
f�g, eCrðxcÞ ¼ eCrðxcÞ=fx0g.

End Do

End For

Output: Loop structure L of X.

In the following, we suggest two ways to initiate the
starting point set S in Step II of the proposed loop-detection
algorithm [30]:

1. Random choice.
2. MaxMin (greedy optimization). Select the first point

of the set as the approximate circumcenter of the
given data set

xc ¼ argmin
xj2X

�
max
xi2X
ðdXðxi; xjÞÞ: ð3Þ
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2. It should be noted that the expansion of the ball set works correctly in
the sense that even though x0 is added to the ball set, it is still shaped like a
ball. Since the next selected x0 is again required to be closest to xc, the
deformation from a ball shape will not grow large at any step, and when
enough nearby points x0 have been added, the ball set will be shaped like a
ball again.



Then iteratively generate points to the set, and each
maximizes, over all unused data points, the mini-
mum distance to any point of S, i.e.,

xc ¼ argmax
xj2X

�
min
xi2S
ðdXðxi; xjÞÞ: ð4Þ

Random choice works more efficiently in practice, while
MaxMin can search the loop structure more globally and
make the algorithm perform more stably. Thus, we use
MaxMin for all the experiments in the next section.

4 EXPERIMENTAL RESULTS AND INTERPRETATIONS

To test the effectiveness of the proposed loop-detection

theory and algorithm, five series of simulations were

employed for substantiation. They include:

1. S-curve, Swiss roll and Isomap-face image data sets;
2. sphere, cylinder, and torus data sets;
3. wave surface and Swisshole data sets;
4. terracotta soldier image data set;
5. handwritten digit number data sets.

The results are summarized in the following discussion. The

neighborhood sizes k of the experiments on all synthetic

data (including S-curve, Swiss roll, sphere, cylinder, torus,

wave surface, Swisshole data), Isomap-faces, Terracotta
soldier images, and handwritten digits were set as 5, 8, 4,
5, respectively, by experience.

4.1 Swiss Roll, S-Curve, and Isomap-Face Data

In the first series of experiments, two data sets, each having
1,000 data points, were randomly sampled along the surface
of the classical Swiss roll and S-curve manifolds (as depicted
in Figs. 4a and 4b, respectively). The other set of size 698 is
composed of face images taken in different poses and
lighting conditions (typical images are shown in Fig. 4c),
and can be directly downloaded from the Isomap homepage.
Along with this data set, the information on the up-down and
left-right angles of the faces as well as the lighting angles of
the images are also attached. Based on the prior knowledge
and our observation of these data sets, it is evident that their
underlying manifolds are nonloopy. All of the three data
sets are the benchmark cases used in the investigations of
conventional manifold learning methods [1], [4]. By applying
the loop-detection algorithm proposed in Section 3.3 to these
data, no intrinsic loops are found in these data manifolds.
Such results agree with both our intuition and experimental
experiences. Hence, it verifies the effectiveness of the
proposed loop-detection algorithm in nonloopy cases.

4.2 Sphere, Cylinder, and Torus Data

Three data sets, randomly generated from the sphere,
cylinder, and torus manifolds (as shown in Fig. 1), were
utilized in the second series of experiments. Each of these sets
has 1,000 data points, as depicted in Figs. 5a, 5b, and 5c,
respectively. The sphere, cylinder, and torus manifold data
are all standard loopy manifold data, and commonly utilized
to depict the ineffectiveness of the conventional manifold
learning methods in loopy cases [11], [17], [19]. By employing
the proposed loop-detection algorithm, it correctly shows
that each of three data manifolds contains loops. Further-
more, the loop structure underlying each data manifold can
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Fig. 4. (a) and (b) depict the data sets, each having 1,000 data points,
generated from the Swiss roll and S-curve manifolds, respectively;
(c) contains typical images randomly selected from the Isomap-face
data having 698 images.

Fig. 5. (a), (b), (c) are the data sets, each having 1,000 data points, randomly generated from the sphere, cylinder, and torus manifolds shown in
Fig. 1, respectively. (d), (e), (f) depict the loop structures (including the thin and the thick curves) detected by applying the loop-detection algorithm to
data (a), (b), (c), respectively, and the stars denote the initiated start point sets, correspondingly. Note that the thick curves demonstrate several
typical loops in the detected loop structures.



be approximately obtained, as shown in Figs. 5d, 5e, and 5f,

respectively. It can be easily observed from the figures that

the loop structures so obtained well comply with our

intuition. The loop detection capability of the proposed

algorithm on these loopy manifold data is thus substantiated.

4.3 Wave Surface and Swisshole Data

The proposed loop-detection theory and algorithm are
constructed on the basis of the assumption that the data
manifold M can be described by a locally isometric
mapping f from a convex set � (i.e., locally isometric
assumption and convex assumption). In practice, such
assumption, however, is sometimes a little restrictive. Two
commonly encountered counterexamples are: 1) Some parts
of the data manifold M are locally stretched or shrinked
from � such that the underlying mapping f disobeys the
local isometric assumption (i.e., the so-called “nonmetric”
manifold); 2) The data manifold M contains intrinsic holes
such that the corresponding � disobeys the convex
assumption.3 In this section, we aim to validate the
effectiveness of the proposed algorithm when applying it
to such kinds of manifold data.

Corresponding to the aforementioned cases, two data

manifolds were employed, respectively. The first manifold

is of wave-surface-like figure, as depicted in Figs. 6a, 6b, 6c,
and 6d, with intrinsic mapping function

fhðx; yÞ ¼
�
x; y; hsinð2xÞ þ hsinð2yÞ

�
;

where h is the parameter controlling the magnitude of the
waves. Four sets of data were randomly generated from
such wave surface manifolds for evaluation, with h set as
1; 2; 3; 5, respectively. Each set has 1,000 data points, as
depicted in Figs. 6e, 6f, 6g, and 6h, respectively. The second
manifold is the so-called “Swisshole” manifold, configured
as the Swiss roll manifold except with a missing rectan-
gular-strip hole punched out of the center, as depicted in
Figs. 7a, 7b, 7c, and 7d. Four sets of data were randomly
generated from the Swisshole manifolds with varying sized
holes in our experiments, as shown in Figs. 7e, 7f, 7g, and
7h, respectively. Each also has 1,000 data points.

For the wave surface data, it can be observed from Fig. 6
that when the wave magnitude h is small, no loop
structure is to be detected by the proposed algorithm.
While when h is large, loops are detected by the algorithm
around the bottom edge of some peak in the wave surface.
This can be easily interpreted as follows: when h is not too
large, the figure of the wave surface manifold still complies
approximately with the locally isometric assumption. Thus,
it is taken as an approximate flat surface by the proposed
algorithm such that no loop structure tends to be detected.
While when the wave magnitude is large, each peak of the
manifold is taken as a hemisphere or a hemiellipsoid by
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Fig. 6. (a)-(d) are the wave surface manifolds with wave magnitudes h ¼ 1; 2; 3; 5, respectively. (e)-(h) are the data sets randomly generated from
(a)-(d), respectively. Each set has 1,000 data points. The curves in (e)-(h) denote the loops detected by applying the proposed algorithm to the
corresponding data, and the thick curve demonstrate a typical one.

Fig. 7. (a)-(d) are the Swisshole manifolds with holes of varying sizes, respectively. (e)-(h) are the data sets randomly generated from (a)-(d),
respectively. Each set has 1,000 data points. The curves in (e)-(h) denote the loops detected by applying the proposed algorithm to the
corresponding data sets, and the thick curve depicts a typical one.

3. The related loopy manifold learning problem for data lying on the
holed manifold has been specifically addressed in Lee and Verleysen’s
work [19], [20].



our algorithm such that its bottom circular edge tends to be
detected as a loop. Thus, the proposed algorithm can still
perform rationally on the wave surface manifold data.

For the Swiss hole data, it is seen from Fig. 7 that the

proposed algorithm does not detect loop structure in small-

sized-hole case, while it can find loops around the hole from
the large-hole-sized manifold data. This complies with our

intuition since when the hole is too small, even human eye

cannot distinguish the loop structure from the limited data
points distributed on the manifold. If a hole is large enough,

however, it is reasonable to be considered as a topological

feature and essential loops around it should be measured.4

Thus, our algorithm can also detect intrinsic loops in this

series of data manifolds.

4.4 Terracotta Soldier Image Data

The terracotta soldier image data set contains 900 images of

a terracotta soldier, all of which are gray-scale pictures of

40� 100 pixels (i.e., 4,000 dimensions). The images were
taken by circularly rotating the camera in the up-down and
left-right angles around the terracotta soldier, naturally
inducing loops in the underlying data manifold. The ground
truth of the intrinsic 2D features underlying the images are
displayed as the 2D projection in Fig. 8(top) for easy
comparison. The conventional manifold learning methods,
such as Isomap, LLE, and Laplacian eigenmap methods,
tend to lose their effectiveness in such loopy manifold data,
as depicted in Fig. 8. In particular, the underlying angle
features cannot be observed from the embeddings calcu-
lated by these methods. Especially, each coordinate of these
embeddings does not properly correspond to a feature
underlying the input data.

Using the proposed loop-detection algorithm, however,
the implicit features of the data can be implicitly explored.
Fig. 9 depicts the loop image sequences obtained by
applying the proposed loop-detection algorithm to the
terracotta soldier data. It can be easily observed from the
figure that the loop structure underlying the data is
approximately detected. Specifically, the intrinsic features
of the input image data are manifested by the loop structure
so detected. For instance, the first and second loop image
sequences, shown in Fig. 9, reflect the up-down and left-
right rotating features underlying the images, respectively.
Accordingly, it can be further verified that on one hand, the
proposed algorithm performs well on detecting essential
loops of the data manifold, and on the other hand, the new
algorithm can help to illuminate implicit representational
features underlying the loopy manifold data.

4.5 Handwritten Digit Number Data

The fifth series of our experimental data are 10 sets of images,
including the handwritten digits from 0 to 9, respectively.
Each set contains 1,000 images of one particular digit,
randomly selected from the MNIST database at www.
research.att.com/~yann/ocr/mnist. Each digital image is a
gray-scale picture of 28� 28 pixels (i.e., 784 dimensions). The
data set is one of the most frequently employed data in
manifold learning research, and by applying the conven-
tional manifold learning methods to these data, some
implicit features of the handwritten digits can be effectively
uncovered [1], [4], [30]. Thus, these data have never been
considered to contain intrinsic loops.

However, it is very interesting that by applying the
proposed loop-detection algorithm, loop structures are
detected in eight sets of these handwritten digits. Even more
interesting is that some implicit features can be observed
along the loops so detected, and many of them have never
been explored by the current manifold leaning methods. In
particular, Fig. 10 depicts a loop randomly selected from the
loop structure detected by the proposed algorithm from each
of the eight sets. To better compare, the 3D embeddings of
these data calculated by the Isomap method are also
depicted in the figure. By observing the figure, the features
underlying the detected loops can be easily observed, such
as the variation of the flatness of “0”s, the top arch of “1”s,
the thickness of “2”s, the length of the long stroke of “4”s, the
thickness of “5”s, the size of the bottom loop of “6”s, the top
arch of “7”s, and the size of the top loop of “9”s. Most of these
features cannot be directly attained from the embeddings
calculated by the conventional manifold learning methods.
These results further substantiate the capability of the
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Fig. 8. The upper panel shows the ground truth of the two intrinsic
features underlying the terracotta soldier images. The lower three
panels depict the 2D embeddings of the data calculated by Isomap, LLE,
and Laplacian eigenmap, respectively. The neighborhood sizes were all
set as 4 in the experiments. The representative images are shown next
to the circled points in different parts of the space.

4. It is observed empirically that the loops tend to be detected from the
Swisshole data by our algorithm when the hole size of the manifold is
prominently larger than the average distance between all neighboring
sample pairs.



proposed algorithm in its illumination of the implicit
representational features underlying the loopy manifold
data.

5 CONCLUSION AND FUTURE WORK

In this paper, we have formulated a theoretical framework
and an algorithm to detect intrinsic loops underlying a data
manifold. A definition of a loop on a data manifold has been
given. It is generally in line with our intuitive understanding

of a loop. On the basis of such definition, we have derived
some theoretical properties of a loopy manifold. In particular,
a N/S condition to detect loops underlying a manifold has
been proposed. The theoretical results stipulate specific
characteristics of a manifold with intrinsic loops, and
facilitate the formulation of feasible strategy to detect loops
from data manifold.

Based on the theoretical results about loopy manifold,
especially the N/S condition for loop detection, an effective
algorithm has been constructed to detect essential loop
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Fig. 10. The 3D embeddings of eight handwritten digit image data sets (composed by handwritten 0s, 1s, 2s, 4s, 5s, 6s, 7s, 9s, respectively)
calculated by Isomap. The neighborhood sizes were all set as 5 in the experiments. Each subfigure below the embeddings depicts one loop detected
by the proposed loop-detection algorithm correspondingly. The circles show the positions of the loop in the corresponding Isomap embeddings.

Fig. 9. The loops underlying the terracotta soldier image data calculated by the proposed loop-detection algorithm.



structure underlying a data manifold. The algorithm not only
correctly identifies whether a data manifold contains loops on
the basis of given data, but can also generate the approximate
intrinsic loop structure underlying the data manifold.
The validity of the theoretical results and effectiveness of
the algorithm have all been validated by a series of
simulations on synthetic and real data.

Furthermore, it has been verified that the loops detected
by the proposed algorithm can help to illuminate the intrinsic
representational features of the data manifold along its
intrinsic loop structure, which generally cannot be achieved
by the conventional manifold learning methods. Since
discovering the intrinsic representational features under-
lying the data manifold is one of the most significant and
initial motivations of manifold learning [1], the proposed
theory and algorithm will benefit future research in loopy
manifold learning.

It should be noted that the ultimate aim of manifold

learning for data lying on loopy manifold: calculating the

proper low-dimensional representational features of the

loopy manifold data, has not been completely solved in this

paper. Further effort still needs to be made to construct the

strategy to find intrinsic relationships between the detected

loops and to realize effective manifold learning from data

lying on a loopy manifold. Another issue that has to be further

investigated is the parameter selection problem, i.e., how to

specify an appropriate neighborhood size k or ", in the

proposed loop-detection algorithm. In practice, especially

when the data set is large, selecting parameters is generally

based on experience because of its high efficiency. Never-

theless, to completely automate the proposed algorithm,

constructing an efficient parameter selection strategy is still

necessary. Currently, methods such as the “trial-and-error”

method [31] and the neighborhood contraction and expansion

method [32] have been developed to adaptively determine a

reasonable neighborhood size in local-to-global context.

These methods should be examined in further research.

Besides, further investigation still needs to be made to extend

our loop-detection theory to a wide range of manifold types,

such as the nonmetric or the holed manifolds.
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