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1.4 Trends in Technology 

Logic: transistor density 35%/year, die size 10-20%/year, capacity 40-55%/year 
DRAM: capacity 25-40%/year, and maybe stop in the middle of this decade.  



Processor Technology 



Semiconductor Flash 



Magnetic Disk Technology 



Network Technology 
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Bandwidth over Latency 

• Bandwidth or 
throughput is the total 
work done in a given 
time. 
 

• Latency or response 
time is the time 
between the start and 
the completion of an 
event. 

Bandwidth has outpaced latency and will 
likely continue to do so. 



Technology Scaling 

• The only constant in VLSI is constant change 
• Feature size shrinks by 30% every 2-3 years 

– Transistors become cheaper 
– Transistors become faster 
– Wires do not improve  
 (and may get worse) 

• Scale factor S 
– Typically  
– Technology nodes 
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Device Scaling Assumption 

• What changes between technology nodes? 
• Constant Field Scaling 

– All dimensions (x, y, z => W, L, tox) 
– Voltage (VDD) 
– Doping levels 

• Lateral Scaling 
– Only gate length L  
– Often done as a quick gate shrink (S = 1.05) 



Device Scaling 
• Gate capacitance per 

micron is nearly 
independent of process 

• But ON resistance * 
micron improves with 
process 

• Gates get faster with 
scaling (good) 

• Dynamic power goes 
down with scaling (good) 

• Current density goes up 
with scaling (bad) 

• Velocity saturation 
makes lateral scaling 
unsustainable 



Results of Device Scaling 

• The fact that transistor count improves quadratically with a 
linear improvement in transistor performance is both the 
challenge and the opportunity. 
– 4-bit, 8-bit, 16-bit, 32-bit, to 64-bit microprocessor. 
– Multiple processors per chip 
– Wider SIMD units 
– Speculative execution 
– Caches 

 



Wire Scaling Assumption 

• Wire thickness 
– Hold constant vs. reduce in thickness 

• Wire length 
– Local / scaled interconnect 
– Global interconnect 

• Die size scaled by Dc ≈ 1.1 

 



Wire Scaling 



Observations 

• Capacitance per micron is remaining constant 
– About 0.2 fF/µm 
– Roughly 1/10 of gate capacitance 

• Local wires are getting faster 
– Not quite tracking transistor improvement 
– But not a major problem 

• Global wires are getting slower 
– No longer possible to cross chip in one cycle 

• Wire delay has become a major design limitation for large 
integrated circuits and is often more critical than transistor 
switching delay. 



ITRS 

• Semiconductor Industry Association forecast 
– Intl. Technology Roadmap for Semiconductors 

2007 



1.5 Trends in Power and Energy 

• Three primary concerns about power and energy: 
– What is the maximum power a processor ever requires? 
– What is the sustained power consumption?  

• Thermal design power (TPD) 
– Energy and energy efficiency 

• Dynamic power: 
 

• For mobile devices, energy is the better metric 
 

• For a fixed task, slowing clock rate (frequency switched) 
reduces power, but not energy 
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Dynamic Power and Energy 

• Capacitive load a function of number of transistors connected 
to output and technology, which determines capacitance of 
wires and transistors 

• Dropping voltage helps both, so went from 5V to 1V 
• To save energy & dynamic power, most CPUs now turn off 

clock of inactive modules (e.g. Fl. Pt. Unit) 
• Example: Suppose 15% reduction in voltage results in a 15% 

reduction in frequency. What is impact on dynamic power? 
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Static Power and Energy 

• Because leakage current flows even when a transistor is off, 
now static power becomes important too. 

 
• Leakage current increases in processors with smaller 

transistor sizes 
• Increasing the number of transistors increases power even if 

they are turned off 
• In 2006, goal for leakage is 25% of total power consumption; 

high performance designs at 40% 
• Very low power systems even gate voltage to inactive 

modules to control loss due to leakage 

 

VoltageCurrentPower staticstatic ×=



Power dissipation 



Power will be a major problem 



Power density 



Low Power Tech. in Modern Processor 

• Do nothing well: turn off the clock of inactive modules to 
save energy and dynamic power. 
 

• Dynamic Voltage-Frequency Scaling (DVFS) 
 

• Design for typical case: offer low power modes to save 
energy. 
 

• Overclocking: Intel started offering Turbo mode in 2008. 



1.6 Trends in Cost 

• Time: The price drops with 
time, learning curve 
increases 
 

• Volume: The price drops 
with volume increase 
 

• Commodities: Many 
manufacturers produce the 
same product，Competition 
brings prices down 

In the past 25 years, much of the 
personal computer industry has 
become a commodity business. 



Die and Wafer 

Photograph of an Intel Core i7 
microprocessor die. The dimensions 
are 18.9 mm by 13.6 mm (257 mm2) 
in a 45 nm process. (Courtesy Intel.) This 300 mm wafer contains 280 

full sandy bridge dies, each 20.7 
by 10.5 mm in a 32 nm processor. 



Cost of Integrated Circuit 



Cost of Integrated Circuit 

• Example: Find the number of dies per 300mm wafer for a 
die that is 1.5 cm on a side and for a die that is 1.0 on a side. 
 

 
• Example: Find the die yield for dies that are 1.5cm on a 

side and 1.0cm on a side, assuming a defect density of 0.031 
per cm2 and N is 13.5. 



Cost of Manufacturing vs. Cost of Operation 

• Google’s data center electricity use is about 0.01% of total 
worldwide electricity use and less than 1 percent of global 
data center electricity use in 2010 

• Green Power 



1.7 Dependability 

 How decide when a system is operating properly?  
 Infrastructure providers now offer Service Level 

Agreements (SLA) to guarantee that their networking or 
power service would be dependable 

 Systems alternate between 2 states of service with respect 
to an SLA: 
1. Service accomplishment, where the service is delivered as specified 

in SLA 
2. Service interruption, where the delivered service is different from 

the SLA 

 Failure = transition from state 1 to state 2 
 Restoration = transition from state 2 to state 1 

 



Dependability 

 Module reliability = measure of continuous service 
accomplishment (or time to failure).  2 metrics 
1. Mean Time To Failure (MTTF) measures Reliability 
2. Failures In Time (FIT) = 1/MTTF, the rate of failures  
• Traditionally reported as failures per billion hours of operation 

 Mean Time To Repair (MTTR) measures Service Interruption 
 Mean Time Between Failures (MTBF) = MTTF+MTTR 

 Module availability measures service as alternate between 
the 2 states of accomplishment and interruption (number 
between 0 and 1, e.g. 0.9) 

 Module availability = MTTF / ( MTTF + MTTR) 



1.8 Measuring, Reporting, and Summarizing 
Performance 

• Time to run the task (ExTime) 
 – Execution time, response time, latency 
• Tasks per day, hour, week, sec, ns … (Performance) 
 – Throughput, bandwidth 



Performance Comparison 

• "X is n times faster than Y" means 
 ExTime(Y)            Performance(X) 
 -------------     =     --------------------- 
 ExTime(X)            Performance(Y) 
 

• Speed of Concorde vs. Boeing 747 
• Throughput of Boeing 747 vs. Concorde 

 



Benchmarks 

• Real applications and application suites 
– E.g., SPEC CPU2000, SPEC2006, TPC-C, TPC-H 

 
• Kernels 

– “Representative” parts of real applications 
– Easier and quicker to set up and run 
– Often not really representative of the entire app 

 
• Toy programs, synthetic benchmarks, etc. 

– Not very useful for reporting 
– Sometimes used to test/stress specific functions/features 



SPEC CPU (Integer) 

“Representative” applications keeps growing with time! 



SPEC CPU (Floating Point) 



Price-Performance 



TPC Benchmarks 

• Measure transaction-processing throughput 
• Benchmarks for different scenarios 

– TPC-C: warehouses and sales transactions 
– TPC-H: ad-hoc decision support 
– TPC-W: web-based business transactions 

• Difficult to set up and run on a simulator 
– Requires full OS support, a working DBMS 
– Long simulations to get stable results 



Throughput-Server Perf/Cost 

High performance 
Very expensive! 



1.9 Quantitative Principles of  
Computer Design 

• Take Advantage of Parallelism 
– Data level parallelism 
– Request level parallelism 
– Instruction level parallelism 

• Principle of Locality, program property 
– Temporal locality 
– Spatial locality 

• Focus on the Common Case 
 



Amdahl’s Law (I) 

• Amdahl’s law defines the speedup that can be gained by 
using a particular feature. 
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Amdahl’s Law (II) 

• Make the Common Case Fast 
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Important: Principle of locality 
 Approx. 90% of the time spent in 10% of the code 



Amdahl’s Law (III) 

  

• Diminishing Returns 
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Car Analogy 
• From GT to Mall of Georgia (35mi) 

– you’ve got a “Turbo” for your car, but can 
only use on highway 

• Spaghetti Junction to Mall of GA (23mi) 
– avg. speed of 60mph 
– avg. speed of 120mph with Turbo 

• GT to Spaghetti junction (12 mi) 
– stuck in bad rush hour traffic 

• avg. speed of 5 mph 

Turbo gives 100% speedup across 66% of the distance… 
 … but only results in <10% reduction on total trip time 

(which is a <11% speedup) 



  

Now Consider Price-Performance 

• Without Turbo 
– Car costs $8,000 to manufacture 
– Selling price is $12,000  $4K profit per car 
– If we sell 10,000 cars, that’s $40M in profit 

• With Turbo 
– Car costs extra $3,000 
– Selling price is $16,000  $5K profit per car 
– But only a few gear heads buy the car: 

• We only sell 400 cars and make $2M in profit 



  

CPU Design is Similar 

• What does it cost me to add some performance 
enhancement? 

• How much effective performance do I get out of it? 
– 100% speedup for small fraction of time wasn’t a big win for the car 

example 

• How much more do I have to charge for it? 
– Extra development, testing, marketing costs 

• How much more can I charge for it? 
– Does the market even care? 

• How does the price change affect volume? 



The Processor Performance Equation 

 timecycleClock  CyclesClock  CPU   timeCPU  ×=

 timecycleClock nInstructioPer  CyclesCount n Instructio   timeCPU   ××=

CycleClock 
Seconds

nInstructio
CyclesClock  

Program
nsInstructio 

Program
Seconds  timeCPU   ××==

CPI: clock cycles per instruction 

IPC: instructions per clock, the inverse of CPI 



Aspects of CPU Performance 



  

Car Analogy 
• Need to drive from Klaus to CRC 

– “Clock Speed” = 3500 RPM 
– “CPI” = 5250 rotations/km or 0.19 m/rot 
– “Insts” =  800m 

CycleClock 
Seconds

nInstructio
CyclesClock  

Program
nsInstructio 

Program
Seconds  timeCPU   ××==

800 m 1 rotation 
0.19 m 

1 minute 
3500 rotations 

= 1.2 minutes 



  

CPU Version 
• Program takes 33 billion instructions to run 
• CPU processes insts at 2 cycles per inst 
• Clock speed of 3GHz 

CycleClock 
Seconds

nInstructio
CyclesClock  

Program
nsInstructio 

Program
Seconds  timeCPU   ××==

= 22 seconds 

Sometimes clock cycle time given 
instead (ex. cycle = 333 ps) 

 
IPC sometimes used instead of CPI 



  

The Processor Performance Equation (2) 

 timecycleClock  CyclesClock  CPU   timeCPU  ×=

 timecycleClock CPI IC   timeCPU   
n
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For each kind 
of instruction 

How many instructions 
of this kind are there in 
the program 

How many cycles it 
takes to execute an 
instruction of this kind 



  

CPU performance w/ different 
instructions 

Instruction 
Type 

Frequency CPI 

Integer 40% 1.0 

Branch 20% 4.0 

Load 20% 2.0 

Store 10% 3.0 

 timecycleClock CPI IC   timeCPU   
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Total Insts = 50B, Clock speed = 2 GHz 

The overall CPI 



  

Comparing Performance 

• “X is n times faster than Y” 
 
 

• “Throughput of X is n times that of Y” 

n
timeExecution 
timeExecution 

X

Y =

n
unit timeper  Tasks
unit timeper  Tasks

Y

X =



  

If Only it Were That Simple 

• “X is n times faster than Y on A” 
 
 

• But what about different applications 
(or even parts of the same application) 
– X is 10 times faster than Y on A, and 1.5 times on 

B, but Y is 2 times faster than X on C, 
and 3 times on D, and… 

n
X machineon A  app of timeExecution 
Y machineon A  app of timeExecution 
=

So does X have better 
performance than Y? 

Which would you buy? 



  

Summarizing Performance 

• Arithmetic mean 
– Average execution time 
– Gives more weight to longer-running programs 

• Weighted arithmetic mean 
– More important programs can be emphasized 
– But what do we use as weights? 
– Different weight will make different machines 

look better 



  

Speedup 
Machine A Machine B 

Program 1 5 sec 4 sec 

Program 2 3 sec 6 sec 

What is the speedup of A compared to B on Program 1? 
 
What is the speedup of A compared to B on Program 2? 
 
What is the average speedup? 
 
What is the speedup of A compared to B on Sum(Program1, Program2) ? 



  

Normalizing & the Geometric Mean 

• Speedup of arithmeitc means != arithmetic 
mean of speedup 
 

• Use geometric mean: 
 

• Neat property of the geometric mean: 
Consistent whatever the reference machine 

• Do not use the arithmetic mean for 
normalized execution times 

n
n

i

i∏
=1

on  timeexecution  Normalized



  

CPI/IPC 

• Often when making comparisons in comp-
arch studies: 
– Program (or set of) is the same for two CPUs 
– The clock speed is the same for two CPUs 

 
• So we can just directly compare CPI’s and 

often we use IPC’s 



  

Average CPI vs. “Average” IPC 

• Average CPI = (CPI1 + CPI2 + … + CPIn)/n 
  
 
 

• A.M. of IPC = (IPC1 + IPC2 + … + IPCn)/n 
  

• Must use Harmonic Mean to remain ∝ to 
runtime 

Not Equal to A.M. of CPI!!! 



  

Harmonic Mean 

• H.M.(x1,x2,x3,…,xn) =  
     n 
   1  +  1  +  1    + …  +  1 
   x1     x2     x3       xn 

 
• What in the world is this? 

– Average of inverse relationships 



  

A.M.(CPI) vs. H.M.(IPC) 
• “Average” IPC =          1 
      A.M.(CPI) 
 =          1 
  CPI1   +   CPI2   +   CPI3   +   …   +   CPIn 

    n             n             n                         n 
 =          n 
  CPI1   +   CPI2   +   CPI3   +   …   +   CPIn 

 =          n 
    1       +      1     +     1     +    …   +    1            =H.M.(IPC) 
  IPC1           IPC2        IPC3                   IPCn 
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