
Modern Computer Architecture

Lecture1 Fundamentals of
Quantitative Design and Analysis (II)

Hongbin Sun
国家集成电路人才培养基地

Xi’an Jiaotong University

1.4 Trends in Technology

Logic: transistor density 35%/year, die size 10-20%/year, capacity 40-55%/year
DRAM: capacity 25-40%/year, and maybe stop in the middle of this decade.

Processor Technology

Semiconductor Flash

Magnetic Disk Technology

Network Technology

IBM Cell
(8-core)

Sun
SPAC T1
(8-core)

Intel
TeraFlop80
(80-core)

Intel
SCC48

(48-core)

Tilera
(64/100cores)

Sun
SPAC T5
(16-core)

Bus
(core<=8)

Ring
(cores<10)

Crossbar
(cores<16)

Crossbar
(cores<=100)

3D Topology
(cores >100)

Optical Network
(cores >100)

ATAC (1024 core)

Bandwidth over Latency

• Bandwidth or
throughput is the total
work done in a given
time.

• Latency or response
time is the time
between the start and
the completion of an
event.

Bandwidth has outpaced latency and will
likely continue to do so.

Technology Scaling

• The only constant in VLSI is constant change
• Feature size shrinks by 30% every 2-3 years

– Transistors become cheaper
– Transistors become faster
– Wires do not improve
 (and may get worse)

• Scale factor S
– Typically
– Technology nodes

Year

0.1

1

10

1965 1970 1975 1980 1985 1990 1995 2000 2005

Fe
at

ur
e

S
iz

e
(µ

m
)

10

6

3

1.5
1

0.8
0.6

0.35
0.25

0.18
0.13

0.09

2S =

Device Scaling Assumption

• What changes between technology nodes?
• Constant Field Scaling

– All dimensions (x, y, z => W, L, tox)
– Voltage (VDD)
– Doping levels

• Lateral Scaling
– Only gate length L
– Often done as a quick gate shrink (S = 1.05)

Device Scaling
• Gate capacitance per

micron is nearly
independent of process

• But ON resistance *
micron improves with
process

• Gates get faster with
scaling (good)

• Dynamic power goes
down with scaling (good)

• Current density goes up
with scaling (bad)

• Velocity saturation
makes lateral scaling
unsustainable

Results of Device Scaling

• The fact that transistor count improves quadratically with a
linear improvement in transistor performance is both the
challenge and the opportunity.
– 4-bit, 8-bit, 16-bit, 32-bit, to 64-bit microprocessor.
– Multiple processors per chip
– Wider SIMD units
– Speculative execution
– Caches

Wire Scaling Assumption

• Wire thickness
– Hold constant vs. reduce in thickness

• Wire length
– Local / scaled interconnect
– Global interconnect

• Die size scaled by Dc ≈ 1.1

Wire Scaling

Observations

• Capacitance per micron is remaining constant
– About 0.2 fF/µm
– Roughly 1/10 of gate capacitance

• Local wires are getting faster
– Not quite tracking transistor improvement
– But not a major problem

• Global wires are getting slower
– No longer possible to cross chip in one cycle

• Wire delay has become a major design limitation for large
integrated circuits and is often more critical than transistor
switching delay.

ITRS

• Semiconductor Industry Association forecast
– Intl. Technology Roadmap for Semiconductors

2007

1.5 Trends in Power and Energy

• Three primary concerns about power and energy:
– What is the maximum power a processor ever requires?
– What is the sustained power consumption?

• Thermal design power (TPD)
– Energy and energy efficiency

• Dynamic power:

• For mobile devices, energy is the better metric

• For a fixed task, slowing clock rate (frequency switched)
reduces power, but not energy

witchedFrequencyS VoltageLoadCapacitive5.0Power 2 ×××=dynamic

2Voltage LoadCapacitiveEnergy ×=dynamic

Dynamic Power and Energy

• Capacitive load a function of number of transistors connected
to output and technology, which determines capacitance of
wires and transistors

• Dropping voltage helps both, so went from 5V to 1V
• To save energy & dynamic power, most CPUs now turn off

clock of inactive modules (e.g. Fl. Pt. Unit)
• Example: Suppose 15% reduction in voltage results in a 15%

reduction in frequency. What is impact on dynamic power?

dynamic

dynamic

dynamic

OldPower
OldPower

witchedFrequencySVoltageLoadCapacitive
witchedFrequencySVoltageLoadCapacitivePower

×

×

××××

×××

≈
=

×=

=

6.0
)85(.

)85(.85.2/1
2/1

3

2

2

Static Power and Energy

• Because leakage current flows even when a transistor is off,
now static power becomes important too.

• Leakage current increases in processors with smaller

transistor sizes
• Increasing the number of transistors increases power even if

they are turned off
• In 2006, goal for leakage is 25% of total power consumption;

high performance designs at 40%
• Very low power systems even gate voltage to inactive

modules to control loss due to leakage

VoltageCurrentPower staticstatic ×=

Power dissipation

Power will be a major problem

Power density

Low Power Tech. in Modern Processor

• Do nothing well: turn off the clock of inactive modules to
save energy and dynamic power.

• Dynamic Voltage-Frequency Scaling (DVFS)

• Design for typical case: offer low power modes to save
energy.

• Overclocking: Intel started offering Turbo mode in 2008.

1.6 Trends in Cost

• Time: The price drops with
time, learning curve
increases

• Volume: The price drops
with volume increase

• Commodities: Many
manufacturers produce the
same product，Competition
brings prices down

In the past 25 years, much of the
personal computer industry has
become a commodity business.

Die and Wafer

Photograph of an Intel Core i7
microprocessor die. The dimensions
are 18.9 mm by 13.6 mm (257 mm2)
in a 45 nm process. (Courtesy Intel.) This 300 mm wafer contains 280

full sandy bridge dies, each 20.7
by 10.5 mm in a 32 nm processor.

Cost of Integrated Circuit

Cost of Integrated Circuit

• Example: Find the number of dies per 300mm wafer for a
die that is 1.5 cm on a side and for a die that is 1.0 on a side.

• Example: Find the die yield for dies that are 1.5cm on a

side and 1.0cm on a side, assuming a defect density of 0.031
per cm2 and N is 13.5.

Cost of Manufacturing vs. Cost of Operation

• Google’s data center electricity use is about 0.01% of total
worldwide electricity use and less than 1 percent of global
data center electricity use in 2010

• Green Power

1.7 Dependability

 How decide when a system is operating properly?
 Infrastructure providers now offer Service Level

Agreements (SLA) to guarantee that their networking or
power service would be dependable

 Systems alternate between 2 states of service with respect
to an SLA:
1. Service accomplishment, where the service is delivered as specified

in SLA
2. Service interruption, where the delivered service is different from

the SLA

 Failure = transition from state 1 to state 2
 Restoration = transition from state 2 to state 1

Dependability

 Module reliability = measure of continuous service
accomplishment (or time to failure). 2 metrics
1. Mean Time To Failure (MTTF) measures Reliability
2. Failures In Time (FIT) = 1/MTTF, the rate of failures
• Traditionally reported as failures per billion hours of operation

 Mean Time To Repair (MTTR) measures Service Interruption
 Mean Time Between Failures (MTBF) = MTTF+MTTR

 Module availability measures service as alternate between
the 2 states of accomplishment and interruption (number
between 0 and 1, e.g. 0.9)

 Module availability = MTTF / (MTTF + MTTR)

1.8 Measuring, Reporting, and Summarizing
Performance

• Time to run the task (ExTime)
 – Execution time, response time, latency
• Tasks per day, hour, week, sec, ns … (Performance)
 – Throughput, bandwidth

Performance Comparison

• "X is n times faster than Y" means
 ExTime(Y) Performance(X)
 ------------- = ---------------------
 ExTime(X) Performance(Y)

• Speed of Concorde vs. Boeing 747
• Throughput of Boeing 747 vs. Concorde

Benchmarks

• Real applications and application suites
– E.g., SPEC CPU2000, SPEC2006, TPC-C, TPC-H

• Kernels

– “Representative” parts of real applications
– Easier and quicker to set up and run
– Often not really representative of the entire app

• Toy programs, synthetic benchmarks, etc.

– Not very useful for reporting
– Sometimes used to test/stress specific functions/features

SPEC CPU (Integer)

“Representative” applications keeps growing with time!

SPEC CPU (Floating Point)

Price-Performance

TPC Benchmarks

• Measure transaction-processing throughput
• Benchmarks for different scenarios

– TPC-C: warehouses and sales transactions
– TPC-H: ad-hoc decision support
– TPC-W: web-based business transactions

• Difficult to set up and run on a simulator
– Requires full OS support, a working DBMS
– Long simulations to get stable results

Throughput-Server Perf/Cost

High performance
Very expensive!

1.9 Quantitative Principles of
Computer Design

• Take Advantage of Parallelism
– Data level parallelism
– Request level parallelism
– Instruction level parallelism

• Principle of Locality, program property
– Temporal locality
– Spatial locality

• Focus on the Common Case

Amdahl’s Law (I)

• Amdahl’s law defines the speedup that can be gained by
using a particular feature.

new

old

TimeExecution
TimeExecution

tEnhancemen with TimeExecution
tEnhancemen without TimeExecution Speedup ==

What if enhancement does not enhance everything?

Possiblet when Enhancemen using TimeExecution
 allat t Enhancemen using without TimeExecution Speedup =

() 







+−= ×

Enhanced

Enhanced
Enhancedoldnew Speedup

FractionFraction1TimeExecution TimeExecution

() 







+−

=

Enhanced

Enhanced
Enhanced Speedup

FractionFraction1

1 Speedup Overall

Caution: fraction
of What?

Amdahl’s Law (II)

• Make the Common Case Fast

 () 








+−

=

Enhanced

Enhanced
Enhanced Speedup

FractionFraction1

1 Speedup Overall

20 SpeedupEnhanced = 0.1 FractionEnhanced =

()
105.1

20
1.01.01

1 Speedup =






 +−

=

1.2 SpeedupEnhanced = .90 FractionEnhanced =

()
176.1

2.1
9.09.01

1 Speedup =






 +−

=

VS

Important: Principle of locality
 Approx. 90% of the time spent in 10% of the code

Amdahl’s Law (III)

• Diminishing Returns

2 SpeedupGreen =

2
1 FractionGreen =

33.1 SpeedupOverall =

Green Phase Blue Phase
Total Execution Time

Generation 1

2 SpeedupGreen =

3
1 FractionGreen =

2.1 SpeedupOverall =

Green Blue
Total Execution Time

Generation 2

Generation 3

Blue
Total Execution Time

over Generation 2

over Generation 1

Car Analogy
• From GT to Mall of Georgia (35mi)

– you’ve got a “Turbo” for your car, but can
only use on highway

• Spaghetti Junction to Mall of GA (23mi)
– avg. speed of 60mph
– avg. speed of 120mph with Turbo

• GT to Spaghetti junction (12 mi)
– stuck in bad rush hour traffic

• avg. speed of 5 mph

Turbo gives 100% speedup across 66% of the distance…
 … but only results in <10% reduction on total trip time

(which is a <11% speedup)

Now Consider Price-Performance

• Without Turbo
– Car costs $8,000 to manufacture
– Selling price is $12,000  $4K profit per car
– If we sell 10,000 cars, that’s $40M in profit

• With Turbo
– Car costs extra $3,000
– Selling price is $16,000  $5K profit per car
– But only a few gear heads buy the car:

• We only sell 400 cars and make $2M in profit

CPU Design is Similar

• What does it cost me to add some performance
enhancement?

• How much effective performance do I get out of it?
– 100% speedup for small fraction of time wasn’t a big win for the car

example

• How much more do I have to charge for it?
– Extra development, testing, marketing costs

• How much more can I charge for it?
– Does the market even care?

• How does the price change affect volume?

The Processor Performance Equation

 timecycleClock CyclesClock CPU timeCPU ×=

 timecycleClock nInstructioPer CyclesCount n Instructio timeCPU ××=

CycleClock
Seconds

nInstructio
CyclesClock

Program
nsInstructio

Program
Seconds timeCPU ××==

CPI: clock cycles per instruction

IPC: instructions per clock, the inverse of CPI

Aspects of CPU Performance

Car Analogy
• Need to drive from Klaus to CRC

– “Clock Speed” = 3500 RPM
– “CPI” = 5250 rotations/km or 0.19 m/rot
– “Insts” = 800m

CycleClock
Seconds

nInstructio
CyclesClock

Program
nsInstructio

Program
Seconds timeCPU ××==

800 m 1 rotation
0.19 m

1 minute
3500 rotations

= 1.2 minutes

CPU Version
• Program takes 33 billion instructions to run
• CPU processes insts at 2 cycles per inst
• Clock speed of 3GHz

CycleClock
Seconds

nInstructio
CyclesClock

Program
nsInstructio

Program
Seconds timeCPU ××==

= 22 seconds

Sometimes clock cycle time given
instead (ex. cycle = 333 ps)

IPC sometimes used instead of CPI

The Processor Performance Equation (2)

 timecycleClock CyclesClock CPU timeCPU ×=

 timecycleClock CPI IC timeCPU
n

1i
ii ×× 







= ∑

=

For each kind
of instruction

How many instructions
of this kind are there in
the program

How many cycles it
takes to execute an
instruction of this kind

CPU performance w/ different
instructions

Instruction
Type

Frequency CPI

Integer 40% 1.0

Branch 20% 4.0

Load 20% 2.0

Store 10% 3.0

 timecycleClock CPI IC timeCPU
n

1i
ii ×× 







= ∑

=

Total Insts = 50B, Clock speed = 2 GHz

The overall CPI

Comparing Performance

• “X is n times faster than Y”

• “Throughput of X is n times that of Y”

n
timeExecution
timeExecution

X

Y =

n
unit timeper Tasks
unit timeper Tasks

Y

X =

If Only it Were That Simple

• “X is n times faster than Y on A”

• But what about different applications
(or even parts of the same application)
– X is 10 times faster than Y on A, and 1.5 times on

B, but Y is 2 times faster than X on C,
and 3 times on D, and…

n
X machineon A app of timeExecution
Y machineon A app of timeExecution
=

So does X have better
performance than Y?

Which would you buy?

Summarizing Performance

• Arithmetic mean
– Average execution time
– Gives more weight to longer-running programs

• Weighted arithmetic mean
– More important programs can be emphasized
– But what do we use as weights?
– Different weight will make different machines

look better

Speedup
Machine A Machine B

Program 1 5 sec 4 sec

Program 2 3 sec 6 sec

What is the speedup of A compared to B on Program 1?

What is the speedup of A compared to B on Program 2?

What is the average speedup?

What is the speedup of A compared to B on Sum(Program1, Program2) ?

Normalizing & the Geometric Mean

• Speedup of arithmeitc means != arithmetic
mean of speedup

• Use geometric mean:

• Neat property of the geometric mean:
Consistent whatever the reference machine

• Do not use the arithmetic mean for
normalized execution times

n
n

i

i∏
=1

on timeexecution Normalized

CPI/IPC

• Often when making comparisons in comp-
arch studies:
– Program (or set of) is the same for two CPUs
– The clock speed is the same for two CPUs

• So we can just directly compare CPI’s and

often we use IPC’s

Average CPI vs. “Average” IPC

• Average CPI = (CPI1 + CPI2 + … + CPIn)/n

• A.M. of IPC = (IPC1 + IPC2 + … + IPCn)/n

• Must use Harmonic Mean to remain ∝ to
runtime

Not Equal to A.M. of CPI!!!

Harmonic Mean

• H.M.(x1,x2,x3,…,xn) =
 n
 1 + 1 + 1 + … + 1
 x1 x2 x3 xn

• What in the world is this?

– Average of inverse relationships

A.M.(CPI) vs. H.M.(IPC)
• “Average” IPC = 1
 A.M.(CPI)
 = 1
 CPI1 + CPI2 + CPI3 + … + CPIn

 n n n n
 = n
 CPI1 + CPI2 + CPI3 + … + CPIn

 = n
 1 + 1 + 1 + … + 1 =H.M.(IPC)
 IPC1 IPC2 IPC3 IPCn

	Modern Computer Architecture��Lecture1 Fundamentals of Quantitative Design and Analysis (II)
	1.4 Trends in Technology
	Processor Technology
	Semiconductor Flash
	Magnetic Disk Technology
	Network Technology
	Bandwidth over Latency
	Technology Scaling
	Device Scaling Assumption
	Device Scaling
	Results of Device Scaling
	Wire Scaling Assumption
	Wire Scaling
	Observations
	ITRS
	1.5 Trends in Power and Energy
	Dynamic Power and Energy
	Static Power and Energy
	Power dissipation
	Power will be a major problem
	Power density
	Low Power Tech. in Modern Processor
	1.6 Trends in Cost
	Die and Wafer
	Cost of Integrated Circuit
	Cost of Integrated Circuit
	Cost of Manufacturing vs. Cost of Operation
	1.7 Dependability
	Dependability
	1.8 Measuring, Reporting, and Summarizing Performance
	Performance Comparison
	Benchmarks
	SPEC CPU (Integer)
	SPEC CPU (Floating Point)
	Price-Performance
	TPC Benchmarks
	Throughput-Server Perf/Cost
	1.9 Quantitative Principles of �Computer Design
	Amdahl’s Law (I)
	Amdahl’s Law (II)
	Amdahl’s Law (III)
	Car Analogy
	Now Consider Price-Performance
	CPU Design is Similar
	The Processor Performance Equation
	Aspects of CPU Performance
	Car Analogy
	CPU Version
	The Processor Performance Equation (2)
	CPU performance w/ different instructions
	Comparing Performance
	If Only it Were That Simple
	Summarizing Performance
	Speedup
	Normalizing & the Geometric Mean
	CPI/IPC
	Average CPI vs. “Average” IPC
	Harmonic Mean
	A.M.(CPI) vs. H.M.(IPC)

