F5 X ﬁx}@

AN JIAOTONG UNIV II‘Y

@)

Modern Computer Architecture

Lecture2 Pipelining: Basic and
Intermediate Concepts

Hongbin Sun

& FREE R E

1B A 55 IR A Hh

Xi’an Jiaotong University



Pipelining: Its Natural!

Laundry Example

Ann, Brian, Cathy, Dave
each have one load of
clothes

to wash, dry, and fold

Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes

(WO




Sequential Laundry

6 PM 7 8 9 10 11 Midnight

| »
»

30 40 20 30 40 20 30 40 20 30 40 20

=1-"
0 Tk o

& S

& =

e Sequential laundry takes 6 hours for 4 loads
e |f they learned pipelining, how long would laundry take?



X n o -

Pipelined Laundry

6 PM 7 8 9 10 11 Midnight

I
| Time

0 0 "5 1 1
SIS
o
© =l
| B Jops

e Pipelined laundry takes 3.5 hours for 4 loads




~ 0 o

pilvNeNalNg)

Pipeline Lessons

6 PM 7

% gk

% o

3 (e

D

40 40 40 40 20

Pipelining doesn’t help
latency of single task, it
helps throughput of entire
workload

Pipeline rate limited by
slowest pipeline stage

Multiple tasks operating
simultaneously

Potential speedup = Number
pipe stages

Unbalanced lengths of pipe
stages reduces speedup
Time to “fill” pipeline and
time to “drain” it reduces
speedup



Computer Pipeline

e Execute billions of instructions, so throughput is
what matters

e What is desirable in instruction sets for pipelining?

— Variable length instructions vs.
all instructions same length?

— Memory operands part of any operation vs. memory
operands only in loads or stores?

— Register operand many places in instruction format vs.
registers located in same place?



A "Typical" RISC

32-bit fixed format instruction (3 formats)
Memory access only via load/store instrutions
32 32-bit GPR (RO contains zero, DP take pair)

3-address, reg-reg arithmetic instruction; registers
in same place

Single address mode for load/store:
base + displacement

— no indirection
Simple branch conditions

Delayed branch

see: SPARC, MIPS, HP PA-Risc, DEC Alpha, IBM PowerPC,
CDC 6600, CDC 7600, Cray-1, Cray-2, Cray-3



Example: MIPS
(Note register location)

Register-Register

31 26 25 2120 16 15 11 10 6 5 0
Op I Rsl I Rs2 I Rd I Opx
Register-Immediate
31 26 25 2120 16 15 0
Op I Rs1 I Rd I immediate
Branch
31 26 25 2120 16 15 0
Op I Rs1 l?SZ/OpXI Immediate
Jump / Call
31 26 25 0

op | target




5 Steps of MIPS Datapath

Instruction Instr. Decode Execute :  Memory EWrite
Fetch ! Reg. Fetch i Addr.Calc { Access iBack

Next PC 5 >
{ Next SEQ PC ! N I

RSL1

: RS2
G

Zero
=1 : :@
@ e— .
A: RD :
: | :
E -> |—>

Sign
Imm Extehd

9|4 bay

AIOWa EJepévé

elreq

D ssgjppv

\7/

ISTITVETIY

4

>

G

WB Data



5 Steps of MIPS Datapath

Instruction élnstr. Decode Execute :  Memory EWrite
Fetch : Reg. Fetch i Addr. Calc :  Access i Back

Next PC

Next SEQ PC Next SEQ PC. .

Zero’

ereq

N
X
/

RD

e Data stationary control
— local decode for each instruction phase / pipeline stage

WB Data



Visualizing Pipelining

Time (clock cycles)

St wn o —

Cyclel Cycle2 Cycle3 Cycle4 Cycle 5 Cycle6 Cycle?

Ifetch I Reg »m Reg

Ifetch I Reg »m Reg



I'ts Not That Easy for Computers

e Limits to pipelining: Hazards prevent next
instruction from executing during its designated
clock cycle

— Structural hazards: HW cannot support this combination

of instructions (single person to fold and put clothes
away)

— Data hazards: Instruction depends on result of prior
instruction still in the pipeline (missing sock)

— Control hazards: Caused by delay between the fetching of
instructions and decisions about changes in control flow
(branches and jumps).



S+t wnw S —

One Memory Port/Structural

Time (clock cycles)

Hazards

Cycle 1 ECycIe 2 :Cycle 3 : Cycle 4:Cycle 5 Cycle 6 ECycIe 7

Reg

L 0] ad Ifetch
Instr 1
Instr 2

f

tolmia

« [ifetch

»m

Instr 3 i

Instr 4 E

=

Ifetch

=il

Ifetch

t

e

Reg

1hffﬁl'




Resolving structural hazards

e Define: attempt to use same hardware
for two different things at the same
time

e Solution 1: Wait

—must detect the hazard
—must have mechanism to stall

e Solution 2: Throw more hardware at
the problem



S+t wnw S —

One Memory Port/Structural
Hazards

Time (clock cycles)

Cycle 1 ECycIe 2 ECycIe 3 Cycle 4§Cycle 5 Cycle 6 ECycIe 7

L 0] ad Ifetch

Reg

Instr 1

f

« [ifetch

Reg

Reg

Instr 2 |

Stall

Instr 3 E

F

Ifetch

#

.2 DMem

Ifetch

Reg

#

»M




Eliminating Structural Hazards at
Design Time

Next PC

Next SEQ PC Next SEQ PC

4 ns1 Zero?

i RS2 \
— ¢

o

Datapath

Control Path

WB Data



Role of Instruction Set Design in
Structural Hazard Resolution

Simple to determine the sequence of resources
used by an instruction

— opcode tells it all
Uniformity in the resource usage
Compare MIPS to IA32?

MIPS approach => all instructions flow through
same 5-stage pipeling



St W»n o —

= 0 o= Q0

Data Hazard on R1

Time (clock cycles)

add

sub

and

or

Xor

IF

ID/RF EX MEM

ri,r2,r3 fe

r4,rl1,r3

re,rl,r7/

r8,rl1,r9

rio,rl,rll

I Reg

ALU

fetch

|

Reg

WB

DMem

fetch

ALU

Reg

fetch

Reg

Reg

Mem

Reg

ALU

fetch

Reg

DMem

Reg

DMem

Reg




Three Generic Data Hazards

e Read After Write (RAW)
Instr, tries to read operand before Instr, writes it
1 add ri1,r2,r3
J: sub r4,rl1,r3

e Caused by a “Dependence” (in compiler nomenclature). This
hazard results from an actual need for communication.



Three Generic Data Hazards

Write After Read (WAR)
Instr, writes operand before Instr, reads it

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,rl1,r7

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

Can’t happen in MIPS 5 stage pipeline because:
— All instructions take 5 stages, and
— Reads are always in stage 2, and
— Writes are always in stage 5



Three Generic Data Hazards

Write After Write (WAW)
Instr, writes operand before Instr, writes it.

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul re,rl,r7

Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

Can’t happen in MIPS 5 stage pipeline because:

— All instructions take 5 stages, and
— Writes are always in stage 5

Will see WAR and WAW in later more complicated pipes



—~ O 5

—HCDQ_‘O

Forwarding to Avoid Data Hazard

Time (clock cycles)

add

sub

and

or

Xor

rl,r2,r3je~

r4,rl1,r3

re,rl,r7/

r8,rl1,r9

rio,rl,rll

I Reg

ALU

DMem

Reg




NextPC

SEINEN

Immediate

HW Change for Forwarding

Xnw

Xnw

Data

Memory|

Xnuwl




St W»nw o —

= o o= Q0

Data Hazard Even with Forwarding

Time (clock cycles)

Iw rl, O(r2)E§E

sub r4,r1,r6

and ré6,rl,r7

or r8,rl1,r9

Reg

-

|Ifetch




Resolving this load hazard

Adding hardware? ... not
Detection?
Compilation techniques?

What is the cost of load delays?



s T »w o —

Data Hazard Even with Forwarding

Time (clock cycles)

wrl, 0(r2)  feer

I Reg

subr4,rl,r6

and r6,r1,r7

or r8,rl1,r9

‘Ifetch




Software Scheduling to Avoid Load

Hazards

Try producing fast code for

Rb,b

Rc,c

Re,e
Ra,Rb,Rc
Rf,f

a,Ra
Rd,Re,Rf

a=b +c;
d=e-f;
assuming a, b, c, d ,e, and f in memory.
Slow code: Fast code:
LW Rb,b LW
LW Rc,c LW
ADD Ra,Rb,Rc LW
SW a,Ra ADD
LW Re,e LW
LW Rf,f SW
SUB Rd,Re,Rf SUB
SW d,Rd SW

d,Rd



10:

14:

18:

22

36:

beq

and

or

add

Xor

Control Hazard on Branches
Three Stage Stall

r},r3,36 hmh

r2,r3,r5

re,rl,r7/

r8,rl,r9

}
rio,rl,rll




Example: Branch Stall Impact

If 30% branch, Stall 3 cycles significant

Two part solution:
— Determine branch taken or not sooner, AND
— Compute taken branch address earlier

MIPS branch tests if register=0or =0

MIPS Solution:

— Move Zero test to ID/RF stage

— Adder to calculate new PC in ID/RF stage
— 1 clock cycle penalty for branch versus 3



Pipelined MIPS Datapath

Instruction élnstr. Decode Execute :  Memory EWrite
Fetch : Reg. Fetch i Addr. Calc :  Access i Back

Next PC i NeX l \ .

ereq

ISTITETY

RD

e Data stationary control
— local decode for each instruction phase / pipeline stage

WB Data



Four Branch Hazard Alternatives

#1: Stall until branch direction is clear
#2: Predict Branch Not Taken

Execute successor instructions in sequence

“Squash” instructions in pipeline if branch actually taken
Advantage of late pipeline state update

47% MIPS branches not taken on average

PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

53% MIPS branches taken on average

— But haven’t calculated branch target address in MIPS

* MIPS still incurs 1 cycle branch penalty
» Other machines: branch target known before outcome



Four Branch Hazard Alternatives

#4: Delayed Branch

— Define branch to take place AFTER a following instruction

branch instruction
sequential successor;
sequential successor,

........ / Branch delay of length n
sequential successor,

branch target i1f taken

— 1 slot delay allows proper decision and branch target address in 5
stage pipeline

— MIPS uses this



Scheduling Branch Delay Slots (Fig A.14)

A. From before branch

B. From branch target

C. From fall through

add $1,%2,%3
1T $2=0 then —

delay slot

sub $4,%$5,%6

add $1,%2,%3
if $1=0 then

delay slot

add $1,%$2,%3
1T $1=0 then —

delay slot

sub $4,%$5,%$6«—

becomes {

becomes {

iIT $2=0 then —
add $1,$2,$3

«—

add $1,%2,%$3
1T $1=0 then

sub $4,$5,%$6

becomes {

add $1,%2,%3
iIT $1=0 then —

sub $4,$5,%$6

A

A is the best choice, fills delay slot & reduces instruction count (IC)

In B, the sub instruction may need to be copied, increasing IC

In B and C, must be okay to execute sub when branch fails




Delayed Branch

e Compiler effectiveness for single branch delay slot:
— Fills about 60% of branch delay slots

— About 80% of instructions executed in branch delay slots
useful in computation

— About 50% (60% x 80%) of slots usefully filled

e Delayed Branch downside: As processor go to
deeper pipelines and multiple issue, the branch
delay grows and need more than one delay slot

— Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

— Growth in available transistors has made dynamic
approaches relatively cheaper

8/30 CS252-Fall'07 34



Delayed Branch

e Where to get instructions to fill branch delay slot?
— Before branch instruction
— From the target address: only valuable when branch taken
— From fall through: only valuable when branch not taken
— Canceling branches allow more slots to be filled

e Compiler effectiveness for single branch delay slot:
— Fills about 60% of branch delay slots

— About 80% of instructions executed in branch delay slots useful in
computation

— About 50% (60% x 80%) of slots usefully filled

e Delayed Branch downside: 7-8 stage pipelines, multiple
instructions issued per clock (superscalar)



Problems with Pipelining

Exception: An unusual event happens to an
instruction during its execution
— Examples: divide by zero, undefined opcode

Interrupt: Hardware signal to switch the processor
to a new instruction stream

— Example: a sound card interrupts when it needs more audio output
samples (an audio “click” happens if it is left waiting)

Problem: It must appear that the exception or
interrupt must appear between 2 instructions (I.
and I.,,)

— The effect of all instructions up to and including I. is totalling
complete

— No effect of any instruction after I. can take place
The interrupt (exception) handler either aborts
program or restarts at instruction |,



Precise Exceptions In-Order
Pipelines

A A Illegal

Seleft Opcode
Handler PC Address
PG Exceptions

Commit
PointE
—\ Datar
Ef 0+ M Mem: [TV
'A' Data Addr A‘
verflow Fwii = Kill
P titeback

Cause

EPC

Kill F I Kill D I KiIIE
Stage Stage Stage

Asynchronous
Interrupts

Key observation: architected state only change in

memory and register write stages.



Recall:Speed Up Equation for

Pipelining
CPI, cinea = Ideal CPT + Average Stall cycles per Inst
Speedup Ideal CPI x Pipeline depth Cycle Time,pivelined

Ideal CPTI + Pipeline stall CPT Cycle Time, i ciined

For simple RISC pipeline, CPI = 1:

Plpellne depfh CYCIe Timeunpipelined
1 + Pipeline stall cPL Cycle Time

Speedup =

pipelined



Example: Evaluating Branch
Alternatives

Pipeline speedup =

Pipeline depth

1 +Branch frequency x Branch penalty

Conditional & Unconditional = 14%, 65%

Assume:
change PC
Scheduling Branch
scheme penalty
Stall pipeline 3
Predict taken 1
Predict not taken 1

Delayed branch 0.5

CPI

1.42
1.14
1.09
1.07

speedup v.

stall

1.0
1.26
1.29
1.31



The Memory Abstraction

Association of <name, value> pairs

— typically named as byte addresses

— often values aligned on multiples of size
Sequence of Reads and Writes
Write binds a value to an address

Read of addr returns most recently written value
bound to that address

command (R/W) >

address (name) >




IIIIIIIIIIIII

Memory

Relationship of Caches and Pipeline

Next PC

ejeg dM




Example: Dual-port vs. Single-port

Machine A: Dual ported memory (“Harvard Architecture”)

Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

Ideal CPI = 1 for both

Loads are 40% of instructions executed

SpeedUp, = Pipeline Depth/(1 + 0) x (clock,,,,c/clockyne)
= Pipeline Depth

SpeedUpg = Pipeline Depth/(1 + 0.4 x 1) x (clock,nipe/(ClOCK npine / 1.05)
= (Pipeline Depth/1.4) x 1.05
= 0.75 x Pipeline Depth

SpeedUp, / SpeedUpg = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Machine A is 1.33 times faster



