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Recap: Who Cares About the Memory 
Hierarchy? 
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Levels of the Memory Hierarchy 

CPU Registers 
100s Bytes 
<1s ns 

Cache 
10s-100s K Bytes 
1-10 ns 
$10/ MByte 

Main Memory 
M Bytes 
100ns- 300ns 
$1/ MByte 

Disk 
10s G Bytes, 10 ms  
(10,000,000 ns) 
$0.0031/ MByte 

Capacity 
Access Time 
Cost 

Tape 
infinite 
sec-min 
$0.0014/ MByte 
 

Registers 
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Disk 

Tape 

Instr. Operands 

Blocks 

Pages 

Files 

Staging 
Xfer Unit 

prog./compiler 
1-8 bytes 

cache cntl 
8-128 bytes 

OS 
512-4K bytes 

user/operator 
Mbytes 

Upper Level 

Lower Level 

faster 

Larger 



The Principle of Locality 

• The Principle of Locality: 
– Program access a relatively small portion of the address 

space at any instant of time. 
• Two Different Types of Locality: 

– Temporal Locality (Locality in Time): If an item is 
referenced, it will tend to be referenced again soon (e.g., 
loops, reuse) 

– Spatial Locality (Locality in Space): If an item is 
referenced, items whose addresses are close by tend to 
be referenced soon  
(e.g., straightline code, array access) 

• Last 15 years, HW (hardware) relied on locality for 
speed 



Memory Hierarchy: Terminology 
• Hit: data appears in some block in the upper level (example: Block X)  

– Hit Rate: the fraction of memory access found in the upper level 
– Hit Time: Time to access the upper level which consists of 

RAM access time + Time to determine hit/miss 

• Miss: data needs to be retrieve from a block in the lower level (Block Y) 
– Miss Rate  = 1 - (Hit Rate) 
– Miss Penalty: Time to replace a block in the upper level  +  

Time to deliver the block the processor 

• Hit Time << Miss Penalty (500 instructions on 21264!) 

Lower Level 
Memory Upper Level 

Memory 
To Processor 

From Processor 
Blk X 

Blk Y 



Cache Measures 

• Hit rate: fraction found in that level 
– So high that usually talk about Miss rate 
– Miss rate fallacy: as MIPS to CPU performance,  

miss rate to average memory access time in memory  

• Average memory-access time  
 = Hit time + Miss rate x Miss penalty  
  (ns or clocks) 

• Miss penalty: time to replace a block from lower level, 
including time to replace in CPU 
– access time: time to lower level  
 = f(latency to lower level) 
– transfer time: time to transfer block  
 =f(BW between upper & lower levels) 



Simplest Cache: Direct  Mapped 
Memory 

4  Byte Direct Mapped Cache 

Memory Address 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

Cache Index 
0 
1 
2 
3 

• Location 0 can be occupied by data from: 
– Memory location 0, 4, 8, ... etc. 
– In general: any memory location 

whose 2 LSBs of the address are 0s 
– Address<1:0>  => cache index 

• Which one should we place in the cache? 
• How can we tell which one is in the cache? 



1 KB Direct Mapped Cache, 32B blocks 
• For a 2 ** N byte cache: 

– The uppermost (32 - N) bits are always the Cache Tag 
– The lowest M bits are the Byte Select (Block Size = 2 ** M) 

Cache Index 

0 
1 
2 
3 

: 

 Cache Data 
Byte 0 

0 4 31 

: 

Cache Tag Example: 0x50 
Ex: 0x01 

0x50 

Stored as part 
of the cache “state” 

Valid Bit 

: 
31 

Byte 1 Byte 31 : 

Byte 32 Byte 33 Byte 63 : 
Byte 992 Byte 1023 : 

 Cache Tag 

Byte Select 
Ex: 0x00 

9 



Two-way Set Associative Cache 
• N-way set associative: N entries for each Cache Index 

– N direct mapped caches operates in parallel (N typically 2 to 4) 

• Example: Two-way set associative cache 
– Cache Index selects a “set” from the cache 
– The two tags in the set are compared in parallel 
– Data is selected based on the tag result 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Mux 0 1 Sel1 Sel0 

Cache Block 

Compare 
Adr Tag 

Compare 

OR 

Hit 



Disadvantage of Set Associative Cache 
• N-way Set Associative Cache v. Direct Mapped Cache: 

– N comparators vs. 1 
– Extra MUX delay for the data 
– Data comes AFTER Hit/Miss 

• In a direct mapped cache, Cache Block is available BEFORE Hit/Miss: 
– Possible to assume a hit and continue.  Recover later if miss. 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Data 
Cache Block 0 

Cache Tag Valid 

: : : 

Cache Index 

Mux 0 1 Sel1 Sel0 

Cache Block 

Compare 
Adr Tag 

Compare 

OR 

Hit 



4 Questions for Memory Hierarchy 

• Q1: Where can a block be placed in the upper level? 
 (Block placement) 

• Q2: How is a block found if it is in the upper level? 
  (Block identification) 

• Q3: Which block should be replaced on a miss?  
 (Block replacement) 

• Q4: What happens on a write?  
 (Write strategy) 



Q1: Where can a block be 
placed in the upper level?  

• Block 12 placed in 8 block cache: 
– Fully associative, direct mapped, 2-way set associative 
– S.A. Mapping = Block Number Modulo Number Sets 

 Cache 

01234567 01234567 01234567 

Memory 

          1111111111222222222233 
01234567890123456789012345678901 

Full Mapped Direct Mapped 
(12 mod 8) = 4 

2-Way Assoc 
(12 mod 4) = 0 



Q2: How is a block found if it is 
in the upper level? 

• Tag on each block 
– No need to check index or block offset 

• Increasing associativity shrinks index, 
expands tag 

Block 
Offset 

Block Address 

Index Tag 



Q3: Which block should be 
replaced on a miss? 

• Easy for Direct Mapped 
• Set Associative or Fully Associative: 

– Random 
– LRU (Least Recently Used) 

 
Assoc:       2-way      4-way         8-way 
Size        LRU     Ran    LRU     Ran      LRU      Ran 
16 KB 5.2% 5.7%   4.7% 5.3% 4.4% 5.0% 
64 KB 1.9% 2.0%   1.5% 1.7%   1.4% 1.5% 
256 KB 1.15% 1.17%  1.13%  1.13%  1.12%   1.12% 
 



Q4: What happens on a write? 

• Write through—The information is written to both the block 
in the cache and to the block in the lower-level memory. 

• Write back—The information is written only to the block in 
the cache. The modified cache block is written to main 
memory only when it is replaced. 
– is block clean or dirty? 

• Pros and Cons of each? 
– WT: read misses cannot result in writes 
– WB: no repeated writes to same location 

• WT always combined with write buffers so that don’t wait 
for lower level memory 



Write Buffer for Write Through 

• A Write Buffer is needed between the Cache and Memory 
– Processor: writes data into the cache and the write buffer 
– Memory controller: write contents of the buffer to memory 

• Write buffer is just a FIFO: 
– Typical number of entries: 4 
– Works fine if:  Store frequency (w.r.t. time) << 1 / DRAM write cycle 

• Memory system designer’s nightmare: 
– Store frequency (w.r.t. time)   ->  1 / DRAM write cycle 
– Write buffer saturation 

Processor 
Cache 

Write Buffer 

DRAM 



6 Basic Cache Optimizations 

• Reducing Miss Rate 
1. Larger Block size (compulsory misses) 
2. Larger Cache size (capacity misses) 
3. Higher Associativity (conflict misses) 

• Reducing Miss Penalty 
4. Multilevel Caches 

• Reducing hit time 
5. Giving Reads Priority over Writes  
• E.g., Read complete before earlier writes in write buffer 
6. Avoid address translation  
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A Modern Memory Hierarchy 
• By taking advantage of the principle of locality: 

– Present the user with as much memory as is available in the cheapest 
technology. 

– Provide access at the speed offered by the fastest technology. 
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Basic Issues in VM System Design 
size of information blocks that are transferred from 
      secondary to main storage (M) 
 
block of information brought into M, and M is full, then some region 
      of M must be released to make room for the new block --> 
      replacement policy 
 
which region of M is to hold the new block -->  placement policy  
 
missing item fetched from secondary memory only on the occurrence 
      of a fault  -->  demand load policy 

Paging Organization 
 
virtual and physical address space partitioned into blocks of equal size 

page frames 

pages 

pages 
reg 

cache 
mem disk 

frame 



Address Map 
V = {0, 1, . . . , n - 1}   virtual address space 
M = {0, 1, . . . , m - 1}  physical address space 
 
MAP:  V -->  M  U  {0}  address mapping function 

n > m 

MAP(a)  =  a'  if data at virtual address a is present in physical  
                           address a'  and  a' in M 
 
           =  0  if data at virtual address a is not present in M 

Processor 

Name Space V 

Addr Trans 
Mechanism 

fault 
handler 

Main 
Memory 

Secondary 
Memory 

a 

a 
a' 

0 

missing item fault 

physical address OS performs 
this transfer 



Implications of Virtual Memory for 
Pipeline design 

• Fault? 
• Address translation? 



Paging Organization 
frame 0 

1 

7 

0 
1024 

7168 

P.A. 

Physical 
Memory 

1K 
1K 

1K 

Addr 
Trans 
MAP 

page 0 
1 

31 

1K 
1K 

1K 

0 
1024 

31744 
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mapping 
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transfer from 
virtual to 
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memory 

Virtual Memory 
Address Mapping 

VA page no. disp 
10 

Page Table 

index 
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page 
table 

Page Table 
Base Reg 

V Access 
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physical 
memory 
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V.A. 



Address Translation 

• Page table is a large data structure in memory 
• Two memory accesses for every load, store, or instruction fetch!!! 
• Virtually addressed cache? 

– synonym problem 
• Cache the address translations? 

CPU 
Trans- 
lation Cache 

Main 
Memory 

VA PA miss 

hit 
data 



TLBs 
A way to speed up translation is to use a special cache of recently 
      used page table entries  --  this has many names, but the most 
      frequently used is Translation Lookaside Buffer or TLB 

Virtual Address   Physical Address   Dirty   Ref   Valid   Access 

Really just a cache on the page table mappings 
 
TLB access time comparable to cache access time 
      (much less than main memory access time) 



Translation Look-Aside Buffers 
Just like any other cache, the TLB can be organized as fully associative, 
      set associative, or direct mapped 
 
TLBs are usually small, typically not more than 128 - 256 entries even on 
      high end machines.  This permits fully associative 
      lookup on these machines.  Most mid-range machines use small 
      n-way set associative organizations. 

CPU TLB 
Lookup Cache Main 

Memory 

VA PA miss 

hit 

data 

Trans- 
lation 

hit 

miss 

20 t t 1/2 t 

Translation 
with a TLB 



Reducing Translation Time 

Machines with TLBs go one step further to reduce # cycles/cache access 
 
They overlap the cache access with the TLB access: 
 
    high order bits of the VA are used to look in the TLB while low order bits 

are used as index into cache 
 



Overlapped Cache & TLB Access 

TLB Cache 

10 2 
00 

4 bytes 

index 1 K 

page # disp 
20 12 

assoc 
lookup 32 

PA Hit/ 
Miss PA Data Hit/ 

Miss 

= 

IF cache hit AND (cache tag = PA) then deliver data to CPU 
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN 
               access memory with the PA from the TLB 
ELSE do standard VA translation 



Problems With Overlapped TLB Access 
Overlapped access only works as long as the address bits used to 
      index into the cache do not change  as the result of VA translation 
 
This usually limits things to small caches, large page sizes, or high 
      n-way set associative caches if you want a large cache 
 
Example:  suppose everything the same except that the cache is 
      increased to 8 K bytes instead of 4 K: 

11 2 
00 

virt page # disp 
20 12 

cache  
index 

This bit is changed 
by VA translation, but 
is needed for cache 
lookup 

Solutions: 
      go to 8K byte page sizes; 
      go to 2 way set associative cache; or 
      SW guarantee VA[13]=PA[13] 

1K 
4 4 

10 
2 way set assoc cache 



Summary #1/4:  
Pipelining & Performance 

• Just overlap tasks; easy if tasks are independent 
• Speed Up ≤ Pipeline Depth; if ideal CPI is 1, then: 

 
 
• Hazards limit performance on computers: 

– Structural: need more HW resources 
– Data (RAW,WAR,WAW): need forwarding, compiler scheduling 
– Control: delayed branch, prediction 

 
 

pipelined

dunpipeline

 TimeCycle
 TimeCycle

  
CPI stall Pipeline  1

depth Pipeline  Speedup ×
+

=

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds 
      Program     Program          Instruction     Cycle 

• Time is measure of performance: latency or 
throughput 

• CPI Law: 
 
 



Summary #2/4: Caches 
• The Principle of Locality: 

– Program access a relatively small portion of the address space at any 
instant of time. 

• Temporal Locality: Locality in Time 
• Spatial Locality: Locality in Space 

• Three Major Categories of Cache Misses: 
– Compulsory Misses: sad facts of life.  Example: cold start misses. 
– Capacity Misses: increase cache size 
– Conflict Misses:  increase cache size and/or associativity.   

• Write Policy: 
– Write Through: needs a write buffer.   
– Write Back: control can be complex 

• Today CPU time is a function  of (ops, cache misses) vs. just 
f(ops): What does this mean to  
Compilers, Data structures, Algorithms? 



Summary #3/4:  
The Cache Design Space 

• Several interacting dimensions 
– cache size 
– block size 
– associativity 
– replacement policy 
– write-through vs write-back 

 

• The optimal choice is a compromise 
– depends on access characteristics 

• workload 
• use (I-cache, D-cache, TLB) 

– depends on technology / cost 

• Simplicity often wins 

Associativity 

Cache Size 

Block Size 

Bad 

Good 

Less More 

Factor A Factor B 



Review #4/4: TLB, Virtual Memory 
• Caches, TLBs, Virtual Memory all understood by examining 

how they deal with 4 questions: 1) Where can block be 
placed? 2) How is block found? 3) What block is repalced on 
miss? 4) How are writes handled? 

• Page tables map virtual address to physical address 
• TLBs make virtual memory practical 

– Locality in data => locality in addresses of data,  
temporal and spatial 

• TLB misses are significant in processor performance 
– funny times, as most systems can’t access all of 2nd level cache 

without TLB misses! 

• Today VM allows many processes to share single memory 
without having to swap all processes to disk; today VM 
protection is more important than memory hierarchy 
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