
Modern Computer Architecture

Lecture5 Instruction Level Parallelism (I)

Hongbin Sun
国家集成电路人才培养基地

Xi’an Jiaotong University

Review: Pipeline Performance

• Pipeline CPI = Ideal pipeline CPI + Structural Stalls + Data
Hazard Stalls + Control Stalls
– Ideal pipeline CPI: measure of the maximum performance attainable

by the implementation
– Structural hazards: HW cannot support this combination of

instructions
– Data hazards: Instruction depends on result of prior instruction still

in the pipeline
– Control hazards: Caused by delay between the fetching of

instructions and decisions about changes in control flow (branches,
jumps, exceptions)

9/11/2007 2

Review: Types of Data Hazards

9/11/2007 3

Consider executing a sequence of
 rk ← (ri) op (rj)
type of instructions

Data-dependence
r3 ← (r1) op (r2) Read-after-Write
r5 ← (r3) op (r4) (RAW) hazard

Anti-dependence
r3 ← (r1) op (r2) Write-after-Read
r1 ← (r4) op (r5) (WAR) hazard

Output-dependence
r3 ← (r1) op (r2) Write-after-Write
r3 ← (r6) op (r7) (WAW) hazard

Data Hazards: An Example

9/11/2007 4

I1 DIVD f6, f6, f4

I2 LD f2, 45(r3)

I3 MULTD f0, f2, f4

I4 DIVD f8, f6, f2

I5 SUBD f10, f0, f6

I6 ADDD f6, f8, f2

RAW Hazards
WAR Hazards
WAW Hazards

dest src1 src2

9/11/2007 5

Complex Pipelining

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Pipelining becomes complex when we want high
performance in the presence of:

• Long latency or partially pipelined floating-point units
• Multiple function and memory units
• Memory systems with variable access time
• Precise exceptions

9/11/2007 6

Complex In-Order Pipeline

• Delay writeback so all operations
have same latency to W stage

– Write ports never oversubscribed (one
inst. in & one inst. out every cycle)

– Instructions commit in order, simplifies
precise exception implementation

Commit
Point

PC
Inst.
Mem D Decode X1 X2

Data
Mem W +

GPR
s

X2 W Fadd X3

X3

FPRs X1

X2 Fmul X3

X2 FDiv X3
Unpipelined

divider

How to prevent increased
writeback latency from
slowing down single cycle
integer operations?

Bypassing

9/11/2007 7

Complex Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

Can we solve write
hazards without
equalizing all pipeline
depths and without
bypassing?

When is it Safe to Issue an
Instruction?

9/11/2007 8

Suppose a data structure keeps track of all the
instructions in all the functional units

The following checks need to be made before the
Issue stage can dispatch an instruction

• Is the required function unit available?

• Is the input data available? ⇒ RAW?

• Is it safe to write the destination? ⇒ WAR? WAW?

• Is there a structural conflict at the WB stage?

Scoreboard for In-order Issues

9/11/2007 9

Busy[FU#] : a bit-vector to indicate FU’s availability.
 (FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which
 writes are pending.

These bits are set to true by the Issue stage and set to
false by the WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available?
RAW?
WAR?
WAW?

Busy[FU#]
WP[src1] or WP[src2]
cannot arise
WP[dest]

In-Order Issue Limitations: an example

9/11/2007 10

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

In-order restriction prevents instruction 4
from being dispatched

(underline indicates cycle when instruction writes back)

9/11/2007 11

Out-of-Order Issue

•Issue stage buffer holds multiple instructions waiting to
issue.

•Decode adds next instruction to buffer if there is space
and the instruction does not cause a WAR or WAW
hazard.

•Any instruction in buffer whose RAW hazards are
satisfied can be issued (for now at most one dispatch per
cycle). On a write back (WB), new instructions may get
enabled.

IF ID WB

ALU Mem

Fadd

Fmul

Issue

9/11/2007 12

In-Order Issue Limitations: an example

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6

1 2

3 4

5

6

Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

演示者
演示文稿备注
WAR hazard delays issue of 5

How many instructions can be in
the pipeline?

9/11/2007 13

Which features of an ISA limit the number of
instructions in the pipeline?

Which features of a program limit the number of
instructions in the pipeline?

Out-of-order dispatch by itself does not provide
any significant performance improvement !

Number of Registers

Control transfers

演示者
演示文稿备注
Ilustrates how one feature alone may not help – happens today when people study single new idea in a very detailed model.

Overcoming the Lack of Register
Names

9/11/2007 14

Floating Point pipelines often cannot be kept filled
with small number of registers.
 IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Robert Tomasulo of IBM suggested an ingenious
solution in 1967 based on on-the-fly register renaming

15

Little’s Law

Throughput (T) = Number in Flight (N) / Latency (L)

WB Issue Execution

Example:
• 4 floating point registers
• 8 cycles per floating point operation
⇒ maximum of ½ issue per cycle!
 排队理论（Theory of Queues）中：在一个稳定的系统中，长时间观察到的平均

顾客数量L，等于，长时间观察到的有效到达速率λ与平均每个顾客在系统中花费
的时间之乘积，即L = λW。

9/11/2007 16

Instruction-level Parallelism via Renaming

 latency
1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

1 2

3 4

5

6

X

Any antidependence can be eliminated by renaming.
 (renaming ⇒ additional storage)
 Can it be done in hardware? yes!

9/11/2007 17

Register Renaming

• Decode does register renaming and adds instructions to the
issue stage reorder buffer (ROB)

 ⇒ renaming makes WAR or WAW hazards impossible

• Any instruction in ROB whose RAW hazards have been
satisfied can be dispatched.

 ⇒ Out-of-order or dataflow execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

9/11/2007 18

Dataflow execution

Instruction slot is candidate for execution when:
•It holds a valid instruction (“use” bit is set)
•It has not already started execution (“exec” bit is clear)
•Both operands are available (p1 and p2 are set)

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 prt1
next

available

Ins# use exec op p1 src1 p2 src2

9/11/2007 19

Renaming & Out-of-order Issue
An example

• When are names in sources
 replaced by data?

• When can a name be reused?

1 LD F2, 34(R2)
2 LD F4, 45(R3)
3 MULTD F6, F4, F2
4 SUBD F8, F2, F2
5 DIVD F4, F2, F8
6 ADDD F10, F6, F4

Renaming table Reorder buffer
Ins# use exec op p1 src1 p2 src2

t1
t2
t3
t4
t5
.
.

data / ti

 p data
F1
F2
F3
F4
F5
F6
F7
F8

Whenever an FU produces data

Whenever an instruction completes

t1
 1 1 0 LD

t2

 2 1 0 LD

 5 1 0 DIV 1 v1 0 t4
 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1
v1

 1 1 1 LD 0

 4 1 1 SUB 1 v1 1 v1 4 0

v4

 5 1 0 DIV 1 v1 1 v4

 2 1 1 LD 2 0
 3 1 0 MUL 1 v2 1 v1

9/11/2007 20

Data-Driven Execution
Renaming
table &
reg file

Reorder
buffer

Load
 Unit

FU FU Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

• Instruction template (i.e., tag t) is allocated by the
 Decode stage, which also stores the tag in the reg file
• When an instruction completes, its tag is deallocated

Replacing the
tag by its value
is an expensive
operation

9/11/2007 21

Simplifying Allocation/Deallocation

Instruction buffer is managed circularly
•“exec” bit is set when instruction begins execution
• When an instruction completes, its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

Reorder buffer

t1
t2
.
.
.

tn

ptr2
next to

deallocate

 prt1
next

available

Ins# use exec op p1 src1 p2 src2

9/11/2007 22

IBM 360/91 Floating Point Unit
R. M. Tomasulo, 1967

Mult

 p data p data 1
2

 p data 1
2
3
4
5
6

data load
buffers
(from
memory)

1
2
3
4

Adder

 p data p data 1
2
3

Floating
Point
Reg

store buffers
(to memory)

...

instructions

Common bus ensures that data is made
available immediately to all the instructions
waiting for it

distribute
instruction
templates
by
functional
units

< t, result >

 p data

9/11/2007 23

Effectiveness?
Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
Nineties.
 Why ?
Reasons

1. Effective on a very small class of programs
2. Memory latency a much bigger problem
3. Exceptions not precise!

 One more problem needed to be solved

Control transfers

9/11/2007 24

Precise Interrupts

It must appear as if an interrupt is taken between
two instructions (say Ii and Ii+1)

• the effect of all instructions up to and including Ii is
 totally complete
• no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

9/11/2007 25

Effect on Interrupts
Out-of-order Completion

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6
 restore f2 restore f10
Consider interrupts

Precise interrupts are difficult to implement at high speed
 - want to start execution of later instructions before
 exception checks finished on earlier instructions

9/11/2007 26

Exception Handling
(In-Order Five-Stage Pipeline)

• Hold exception flags in pipeline until commit point (M stage)
• Exceptions in earlier pipe stages override later exceptions
• Inject external interrupts at commit point (override others)
• If exception at commit: update Cause and EPC registers, kill
 all stages, inject handler PC into fetch stage

Asynchronous
Interrupts

Exc
D

PC
D

PC
Inst.
Mem D Decode E M

Data
Mem W +

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC
Kill D
Stage

Kill F
Stage

Kill E
Stage

Illegal
Opcode Overflow

Data Addr
Except

PC Address
Exceptions

Kill
Writeback

Select
Handler
PC

Commit
Point

9/11/2007 27

Fetch: Instruction bits retrieved
from cache.

Phases of Instruction Execution

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute: Instructions and operands sent to
execution units .
When execution completes, all results and
exception flags are available.

Decode: Instructions placed in appropriate
issue (aka “dispatch”) stage buffer

Result
Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or
“completion”).

PC

9/11/2007 28

In-Order Commit for Precise Exceptions

• Instructions fetched and decoded into instruction
 reorder buffer in-order
• Execution is out-of-order (⇒ out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
 memory) is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill
Kill Kill

Exception? Inject handler PC

9/11/2007 29

Extensions for Precise Exceptions

Reorder buffer

ptr2
next to
commit

ptr1
next

available

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
 order ⇒ buffers can be maintained circularly
• on exception, clear reorder buffer by resetting ptr1=ptr2
 (stores must wait for commit before updating memory)

Inst# use exec op p1 src1 p2 src2 pd dest data cause

9/11/2007 30

Rollback and Renaming

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer

Register File
(now holds only
committed state)

Reorder
buffer

Load
 Unit FU FU FU Store

 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

9/11/2007 31

Renaming Table
Register

File

Reorder
buffer

Load
 Unit FU FU FU Store

 Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table

Renaming table is a cache to speed up register name look up.
It needs to be cleared after each exception taken.
When else are valid bits cleared? Control transfers

r1 t v
r2

tag
valid bit

9/11/2007 32

Branch Penalty

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch executed

Next fetch
started

How many instructions
need to be killed on a
misprediction?

Modern processors may
have > 10 pipeline stages
between next pc calculation
and branch resolution !

Average Run-Length between Branches

9/11/2007 33

Average dynamic instruction mix from SPEC92:
 SPECint92 SPECfp92
 ALU 39 % 13 %
 FPU Add 20 %
 FPU Mult 13 %
 load 26 % 23 %
 store 9 % 9 %
 branch 16 % 8 %
 other 10 % 12 %

SPECint92: compress, eqntott, espresso, gcc , li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between branches?

 next lecture: Branch prediction & Speculative excecution

Paper Discussion: B5000 vs IBM 360

• IBM set foundations for ISAs since 1960s
– 8-bit byte
– Byte-addressable memory (as opposed to word-addressable

memory)
– 32-bit words
– Two's complement arithmetic (but not the first processor)
– 32-bit (SP) / 64-bit (DP) Floating Point format and registers
– Commercial use of microcoded CPUs
– Binary compatibility / computer family

• B5000 very different model: HLL only, stack, Segmented VM
• IBM paper made case for ISAs good for microcoded

processors ⇒ leading to CISC
9/11/2007 34

	Modern Computer Architecture��Lecture5 Instruction Level Parallelism (I)
	Review: Pipeline Performance
	Review: Types of Data Hazards
	Data Hazards: An Example
	Complex Pipelining
	Complex In-Order Pipeline
	Complex Pipeline
	When is it Safe to Issue an Instruction?
	Scoreboard for In-order Issues
	In-Order Issue Limitations: an example
	Out-of-Order Issue
	In-Order Issue Limitations: an example
	How many instructions can be in the pipeline?
	Overcoming the Lack of Register Names
	Little’s Law
	Instruction-level Parallelism via Renaming
	Register Renaming
	Dataflow execution
	Renaming & Out-of-order Issue�An example
	Data-Driven Execution
	Simplifying Allocation/Deallocation
	IBM 360/91 Floating Point Unit�R. M. Tomasulo, 1967
	Effectiveness?
	Precise Interrupts
	Effect on Interrupts�Out-of-order Completion
	Exception Handling�(In-Order Five-Stage Pipeline)
	Phases of Instruction Execution
	In-Order Commit for Precise Exceptions
	Extensions for Precise Exceptions
	Rollback and Renaming
	Renaming Table
	Branch Penalty
	Average Run-Length between Branches
	Paper Discussion: B5000 vs IBM 360

