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Abstract

Recent attention to speculative execution as a mech-

anism for increasing performance of single instruction

streams has demanded substantially better branch pre-

diction than what has been previously available. We

[1, 2] and Pan, So, and Rahmeh [4] have both proposed

variations of the same aggressive dynamic branch pre-

dictor for handling those needs. We call the basic

model Two-Level Adaptive Branch Prediction; Pan,

So, and Rahmeh call it Correlation Branch Prediction.

In this paper, we adopt the terminology of [2] and show

that there are really nine variations of the same basic

model. We compare the nine variations with respect to

the amount of history information kept. We study the

e�ects of di�erent branch history lengths and pattern

history table con�gurations. Finally, we evaluate the

cost e�ectiveness of the nine variations.

1 Introduction

With the current movement toward deeper

pipelines and wider issue rates, extremely high branch

prediction accuracy becomes critical because a larger

amount of speculative work needs to be thrown away

after a branch misprediction. To improve branch pre-

diction, several authors have suggested basing predic-

tions on two levels of branch history information.

Lee and Smith [7] proposed collecting these two

levels of history information statically. We [1] intro-

duced the idea of dynamically collecting two levels of

branch history, branch execution history and pattern

history, to achieve substantially higher accuracy than

any other scheme reported in the literature. We call

our algorithm Two-level Adaptive Branch Prediction.

Our predictor adjusts its prediction according to the

behavior of the branch instructions at run-time. The

�rst-level branch execution history is the history of the

last k branches encountered. The second-level pattern

history is the branch behavior for the last j occur-

rences of the speci�c pattern of these k branches. Pre-

diction is based on the branch behavior for the last j

occurrences of the current branch history pattern. The

�rst-level branch execution history and the second-

level pattern history are collected at run-time, elimi-

nating the disadvantages inherent in Lee and Smith's

method, that is, the di�erences in the branch behavior

of the pro�ling data set and the run-time data sets.

In [2] we described three variations of Two-level

Adaptive Branch Prediction, di�erentiating them by

the manner in which the �rst-level of branch his-

tory information is kept (G, for global, or P, for per-

address) and the manner in which the second-level

pattern history tables are associated with this history

information (g, for global, or p, for per-address). We

suggested that history information can be kept in a

single global register, or in separate per-address regis-

ters for each address that contains a branch instruc-

tion. We further suggested that a single global pattern

table could contain the second-level history informa-

tion, or each address that contains a branch instruc-

tion could contain its own second-level per-address

pattern table. We identi�ed the three schemes as GAg,

PAg, and PAp and showed that PAg is the most cost-

e�ective variation.

Pan, So and Rahmeh [4] proposed a model they

called Correlation Branch Prediction, because the pre-

diction of a branch depends on the history of other

branches. In the terminology introduced in [2], this

would be called GAp. They also introduced another

variation, which we could label GAs, where the ad-

dresses that contain branch instructions are parti-

tioned into subsets, each subset sharing the same

second-level pattern table.

This paper describes and characterizes possible

variations of the Two-Level Adaptive Branch Predic-

tion model according to the manner in which the �rst-



level branch history information is kept (G, S, or P)

and the manner in which the second-level pattern his-

tory tables are associated with this history informa-

tion (g, s, or p). The variation S means addresses

that contain branch instructions are partitioned into

sets, each set sharing the same �rst-level branch his-

tory register. This yields nine variations of the model:

GAg, GAs, GAp, PAg, PAs, PAp, SAg, SAs, and

SAp. They are summarized, along with the reference

to where they were �rst introduced, in Table 1.

Variation & Description
Reference

GAg [2] Global Adaptive Branch Prediction
using one global pattern history table.

GAs [4] Global Adaptive Branch Prediction
using per-set pattern history tables.

GAp [4] Global Adaptive Branch Prediction

using per-address pattern history tables.

PAg [1] Per-addressAdaptive Branch Prediction
using one global pattern history table.

PAs - Per-addressAdaptive Branch Prediction

using per-set pattern history tables.

PAp [2] Per-addressAdaptive Branch Prediction
using per-address pattern history tables.

SAg - Per-Set Adaptive Branch Prediction
using one global pattern history table.

SAs - Per-Set Adaptive Branch Prediction
using per-set pattern history tables.

SAp - Per-Set Adaptive Branch Prediction
using per-address pattern history tables.

Table 1: The Nine Variations of Two-Level Adaptive

Branch Prediction

In this paper, we focus on comparing the prediction

accuracies of the nine variations of Two-Level Adap-

tive Branch Prediction by using trace-driven simula-

tions of nine of the ten SPEC89 benchmarks
1
. These

variations are studied with respect to various history

register lengths, branch history table con�gurations,

and implementation costs.

This paper is organized in �ve sections. Section 2

describes in brief Two-Level Adaptive Branch Predic-

tion and its nine variations. Section 3 discusses the

simulation model and traces used in this study. Sec-

tion 4 reports the simulation results and our analysis.

Section 5 contains some concluding remarks.

1The Nasa7 benchmark was not simulated because this
benchmark consists of seven independent loops. It takes too
long to simulate the branch behavior of these seven kernels, so
we omitted these loops.

2 Two-Level Adaptive Branch Prediction and

Its Variations

2.1 Concept Summary

Two-Level Adaptive Branch Prediction uses two

levels of branch history information to make predic-

tions. The �rst level is the history of the last k

branches encountered. We call the structure which

keeps the history of the last k branches encountered

the branch history register (BHR). Depending on

which variation of the model we implement, the last k

branches can mean the actual last k branches encoun-

tered (G), the last k occurrences of the same branch

instruction (P), or the last k occurrences of the branch

instructions from the same set (S). If several BHRs are

used to keep branch history, the collection of BHRs is

called the branch history table (BHT). If a branch is

taken, then the branch history register records a \1";

if it is not taken, the branch history register records a

\0".

The second level of the predictor records the branch

behavior for the last j occurrences of the speci�c pat-

tern of the k branches. Prediction is based on the

branch behavior for the last j occurrences of the his-

tory pattern in question by using an automaton. Our

previous study [2] has shown that a 2-bit counter is the

most e�ective automaton among four-state automata.

Since the history register has k bits, at most 2
k
dif-

ferent patterns appear in the history register. Each of

these 2
k
patterns has a corresponding entry in what

we have called the pattern history table (PHT).

Both branch history and pattern history are up-

dated dynamically. When the prediction of a branch is

made, the contents of its history register are recorded.

After the branch is resolved, the result is used to

update the entry indexed by the previously-recorded

branch history register contents. The branch history

register, on the other hand, is updated with the predic-

tion right after the prediction is made. Since it usually

takes several cycles to resolve a branch, updating the

branch history speculatively allows the prediction to

be made with up-to-date branch history. When an in-

correct branch prediction is made, the branch history

register should be restored with correct branch his-

tory. More details of the Two-Level Adaptive Branch

Predictors are contained in [2] and [4].

2.2 Variations

The nine variations of Two-Level Adaptive Branch

Prediction ( Table 1) can be classi�ed into three classes

according to the way the �rst-level branch history is



collected. These three classes are shown in Figures 1,

2, and 3. They are characterized as follows:

Global History Schemes

In the global history schemes (shown in Figure 1) (also

called Correlation Branch Prediction by Pan et al.

[4]), the �rst-level branch history means the actual last

k branches encountered; therefore, only a single global

history register (GHR) is used. The global history reg-

ister is updated with the results from all the branches.

Since the global history register is used by all branch

predictions, not only the history of a branch but also

the history of other branches in
uence the prediction

of the branch.
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Figure 1: The three variations of global history Two-

Level Adaptive Branch Prediction.

Per-address History Schemes

In the per-address history schemes (shown in Figure

2), the �rst-level branch history refers to the last k

occurrences of the same branch instruction; therefore,

one history register is associated with each static con-

ditional branch to distinguish the branch history in-

formation of each branch. One such history register

is called a per-address history register (PBHR). The

per-address history registers are contained in a per-

address branch history table (PBHT) in which each

entry is indexed by the static branch instruction ad-

dress. In these schemes, only the execution history of

the branch itself has an e�ect on its prediction; there-

fore, the branch prediction is independent of other

branches' execution history.

Per-set History Schemes

In the Per-set history schemes (shown in Figure 3),

the �rst-level branch history means the last k occur-

rences of the branch instructions from the same sub-

set; therefore, one history register is associated with a
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Figure 2: The three variations of per-address history

Two-Level Adaptive Branch Prediction.

set of conditional branches. One such history register

is called a per-set history register. The set attribute

of a branch can be determined by the branch opcode,

branch class assigned by a compiler, or branch address.

Since the per-set history register is updated with his-

tory possibly from all the branches in the same set, the

prediction of a branch is in
uenced by other branches

in the same set.
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Figure 3: The three variations of per-set history Two-

Level Adaptive Branch Prediction.

For each of the above classes, there are three vari-

ations when it is further classi�ed by the association

of the pattern history tables with branches. The as-

sociation of the pattern history tables can be one pat-

tern table for each branch (called per-address pattern

history table (PPHT)), one pattern table for all the

branches (called global pattern history table(GPHT)),

or one pattern table for a set of branches (called per-

set pattern history table (SPHT)). Indexing into the



multiple pattern history tables is done by using the

low-order bits of the branch address, branch opcode,

or the branch class passed from a compiler.

3 Simulation Methodology

3.1 Description of Traces

Nine benchmarks from the original SPEC89 bench-

mark suite are used in this branch prediction study.

Table 2 lists the benchmark programs, their abbrevi-

ations, and testing data sets used in our simulations.

These nine programs were compiled using the Green

Hills FORTRAN 1.8.5 compiler or the Diab Data C

Rel. 2.4 compiler with all optimizations turned on.

The integer benchmarks include eqntott, espresso,

gcc, and li. Since integer programs tend to have a

higher branch frequency, each integer program was

simulated for twenty million conditional branches or

until the program completed execution. The 
oating

point benchmarks include doduc, fpppp, matrix300,

spice2g6, and tomcatv, each one of which was simu-

lated for one hundred million instructions.

Benchmark & Testing Data Number of Dynamic
Abbreviation Set Conditional Branches

eqntott eqn int pri 3.eqn 20,000,000

espresso esp bca 20,000,000
gcc gcc dbxout.i 7,326,688
li li li-input.lsp 20,000,000

doduc dod doducin 7,717,746
fpppp fpp natoms 1,139,093
matrix300 mat Built-in 3,451,457

spice2g6 spi greycode.in 10,976,668
tomcatv tom Built-in 2,926,569

Table 2: Benchmark programs and their data sets.

3.2 Simulation Con�gurations and Assump-

tions

Trace-driven simulations were used in this study.

A Motorola 88100 instruction level simulator gener-

ated instruction traces, which were used as inputs to

a branch prediction simulator. The branch prediction

simulator decoded instructions, predicted branches,

and compared the predictions to the actual outcome

to collect statistics of branch prediction accuracy.

A total of nine variations of the Two-Level Adap-

tive Branch Prediction were simulated with the fol-

lowing methodology:

� Each branch is distinguished by its address. The

branch address is used to select a branch history

register (BHR) in a branch history table (BHT)

and to choose a pattern history table (PHT) in

per-address or per-set pattern history tables.

� For GAs and PAs schemes, the low-order bits of

the branch address are used as indices to map

adjacent branches into di�erent PHTs, so PHT

contention is minimized. The low-order bits of

the branch address are also used as the index of

a BHR in a BHT of limited size to minimize the

branch history con
icts between branches.

� For per-set history schemes, we use the branch ad-

dress to classify branches into sets. The branches

in a block of 1K bytes (256 instructions) are mem-

bers of the same set. Four set history registers

are used in our simulations, so that the set index

is taken from bits <11:10> of a branch address.

These four instruction blocks cover only 4K bytes;

therefore, branches from di�erent sets may share

the same history register. The index to a pattern

table (SetP (B) in Figure 3) is a combination of

the set index and the low-order bits of the branch

address. We also tried classifying branches by

opcode; however, the prediction accuracy is lower

than using the branch address.

� Every scheme is con�gured with a branch his-

tory table for storing the instruction fetch ad-

dresses [3] of both conditional and unconditional

branches. The branch history table is accessed

by using the low-order bits of the branch address.

For per-address history schemes, each branch his-

tory table entry also records branch history. Un-

less otherwise stated, the default con�guration of

the branch history table is 1024-entry, 4-way set-

associative. The replacement policy of the branch

history table is least-recently-used (LRU).

� Two-bit up-down counters are used in all the pat-

tern history table entries for keeping second-level

pattern history.

� A pattern history table entry is updated with the

information from the trace right after a prediction

is made with no delay because the exact branch

resolution time is not known in our branch pre-

diction simulator. However, we have shown that

various reasonable pipeline delays in the pattern

history update have negligible e�ects on predic-

tion accuracy in [3].

� For the per-address history schemes, a backward

taken, forward not-taken scheme is used for mak-

ing predictions on branch history table misses.



We simpli�ed the hardware cost estimate functions

described in [2] and expanded them to all the varia-

tions of Two-Level Adaptive Branch Prediction. The

revised estimate functions are shown in Table 3. These

functions do not consider the costs for target address

�elds in the branch history table because all the vari-

ations need those �elds to store fetch addresses.

Scheme History Number Simpli�ed

Name Register of Hardware Cost
Length Pattern

History

Tables

GAg(k) k 1 k + 2k � 2

GAs(k,p) k p k + p� 2k � 2

GAp(k) k b k + b� 2k � 2

PAg(k) k 1 b� k + 2k � 2

PAs(k,p) k p b� k + p� 2k � 2

PAp(k) k b b� k + b� 2k � 2

SAg(k) k s�1 s� k + s� 2k � 2

SAs(k,s�p) k s�p s� k + s� p� 2k � 2

SAp(k) k s�b s� k + s� b� 2k � 2

b is the number of BHT entries and s is the number of branch

sets.

Table 3: Conditional branch predictor con�gurations

and their estimated costs.

3.3 Performance Metric

In this paper we use prediction accuracy as the met-

ric to evaluate the performance of branch predictors.

The prediction accuracy is the percentage of correctly-

predicted conditional branches. The pipeline delays of

correct branch predictions on BHT misses are di�er-

ent from the pipeline delays of correct branch predic-

tions on BHT hits. Therefore, prediction accuracy is

shown in two major categories: BHT hits and BHT

misses. When the branch prediction is correct on a

BHT hit, no delay is incurred in instruction fetch after

the predicted fetch address is fetched from the BHT.

On a BHT miss, even if the conditional branch predic-

tion is correct, the instruction fetch mechanism needs

time to decode the branch instruction in order to have

the next fetch address if the branch is taken. If the

branch is not taken, a prefetch of the next sequential

address is assumed. Therefore, there is no penalty for

a correctly-predicted fall-through branch on a BHT

miss. When a prediction is incorrect, the processor

discards the instructions which are fetched after the

branch. Details of the instruction fetch mechanism

are contained in [3].

The translation from prediction accuracy to ma-

chine performance is not direct [5]. However, higher

prediction accuracy means machine pipelines stall less

frequently for incorrect branch predictions.

4 Simulation Results

To evaluate the performance of the nine variations

of Two-Level Adaptive Branch Prediction schemes, we

�rst study the e�ects of the branch history length and

the number of pattern history tables on their predic-

tion accuracy. Secondly, we show the cost e�ectiveness

of the variations of each class of schemes. Finally,

from the schemes with implementation costs of about

8K and about 128K bits, we choose one con�guration

from each class of the schemes for comparison.

4.1 E�ects of Branch History Register Length

and Number of Pattern History Tables

4.1.1 Global History Schemes

Figure 4 shows the average prediction accuracy of in-

teger (int) and 
oating point (fp) programs by us-

ing global history schemes with branch history lengths

ranging from 2 to 18 bits. Each curve shows the pre-

diction accuracy for a di�erent number of pattern his-

tory tables (PHTs). These curves are cut o� when the

implementation cost exceeds 512K bits.
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Figure 4: Global history schemes with di�erent branch

history lengths.

The performance of the global history schemes is

sensitive to the branch history length. This can be

seen from the rising trend of the curves. Using one

pattern history table, the prediction accuracy of in-

teger programs is still rising when an 18-bit branch

history register is used. The prediction accuracy in-

creases about 25 percent by lengthening the branch



history from 2 bits to 18 bits. Even when 16 PHTs

are used, the prediction accuracy increases over 10 per-

cent by lengthening the history register from 2 bits

to 14 bits. When 256 PHTs are used, the prediction

accuracy increases over 6 percent from 90 percent to

about 96 percent. The prediction accuracy of 
oating

point programs does not increase as much as integer

programs, but is still signi�cant.

Figure 5 shows the average prediction accuracy of

integer and 
oating point programs by using global

history schemes with the number of pattern history ta-

bles ranging from 1 to 1024. Each curve shows the pre-

diction accuracy for a di�erent branch history length.

The performance of the global history schemes is

also sensitive to the number of pattern history tables.

As the branch history becomes longer, the increase

in the number of pattern history tables results in a

smaller increase in accuracy.
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Figure 5: Global history schemes with di�erent num-

ber of pattern history tables.

When the global branch history is used, the pattern

history of di�erent branches interfere with each other

if they map to the same pattern history table. To-

gether, Figures 4 and 5 show that prediction accuracy

increases signi�cantly by increasing either the branch

history length or the number of pattern history tables.

The reasons are that lengthening the global branch

history register increases the probability that the his-

tory which the current branch depends on remains in

the history register, and decreases the possibility of

pattern history interference because longer branch his-

tory is used. Similarly, adding pattern history tables

reduces the possibility of pattern history interference

by mapping interfering branches into di�erent tables.

4.1.2 Per-address History Schemes

Figure 6 shows the average prediction accuracy of inte-

ger and 
oating point programs by using per-address

history schemes with branch history lengths ranging

from 2 to 18 bits. Each curve shows the prediction ac-

curacy for a di�erent number of pattern history tables

(PHTs). These curves are cut o� when the pattern

history table cost exceeds 512K bits.
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Figure 6: Per-address history schemes with di�erent

branch history lengths.

The prediction accuracy of per-address history

schemes is not as sensitive to the branch history length

as global history schemes. When one pattern his-

tory table is used, the average integer prediction ac-

curacy increase is about 6 percent (89.2 percent to

95.7 percent) compared to 25 percent for global his-

tory schemes (72.4 percent to 96.1 percent). The

curves of average 
oating point prediction accuracy

for per-address history schemes are nearly 
at when

the branch history length is larger than 6-bit.

Comparing the asymptotic prediction accuracy in

Figures 4 and 6, we see that the global history schemes

have higher asymptotic averages than the per-address

history schemes for integer programs while the per-

address history schemes have higher asymptotic av-

erage than the global history schemes for 
oating

point programs. This phenomenon is due to the

large number of if-then-else statements in integer pro-

grams which depend more on the results of adjacent

branches; therefore, the global history schemes per-

form well. The 
oating point programs, on the other

hand, contain more loop-control branches which ex-

hibit periodic branch behavior. This periodic branch

behavior is better retained in multiple BHRs, so those

branches are more predictable for the per-address his-

tory schemes.



Figure 7 shows the average prediction accuracy of

integer and 
oating point programs by using per-

address history schemes with the number of pattern

history tables ranging from 1 to 1024. Each curve

shows the prediction accuracy for a di�erent branch

history length.
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Figure 7: Per-address history schemes with di�erent

number of pattern history tables.

When the per-address branch history is used, the

pattern history of di�erent branches interfere less with

each other when they map to the same pattern history

table. As seen from Figure 7, attempting to reduce

pattern history interference by increasing the number

of pattern history tables results in only a small in-

crease in prediction accuracy. Increasing the branch

history length, on the other hand, is more e�ective in

improving the average integer prediction accuracy but

not the average 
oating point prediction accuracy.

4.1.3 Per-set History Schemes

Figure 8 shows the average prediction accuracy of in-

teger and 
oating point programs by using per-set his-

tory schemes with branch history lengths ranging from

2 to 16 bits. Each curve shows the prediction accu-

racy for a di�erent number of pattern history tables

(PHTs). These curves are cut o� when the cost of

pattern history tables exceeds 512K bits.

By increasing the history register length, the aver-

age integer prediction accuracy increases signi�cantly,

similar to the behavior of global history schemes.

However, the average 
oating point prediction accu-

racy does not improve signi�cantly when 4�16 or

4�256 PHTs are used, similar to the behavior of per-

address history schemes. The similarity in the be-

havior of per-address and per-set history schemes is

due to the partitioning of branches into sets accord-
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Figure 8: Per-set history schemes with di�erent

branch history lengths.

ing to their addresses. The prediction of a branch

is dependent on adjacent branches, as in global his-

tory schemes. However, the branches involved in the

prediction of a branch is limited to the address space

a set spans. The instruction block a set covers con-

tains few branches in 
oating point programs because

of their large basic block sizes; therefore, per-set his-

tory schemes become similar to per-address history

schemes.

Figure 9 shows the average prediction accuracy of

integer and 
oating point programs by using per-set

history schemes with the number of pattern history

tables in each set ranging from 1 to 1024. Each curve

shows the prediction accuracy for a di�erent branch

history length.
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Figure 9: Per-set history schemes with di�erent num-

ber of pattern history tables.

The performance improvement of per-set history

schemes are less sensitive to the increase in the num-

ber of pattern history tables than the global history



schemes. However, it is more sensitive than the per-

address history schemes. Since branches of the same

set use their own pattern history tables to reduce pat-

tern history interference, increasing the number of pat-

tern history tables is not as e�ective.

4.2 Cost E�ectiveness

4.2.1 Three Classes of Schemes

Figures 10, 11, and 12 illustrate the cost e�ectiveness

of the three classes of Two-Level Adaptive Branch Pre-

diction. Each curve shows the total average prediction

accuracy for a di�erent pattern history table imple-

mentation cost. The pattern history table implemen-

tation cost (in bits) of the schemes on each curve is

labelled in the legend. On each curve, as the num-

ber of pattern history tables doubles, the branch his-

tory length is decremented by one bit. To calculate

the total cost of a branch predictor, in addition to

the pattern history table cost, a global history scheme

needs to add the cost of a global history register, a

per-address history scheme needs to add the cost of

a branch history table, and a per-set history scheme

needs to add the cost of a per-set branch history table.

The per-address history schemes are e�ective with

low implementation costs. Their average prediction

accuracy is over 96 percent with 2K bits, about 97

percent with 32K bits, and over 97 percent with 128K

bits. The prediction accuracy increases about 1 per-

cent at a cost of an extra 126K bits. On each curve,

the average prediction accuracy decreases as the num-

ber of pattern history tables increases, which shows

that the increasing the number of pattern history ta-

bles is less bene�cial than increasing the branch his-
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Figure 10: Per-address history schemes with di�erent

implementation costs.

tory length. The knee is a branch history length of 4

bits.

The global history schemes require high implemen-

tation costs to be e�ective. Their best average pre-

diction accuracy is only 94.5 percent with 2K bits but

over 97 percent with 128K bits. The prediction accu-

racy increases about 2.5 percent at a cost of an extra

126K bits. By comparing the best prediction accuracy

achieved with 512K bits, the global history schemes

achieve a higher asymptote than the per-address his-

tory schemes. On each curve, as the number of pattern

history tables increases, the average prediction accu-

racy initially increases due to the fact that increasing

the number of pattern history tables reduces pattern

history interference between branches. As the num-

ber of pattern history tables continues to increase, the

average prediction accuracy levels o�, then decreases

because the accuracy gained by increasing the number

of pattern history tables is more than o�set by the ac-

curacy lost by decreasing the branch history length.
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Figure 11: Global history schemes with di�erent im-

plementation costs.

The curves of Per-set history schemes show the

same trend as those of global history schemes. How-

ever, with the same implementation cost, the per-

set history schemes achieve lower prediction accuracy

than the global history schemes.

4.2.2 Comparison

Figure 13 compares the cost e�ectiveness of the

three classes of Two-Level Adaptive Branch Predic-

tion given a �xed hardware budget of 8K bits for the

costs of both branch history registers and pattern his-

tory tables. Each bar graph shows the contributions

to prediction accuracy made under four situations:
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Figure 12: Per-set history schemes with di�erent im-

plementation costs.

a miss in the BHT which results in the conditional

branch fall-through (BHTmiss; CBRft), a miss in the

BHT which results in the conditional branch taken

(BHTmiss; CBRtk), a hit in the BHT which results in

the conditional branch fall-through (BHThit; CBRft),

and a hit in the BHT which results in the conditional

branch taken (BHThit; CBRtk).
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Figure 13: Comparison of the most e�ective con�g-

uration of each class of Two-Level Adaptive Branch

Prediction with an implementation cost of 8K bits.

The most cost-e�ective con�guration is chosen from

each class. For global history schemes, the most

cost-e�ective con�guration is GAs(7,32). For per-

address history schemes, the most cost-e�ective one

is PAs(6,16). For per-set history schemes, the most

cost-e�ective one is SAs(6,4�16). All three chosen

schemes were simulated with a 1024-entry, 4-way set-

associative branch history table.

PAs(6,16) achieves the highest average prediction

accuracy among these three con�gurations. It outper-

forms the other two con�gurations on all the bench-

marks except for gcc and li. On gcc it su�ers from

low prediction accuracy on BHT misses; however, it

performs better than GAs(7,32) on BHT hits. On li

it performs almost as well as GAs(7,32). GAs(7,32)

achieves the second among these three schemes be-

cause of its low prediction accuracy of 
oating point

programs. SAs(6,4�16) is the worst with predic-

tion accuracy about 0.8 percent lower than that of

PAs(6,16).

Figure 14 compares the cost e�ectiveness of the

three classes of Two-Level Adaptive Branch Predic-

tion given a higher hardware budget of 128K bits for

the costs of both branch history registers and pattern

history tables. For global history schemes, the most

cost-e�ective con�guration is GAs(11,32). For per-

address history schemes, the most cost-e�ective one

is PAs(8,256). For per-set history schemes, the most

cost-e�ective one is SAs(9,4�32). All three chosen

schemes were also simulated with a 1024-entry, 4-way

set-associative branch history table.
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Figure 14: Comparison of the most e�ective con�g-

uration of each class of Two-Level Adaptive Branch

Prediction with an implementation cost of 128K bits.

GAs(11,32) achieves the highest prediction accu-

racy among these three con�gurations. GAs(11,32)

gains the most increase on gcc by increasing the his-

tory register length at a cost of an extra 120K bits.

The increase is substantially better than that gained

by PAs(8,256). PAs(8,256) gains little accuracy im-

provement with the extra bits, whereas SAs(9,4�32)

improves its performance to do almost as well as

PAs(8,256).



5 Concluding Remarks

We have characterized the global, per-address, and

per-set history schemes (GAg, GAs, GAp, PAg, PAs,

PAp, SAg, SAs, SAp) and compared them with re-

spect to their branch prediction performance and cost

e�ectiveness.

Global history schemes perform better than other

schemes on integer programs but require higher im-

plementation costs to be e�ective overall. Integer pro-

grams contain many if-then-else statements. Global

history schemes make e�ective predictions for if-then-

else branches due to their correlation with previous

branches. On the other hand, when the global his-

tory is used, the pattern history of di�erent branches

interfere with each other if they map to the same pat-

tern history table. Therefore, global history schemes

require long branch history and/or many pattern his-

tory tables to reduce the interference for e�ective over-

all performance.

Per-address history schemes perform better than

other schemes on 
oating point programs and re-

quire lower implementation costs to be e�ective over-

all. Floating point programs contain many frequently-

executed loop-control branches which exhibit periodic

branch behavior. This periodic behavior is better re-

tained with a per-address branch history table. When

the per-address branch history is used, the pattern his-

tory of di�erent branches tend to interfere less with

each other; therefore, fewer pattern history tables are

needed.

Per-set history schemes have performance similar

to global history schemes on integer programs; they

also have performance similar to per-address history

schemes on 
oating point programs. To be e�ective,

however, per-set history schemes require even higher

implementation costs than global history schemes due

to the separate pattern history tables of each set.

With respect to the cost-e�ectiveness of di�erent

variations, PAs is the most cost e�ective among low-

cost schemes. If, for example, 8K bits are available

to implement the branch predictor, PAs(6,16) outper-

forms the other variations with an average prediction

accuracy of 96.3 percent. However, on gcc, GAs(7,32)

performs better because the backward taken, forward

not-taken default on branch history table misses used

in the PAs scheme is not e�ective. Among high-cost

schemes, GAs is the most cost e�ective. If 128K

bits are available to implement the branch predictor,

GAs(11,32) achieves the best average prediction accu-

racy of 97 percent.
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