
2816 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 19, NO. 12, DECEMBER 2017

Multimodal 2D+3D Facial Expression Recognition
With Deep Fusion Convolutional Neural Network

Huibin Li , Student Member, IEEE, Jian Sun , Member, IEEE, Zongben Xu, Member, IEEE,
and Liming Chen, Senior Member, IEEE

Abstract—This paper presents a novel and efficient deep
fusion convolutional neural network (DF-CNN) for multimodal
2D+3D facial expression recognition (FER). DF-CNN comprises
a feature extraction subnet, a feature fusion subnet, and a
softmax layer. In particular, each textured three-dimensional
(3D) face scan is represented as six types of 2D facial attribute
maps (i.e., geometry map, three normal maps, curvature map,
and texture map), all of which are jointly fed into DF-CNN
for feature learning and fusion learning, resulting in a highly
concentrated facial representation (32-dimensional). Expression
prediction is performed by two ways: 1) learning linear support
vector machine classifiers using the 32-dimensional fused deep
features, or 2) directly performing softmax prediction using the
six-dimensional expression probability vectors. Different from
existing 3D FER methods, DF-CNN combines feature learning
and fusion learning into a single end-to-end training framework.
To demonstrate the effectiveness of DF-CNN, we conducted
comprehensive experiments to compare the performance of DF-
CNN with handcrafted features, pre-trained deep features, fine-
tuned deep features, and state-of-the-art methods on three 3D
face datasets (i.e., BU-3DFE Subset I, BU-3DFE Subset II, and
Bosphorus Subset). In all cases, DF-CNN consistently achieved the
best results. To the best of our knowledge, this is the first work of
introducing deep CNN to 3D FER and deep learning-based feature-
level fusion for multimodal 2D+3D FER.

Index Terms—Deep fusion convolutional neural network (DF-
CNN), facial expression recognition (FER), multimodal, textured
three-dimensional (3D) face scan.
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I. INTRODUCTION

FACIAL expressions, as a form of nonverbal communica-
tion, and a primary means of conveying social informa-

tion among humans, are ideal for human emotion measurement,
computation, and interpretation. Therefore, machine-based au-
tomatic facial expression recognition (FER) has a wide range of
applications in human-computer interaction, facial animation,
entertainment, and psychology study [3], [27], [43], [58], etc.
It has been extensively investigated over the past decades in
the fields of multimedia, affective computing, and computer
vision [6], [12], [37], [40].

Existing FER methods generally can be classified from three
perspectives, namely the data modality, expression granularity,
and temporal dynamics [12], [37], [40]. From the first perspec-
tive, they are classified into: 2D FER (which uses 2D face im-
ages), 3D FER (which uses 3D face shape models), and 2D+3D
multi-modal FER (which uses both 2D and 3D face data). From
the second perspective, they are divided into: 1) recognition
of prototypical facial expressios (i.e., anger, disgust, fear, hap-
piness, sadness and surprise), 2) detection and recognition of
facial Action Units (AU, e.g., brow raiser, lip tightener, and
mouth stretch). From the third perspective, they are catego-
rized into static (still images) or dynamic (image sequences)
FER [40], [68]. In this paper, we focus on the problem of recog-
nizing the six prototypical facial expressions using multi-modal
2D and 3D static face data (i.e., textured 3D face scans).

In the literature of FER, the majority of methods are based
on 2D face images or videos (e.g., [5], [6], [8], [18], [37], [49],
[55], [56], [58], [61], [62]). Despite significant advances have
been achieved, 2D methods still fail to solve the challenging
problems of illumination and pose variations [37]. Designing
FER systems using infrared facial images is a beneficial at-
tempt to solve the illumination issue [54], [55]. But infrared
images are usually fail to capture subtle facial deformations,
e.g., skin wrinkles [18], and also sensitive to the effect of
wearing glasses, which is often occur in uncontrolled condi-
tion. With the fast development of 3D imaging and scanning
technologies, FER using 3D face scans has attracted more and
more attentions [12], [13], [16], [40]. This is mainly due to that
3D face scans are naturally robust to lighting and pose varia-
tions. Moreover, 3D facial shape deformations caused by facial
muscle movements contain important cues to distinguish differ-
ent expressions. To meet the requirements of real applications,
FER based on multi-modality data (e.g., visual and audio [49],
visible and infrared face images [54], [55]), especially using
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TABLE I
MOTIVATIONS: A FEW EXAMPLES OF CURRENT FER RESEARCH

Handcrafted features Learned Features

2D FER HOG: Hu et al. [7] Deep CNN: Yu and Zhang [60]
LBP: Zhao et al. [65] DBN: Kahou et al. [19]
Gabor: Zhang et al. [64] Auto-Encoder: Rifai et al. [39]

3D FER Depth-SIFT: Berretti et al. [1] Learned feature for 3D FER?
Normal-LBP: Li et al. [23]
Curvature-HOG: Lemaire
et al. [22]

2D+3D FER Handcrafted feature-level
fusion

Learning-based fusion for
2D+3D FER?

Handcrafted score-level fusion
Savran et al. [42], Li et al. [24]

both 2D face images and 3D face models [16], [24] [42], [50], is
becoming a promising research direction due to that there exist
large complementarity among different modalities.

This paper is a new attempt along this promising direction,
which dedicates to exploring multi-modal 2D+3D FER method
by combing the advantages of both 2D and 3D face data. The
main challenges of such combination involve the following two
issues: 1) how to find a unified framework to generate discrim-
inative facial representations for both 2D and 3D face data?
2) how to optimally combine the facial representations of 2D
and 3D face data for expression prediction?

As illustrated in Table I, handcrafted features such as
HOG [7], LBP [65], and Gabor [64] have been widely used for
facial representations in 2D FER. Similarly, these handcrafted
features have also been widely employed in 3D FER, which are
used to describe 3D facial shape information by coding different
types of geometric maps like depth-SIFT [1], normal-LBP [23],
and curvature-HOG [22]. Recently, with the significant break-
through of deep learning, such kind of handcrafted features
have been proven to be suboptimal. Thanks to the continuous
updating and releasing of large 2D expression datasets (e.g.,
Acted Facial Expressions in the Wild (AFEW) [10] and Static
Facial Expressions in the Wild (SFEW) [9]), leaning facial rep-
resentations using deep learning is becoming the mainstream in
2D FER. For example, following the Emotion Recognition in
the Wild (EmotiW) Grand Challenge, a large number of deep
learning based approaches, such as deep convolutional neural
network (CNN) [60], deep belief network (DBN) [19], and auto-
encoder [39] have been successfully used in 2D FER as shown
at the right side of Table I.

However, to the best of our knowledge, deep learning has
never been used to learn 3D facial representations in 3D FER.
This motivates us to fill this gap although a very limited number
of 3D face scans with expression labels are available. Inspired
by the fact that the off-the-shelf pre-trained deep CNN models
have surprising and consistent good generalization ability for
various visual recognition tasks [11], [38], A promising way is
using transfer learning method that fine tunes a pre-trained deep
CNN model using as many as possible 3D face data.

Deep CNN can provide a unified framework to learn fa-
cial representations for both 2D and 3D face data. Then,

how to find a strategy to optimally combine these learned 2D
and 3D facial representations is becoming the key issue. As
illustrated in Table I, the suboptimal handcrafted feature-level
fusion and score-level fusion are widely used in current multi-
modal 2D+3D FER methods. The importance weights of 2D
and 3D facial features have not be well explored. This moti-
vates us to design a learning-base fusion strategy, i.e., a novel
deep fusion network, which can automatically learn sophisti-
cated fusion weights of 2D and 3D facial representations for
multi-modal 2D+3D FER. Overall, this paper presents a uni-
fied end-to-end learning framework (i.e., Deep Fusion CNN or
DF-CNN), which can deal with both feature learning and fu-
sion learning for multi-modal 2D+3D FER. Therefore, the main
novelties and contributions of this paper can be summarized
as follows:

1) This is the first work of introducing deep CNN to 3D FER
and using learned features to describe 3D facial expres-
sions. To overcome the issue that training 3D faces are far
from enough, we propose to use multiple types of facial
attribute maps to learn facial representations by fine tun-
ing pre-trained deep CNN models trained from large-scale
image dataset for generic visual tasks.

2) This paper proposes to use a deep fusion net (i.e., a
learning-based feature-level fusion) to learn the optimal
combination weights of 2D and 3D facial representations
for multi-modal 2D+3D FER. This is totally different
from the suboptimal handcrafted feature-level fusion and
score-level fusion used in existing 2D+3D FER.

3) This paper presents a Deep Fusion CNN, which combines
feature learning and fusion learning into a unified end-
to-end training framework, and consistently outperforms
the handcrafted features, pre-trained deep features, fine-
tuned deep features, and state-of-the-art 3D FER methods
on three 3D face datasets.

The remainder of this paper is organized as follows. Related
works for 2D, 3D and 2D+3D FER are introduced in Section II.
Section III gives an overview of the proposed approach.
Section IV introduces the computational details of generating
different facial attribute maps. Section V describes our DF-CNN
in detail, involving net architecture, training strategy, and visu-
alization. Experimental results are shown in Section VI, and
Section VII concludes the paper.

II. RELATED WORKS

A. Related Works on 3D and 2D+3D FER

Current 3D FER approaches are mainly model-based or
feature-based [12]. Model-based methods generally employ
dense rigid registration and non-rigid fitting techniques to get
the one-to-one point correspondence among face scans. This
generates a generic expression deformable model, which can
be used to fit unknown face scans, and the fitting param-
eters are finally used as expression features. For example,
Mpiperis et al. [35] proposed to build a novel bilinear facial de-
formable model to characterize the behaviors of facial non-rigid
deformations. Given a new 3D face model, its expression and
identity parameters can be estimated using the well-trained bilin-
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ear model. These parameters are then used as expression features
and fed into the Maximum Likelihood classifier for expression
prediction. Similarly, Gong et al. [15] suggested to learn a model
to decompose the shape of an expressive face into a neutral-style
basic facial shape component (BFSC) and an expression shape
component (ESC). The ESC is then used to design expression
features. Zhao et al. [66] proposed to build a statistical facial fea-
ture model (SFAM) for automatic facial landmarking, both 3D
shape and 2D texture features are extracted around these land-
marks for expression recognition. Feature-based methods gen-
erally extract local expression features around facial landmarks
based on surface geometric attributes or differential quantities.
For example, 3D landmark distances [44], [45], [46], [47], lo-
cal surface patch distances [24] [32] [33], geometry and normal
maps [36], conformal images [63], surface normal [26] and cur-
vatures [26], [53] are some popular features use for 3D FER. As
a typical local feature-based method, Maalej et al. [32] [33] pro-
posed to extract local surface patches around 70 facial landmarks
in the 3D mesh. These patches were then parameterized by a
set of closed iso-level curves at the landmarks. The distance be-
tween two patches was computed by the geodesic distance of de-
forming their corresponding iso-level curves in the Riemannian
shape analysis space. Finally, multi-boosting and support vector
machines (SVM) classifiers were used to classify the six proto-
typical facial expressions. By combing the advantages of both
feature-based and model-based methods, Zhen et al. [67], [68]
proposed to study 3D FER problem from the perspective of
facial muscular movement model. Their method first automat-
ically segments 3D face shapes into several facial regions ac-
cording to the muscular movement model. Then, each region is
described by a set of geometric features. The weights of differ-
ent regions are learned by genetic algorithm, and SVM classifier
with score-level fusion is used for expression prediction. Savran
et al. [42] utilized multi-modal 2D+3D face data for facial AU
detection. They found that 3D data generally perform better than
2D data, especially for lower AUs. Moreover, the fusion of two
modalities can improve the detection rates from 93.5% (2D) and
95.4% (3D) to 97.1% (2D+3D). Li et al. [24] proposed a fully au-
tomatic multi-modal 2D+3D feature based FER approach. Both
2D texture descriptors and 3D geometry descriptors are used to
describe the appearances and geometric deformations of local
facial patches around automatically detected 2D and 3D facial
landmarks. The complementarity between 2D descriptors, 3D
descriptors, and 2D+3D descriptors are demonstrated in their
experiments based on both feature-level and score-level fusion
strategies of the SVM classifier.

The main weakness of model-based methods lie in that they
require to establish dense correspondence among face scans,
which is still a challenging issue. Moreover, time consuming
procedures like dense 3D face registration and model fitting
are usually indispensable in practice. Feature-based methods
generally perform better than model-based ones. However, their
performances are largely dependent on the accuracy of 3D facial
landmarking, which is also a challenging task [12]. FER based
on 2D+3D multi-modal data is becoming a promising research
direction due to that there exist large complementarity among
different modalities. Giving a complete survey for 3D FER is

out the scope of this paper, readers are strongly suggested to
refer to the comprehensive survey [40] for the issues of 3D and
4D face acquisition, dense correspondence, alignment, tracking,
available databases, as well as the details of feature extraction,
selection, classification, and temporal modeling for static and
dynamic 3D facial expression recognition.

B. Related Works on 2D FER

Rifai et al. [39] designed a multi-scale contractive convolu-
tional network to learn hierarchical expression features which
are robust to the variations of factors like pose, identity, mor-
phology of the face. Tang [48] demonstrated the advantages of
replacing the softmax loss function of a deep CNN by a lin-
ear SVM loss for 2D FER. Liu et al. [30] proposed a unified
Boosted Deep Belief Network framework to iteratively optimiz-
ing the expression training process of feature learning, feature
selection, and classifier construction. Burkert et al. [2] proposed
a convolutional neural network (CNN) architecture for 2D FER
and claimed that it outperforms the earlier proposed CNN based
approaches. Liu et al. [29] designed a 3D CNN incorporat-
ing a deformable parts learning component for dynamic expres-
sion analysis. The authors also proposed the action unit inspired
deep networks for 2D FER [28]. Khorrami et al. [20] showed
both qualitatively and quantitatively that CNNs can learn fa-
cial action units when doing expression recognition, and their
method achieved state-of-the-art performance on the extended
Cohn-Kanade (CK+) and the Toronto Face Dataset (TFD). Ka-
hou et al. [19] developed a deep learning approach for emotion
recognition in video. Their method respectively trained a CNN
for video and a deep belief net for audio. “Bag of mouths” fea-
tures are also extracted to further improve the performance. To
fusion different models, the ensemble weights are determined
with random search. The idea of ensemble multiple deep mod-
els has also been used in Kim et al. [21]. This work trained 216
deep CNNs by varying network architectures, input normaliza-
tion, and weight initialization and by adopting several learning
strategies. Then, the valid-accuracy-based exponentially-
weighted decision fusion method was proposed to ensemble
different CNNs.

The work by Yu and Zhang [60] is probably the most re-
lated work to ours. This method proposed to independently train
multiple differently initialized CNNs and output their training
responses. To combine multiple CNN models, they proposed to
learn the ensemble weighs of the network responses by minimiz-
ing the log likelihood loss or hinge loss. Despite with the same
spirit of fusing deep models, our proposed learning strategy dif-
fers from [60] significantly. First, they trained multiple CNNs
by varying the network initialization, while we only need to
train a single CNN for different facial attribute maps. As shown
in our experiments (Section VI-D), this kind of single network
training can largely reduce both computate time and memory
consumption, while still preserve the accuracy. Second, their
method learned different weights for different networks, thus
corresponding to a learning-based score-level fusion strategy,
while ours corresponds to a learning-based feature-level fusion
strategy.
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Fig. 1. Pipeline of the proposed DF-CNN-based multimodal 2D+3D FER approach. Each textured 3D face scan is represented as six types of 2D facial geometric
and photometric attribute maps (i.e., 3D coordinates based geometry map, normal vectors based normal maps, principle curvatures based curvature map, and texture
map). These attribute maps are jointly fed into the feature extraction subnet of DF-CNN with sharing parameters, generating hundreds of multi-channel feature
maps. All these feature maps are then fed into the feature fusion subnet (including a reshape and two fusion layers) of DF-CNN, resulting in a highly concentrated
facial representation (32-dimensional fused deep feature). Finally, the softmax-loss layer is followed for network training (see Section V-A for details). The final
expression label prediction is performed by two ways: learning linear SVM classifiers using the 32-dimensional fused deep features or directly performing softmax
prediction based on the six-dimensional probability vectors.

III. OVERVIEW OF THE PROPOSED APPROACH

Fig. 1 illustrates the pipeline of the proposed DF-CNN ap-
proach for 2D+3D FER. Given a set of preprocessed textured
3D face scans with different expressions, each of which is
first represented as six types of 2D facial attribute maps (see
Section IV), including geometry map (3D coordinates), three
normal component maps (normal vectors), normalized curva-
ture map (principle curvatures), and texture map. Then, these
six facial attribute maps of each textured 3D face scan are jointly
fed into the feature extraction subnet (repetitions of convolution,
ReLU, and pooling layers) with sharing parameters, resulting
in several hundreds of multi-channel feature maps. All these
feature maps are fed into the following feature fusion subnet
(including a reshape and two feature fusion layers), leading
to a highly concentrated facial representation (32-dimensional
fused deep feature). Finally, the softmax-loss or softmax layer
is followed for network training or expression prediction (see
Section V-A for details).

For DF-CNN training, considering that there are very lim-
ited numbers of textured 3D face scans with expression labels,
the feature extraction subnet is initialized using the off-the-shelf
convolutional layers of a pre-trained deep model (e.g., vgg-net-
m). This kind of pre-trained deep models have been proven
to have a good generalization ability for generic visual recog-
nition tasks [11], [38]. The feature fusion subnet is randomly
initialized, and the whole net is trained by the back-prorogation
algorithm using the softmax-loss function and the stochastic
gradient descent (SGD) algorithm.

For DF-CNN testing, six facial attribute maps of each tex-
tured 3D face scan are jointly fed into the feature extraction
and feature fusion subnets, generating a highly concentrated
facial representation (32-dimensional fused deep feature). This
deep feature is further transformed into a 6-dimensional expres-
sion probability vector by the final softmax layer. Expression
label prediction is preformed by training linear SVM classifiers

using the 32-dimensional fused deep features (i.e., DF-CNNsvm)
or directly performing softmax prediction based on the 6-
dimensional probability vectors (i.e., DF-CNNsoftmax).

IV. ATTRIBUTE MAPS OF A TEXTURED 3D FACE

To comprehensively describe the geometric and photometric
attributes of a textured 3D face scan, six types of 2D facial at-
tribute maps, namely the geometry map, texture map, three nor-
mal maps, as well as normalized curvature map are employed.
Given a raw textured 3D face scan, we first run the preprocessing
pipeline algorithm (see Section VI-A) to generate a 2D texture
map It and a geometry map Ig . The coordinates information of
each geometry map are then used to estimate the surface normals
and curvatures, resulting in three normal component maps Ix

n ,
Iy
n , and Iz

n , and one normalized curvature (i.e. shape index) map
Ic . Finally, a textured 3D face scan I can be described by six
types of 2D facial attribute maps: I = {Ig , I

x
n , Iy

n , Iz
n , Ic , It}, as

shown in Fig. 2. The details for generation of normal maps and
curvature map are introduced as follows.

A. Normal Maps

Given a normalized facial geometry map Ig represented by a
m × n × 3 matrix

Ig = [pij (x, y, z)]m×n = [pijk ]m×n×{x,y ,z} (1)

where pij (x, y, z) = (pijx , pijy , pijz )T , (1 ≤ i ≤ m, 1 ≤ j ≤
n, i, j ∈ Z) represents the 3D coordinates of point pij . Let its
unit normal vector matrix (m × n × 3) be

In = [n(pij (x, y, z))]m×n = [nijk ]m×n×{x,y ,z} (2)

where n(pij (x, y, z)) = (nijx , nijy , nijz )T , (1 ≤ i ≤ m, 1 ≤
j ≤ n, i, j ∈ Z) denotes the unit normal vector of pij . In this
paper, we utilize the local plane fitting method [17] to estimate
In . That is to say, for each point pij ∈ Ig , its normal vector
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Fig. 2. Illustration of the six types of 2D geometric and photometric facial attribute maps of six textured 3D face scans (subject F0001 in the BU-3DFE dataset)
with six prototypical facial expressions (i.e., anger, disgust, fear, happiness, sadness, and surprise). The left hand column shows: the geometry maps, texture maps,
and curvature maps, and the three normal maps (components x, y, and z) are shown at the right hand column.

n(pij ) can be estimated as the normal vector of the following
local fitted plane:

Sij : nijxqijx + nijy qijy + nijz qijz = d (3)

where (qijx , qijy , qijz )T represents any point within the lo-
cal neighborhood of point pij and d = nijxpijx + nijy pijy +
nijz pijz . In this work, a neighborhood of 5 × 5 window is used.
To simplify, each normal component in (2) can be represented
by an m × n matrix

In =

⎧
⎪⎨

⎪⎩

Ix
n = [nx

ij ]m×n ,

Iy
n = [ny

ij ]m×n ,

Iz
n = [nz

ij ]m×n

(4)

where ‖(nx
ij , n

y
ij , n

z
ij )

T ‖2 = 1.

B. Curvature Map

Similar to the local plane fitting method used for normal
estimation, we explored the local cubic fitting method [14] to
estimate the principle curvatures. This method assumes that the
local geometry of a surface is approximated by a cubic surface
patch. For robustly solving the local fitting problem, both the
3D coordinates and the normal vectors of the neighboring points
of the point pij ∈ Ig to be estimated are used. That is, we are
fitting the following equations:
⎧
⎪⎨

⎪⎩

z(x, y) = a
2 x2 + bxy + c

2 y2 + dx3 + ex2y + fxy2 + gy3

zx = ax + by + 3dx2 + 2exy + fy2

zy = bx + cy + 3gy2 + 2fxy + ex2 .
(5)

These equations can be solved by the least squares regression,
and the shape operator S can be computed as

S =

(
a b

b c

)

.

Then, the eignvalues of S give the two principle curvatures
κ1 and κ2 at point pij ∈ Ig . The normalized curvatures (i.e.,
shape index value) at this point is defined by

1
2
− 1

π
arctan

(
κ1 + κ2

κ1 − κ2

)

. (6)

Fig. 2 shows six types of 2D geometric and photometric facial
attribute maps of six textured face scans with six prototypical
facial expressions of subject F0001 in the BU-3DFE database.

V. DEEP FUSION CONVOLUTIONAL NEURAL NETWORK

This section first describes the architecture and training details
of DF-CNN. To intuitively highlight the discriminative ability
of DF-CNN, both the highly concentrated 32-dimensional fused
deep features and the expression-specific saliency maps are
visualized.

A. DF-CNN: Architecture and Training

The architecture of DF-CNN is formed by a feature extrac-
tion subnet, a feature fusion subnet, and a softmax layer. The
feature extraction subnet is used to generate hierarchical and
over-completed facial representations (i.e., feature maps) for
each type of attribute maps. And the feature fusion subnet
is used to combine hundreds of feature maps from different
types of attribute maps into a highly concentrated deep feature.
The main building blocks of feature extraction subnet include
the convolutional layers and ReLU nonlinearity, while the re-
shape layer and fusion layers are main components of feature
fusion subnet. The details of these components are introduced
as follows:

Convolutional layer and ReLU nonlinearity: A convolu-
tional layer transforms a 3D volume of activation maps (i.e.,
feature maps) to another through a set of learnable 3D fil-
ters. In particular, input a volume of activation maps of the
previous layer Y l−1 ∈ RWl−1 ×Hl−1 ×Dl−1 , and Kl 3D filters
{W l

k}Kl

k=1 , each with size Wl
f × Hl

f × Dl−1 , it outputs a
3D volume of activation maps Y l ∈ RWl ×Hl ×Dl at layer l.
Let the convolutional stride be S, and the amount of zero
padding be P , then we have Wl = (Wl−1 − Wl

f + 2P )/S + 1,
Hl = (Hl−1 − Hl

f + 2P )/S + 1, and Dl = Kl . The k-th 2D
activation map Y l

k is denoted by

Y l
k = ϕ(W l

k ∗ Y l−1 + bl
k ) (7)

where bl
k ∈ R denotes the bias term of k-th filter W l

k , ∗ is the
convolution operator, and ϕ is the rectified linear units (ReLU):
ϕ(x) = max(0, x).
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Fig. 3. Architecture of the proposed deep fusion convolutional neural network (DF-CNN). Six types of facial attribute maps of a textured 3D face model are
jointly fed into five feature convolutional layers (convolution + ReLU + Pooling), a reshape layer, a feature channel fusion layer, a spatial dimension fusion layer,
and a final softmax layer. The sizes and numbers of input data, feature maps and filters are listed for each layer.

Reshape Layer: This layer is used to concatenate all the 3D
volumes of activation maps produced from all types of 2D facial
attribute maps. Suppose DF-CNN has L convolutional layers in
total, and acts on N different types of facial attribute maps, then
the reshape layer operation is defined as

YL
Re = Reshape({YL (Ii)}N

i=1) = [YL (I1)|, · · · , |YL (IN )]

∈ RWL ×HL ×(KL ×N )

(8)
where Ii is i-th type of facial attribute maps, and the nota-
tion [·|, · · · , |·] denotes the concatenation of 3D matrices along
feature channel dimension.

Feature channel fusion layer: This is a fully connected layer,
which is used to fuse all the activation volumes extracted from
all types of facial attribute maps in feature channel dimen-
sion. Let this feature channel fusion layer be the (L + 1)-th
layer, and its input be the output of the reshape layer YL

Re ,
which is fully connected with KL+1 3D filters {WL+1

k }KL + 1
k=1 ,

each with size 1 × 1 × (KL × N), then the output of this layer
is YL+1 ∈ RWL + 1 ×HL + 1 ×DL + 1 . Here WL+1 = WL , HL+1 =
HL , and DL+1 = KL+1 . The k-th 2D activation map YL+1

k is
denoted by

YL+1
k = ϕ(WL+1

k ∗ YL
Re + bL+1

k ) (9)

where bL+1
k ∈ R denotes the bias term of k-th filter WL+1

k .
That is to say, to achieve an activation volume YL+1 with much
smaller number of feature channels, the number of filters KL+1
should be much smaller than the number of feature channels in
the previous activation volume YL

Re .
Spatial dimension fusion layer: This is also a fully con-

nected layer, which is used to fuse the activation volume YL+1

in the height-width spatial dimension. Let this fusion layer
be the (L + 2)-th layer, and its input be the output volume
of feature channel fusion layer YL+1 , which is fully con-
nected with KL+2 3D filters {WL+2

k }KL + 2
k=1 , each with size of

WL+2
k ∈ RWL + 1 ×HL + 1 ×KL + 1 , then the output activation fea-

ture of this layer is YL+2 ∈ R1×1×KL + 2 . The k-th 2D value
YL+2

k is denoted by

YL+2
k = ϕ(WL+2

k ∗ YL+1 + bL+2
k ) (10)

where bL+2
k ∈ R denotes the bias term of k-th filter WL+2

k .
Softmax layer: Given K possible expression classes, the soft-

max layer has K nodes denoted by pi , where i = 1, 2, · · · ,K.
pi specifies a discrete probability distribution of expressions,
therefore,

∑K
i=1 pi = 1. Let YL+2 be the output of spatial di-

mension fusion layer, and {WL+3
k ∈ R1 × 1 × KL+2}K

k=1 be
K weights fully connecting spatial dimesion fusion layer to

softmax layer. Then the total input into a softmax layer, denoted
by YL+3 , is

YL+3
k = WL+3

k YL+2 + bL+3
k ∈ R (11)

then we have

pi =
exp(YL+3

k )
∑6

j exp(YL+3
j )

. (12)

The predicted expression class î would be

î = arg maxipi . (13)

In practice, considering that there are very limited numbers of
3D face scans with expression labels, we use the convolutional
architecture and parameters of a pre-trained deep CNN model
to build and initialize the convolutional layers. In particular,
we choose vgg-net-m [4] as the pre-trained deep model since
it performs well and involves moderate amount of parameters.
In principle, other pre-trained deep CNN models or newly de-
signed deep CNN models are also possible to be used if enough
numbers of training samples are available. The parameters of
fusion layers and softmax layer are randomly initialized. The
detailed architecture of DF-CNN, including the sizes and num-
bers of filters and activation maps for each layer, is illustrated
in Fig. 3.

As shown in Fig. 3, DF-CNN comprises five convolutional
layers, a reshape layer, two fusion layers, and a softmax layer.
Moreover, ReLU neuron is used after all convolutional layers
and feature fusion layers. The max pooling layer is used fol-
lowing the first, second, and the fifth convolutional layers. And
Local Response Normalization (LRN) layer is used before the
first and second pooling layers.

Each 2D facial attribute map is converted to color scale and
resized to 224 × 224 × 3, and then all six types of attribute maps
of each textured 3D face scan are jointly fed into feature extrac-
tion subnet of DF-CNN, generating six activation volumes, each
with size of 6 × 6 × 512. These six activation volumes are con-
catenated and reshaped into size of 6 × 6 × 3,072 by reshape
layer (Reshape6 in Fig. 3). The reshaped activation volumes are
fused by the following feature channel fusion layer (Fusion7 in
Fig. 3), resulting in an activation volume with size of 6 × 6 × 32.
This activation volume is further fused by spatial dimension fu-
sion layer (Fusion8 in Fig. 3), generating a highly concentrated
facial representation (i.e., 32-dimensional fused deep feature).
This fusion layer is followed by another fully connected layer,
which outputs a 6-dimensional expression probability vector.
Finally, a softmax loss layer is used to train all the parameters
of DF-CNN based on the back-propagation algorithm.
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Fig. 4. Visualization of 11 typical feature maps of geometric and photometric facial attribute maps extracted from the first convolution layer of DF-CNN. From
top to bottom are the feature maps for the geometry map, texture map, curvature map, and normal maps with components x, y, and z.

During training, the weight decay parameter is set to 5e-4. The
learning rate and momentum parameters are set to 1e-4 and 0.9,
respectively. The open source implementation MatConvNet1 is
used to build DF-CNN. During testing, expression label of a tex-
tured 3D face scan is predicted by two ways: 1) training linear
SVM classifiers using the highly concentrated 32-dimensional
deep features (i.e., DF-CNNsvm). 2) performing softmax predic-
tion based on the 6-dimensional vectors of expression probabil-
ities (i.e., DF-CNNsoftmax).

B. DF-CNN: Deep Feature Visualization

To have an intuitive impression and gain insight into the
discriminative ability of DF-CNN, we visualize both the “low-
level” and “high-level” deep features extracted from the first
convolution layer and the last fusion layer of DF-CNN, respec-
tively. Fig. 3 shows that there are totally 96 3D filters in the
first convolution layer, thus we can generate 96 “low-level”
feature maps for each type of facial attribute maps. Fig. 4 illus-
trates 11 typical feature maps for each type of facial attribute
maps of a textured 3D face scan with happiness expression.
From this figure, we can see that diverse feature maps can
be extracted from DF-CNN using different filters and differ-
ent attribute maps. Moreover, each feature map looks similar
to conventional gradient-like facial maps extracted from the
shadow handcrafted features (e.g., LBP and Gabor face maps
in [25]). Such a large number of feature maps can comprehen-
sively capture various expression-related facial shape or texture
deformations, of course with very high dimensions. Therefore,
how to combine such a large number of over-completed and
redundant deep representations into a single compact facial rep-
resentation becomes the key issue to be solved. Fortunately,
DF-CNN is designed to handle this problem, and providing us

1[Online]. Available: http://www.vlfeat.org/matconvnet/

a high-level, low-dimensional, and high discriminative facial
representation.

To highlight the high discriminative property DF-CNN,
Fig. 5 visualizes the clustering structures of t-SNE [51] based
2-dimensional embedding of handcrafted feature, pre-trained
deep feature, and 32-dimensional fused deep feature associated
with six prototypical facial expressions. In particular, the same
features (i.e., Gabor, vgg-net-m-conv5, and 32-dimensional
fused deep feature) are used as those in Section VI-B. Notice
that for Gabor and vgg-net-m-conv5, the features of different
attribute maps are concatenated together (i.e., feature-level fu-
sion) to generate a single high-dimensional representation of
each textured 3D face scan. The feature dimensions of Ga-
bor and vgg-net-m-conv5 are 40,320 (6 attribute maps, each
one is described as a 6,720-dimensional Gabor feature) and
110,592 (6 attribute maps, each one is described as feature
maps with size 6 × 6 × 512 ), respectively. Fig. 5 shows that the
32-dimensional fused deep feature has an obvious clustering
structure for different expression categories, while other two
types of features demonstrate large category-wised overlapping.
This clearly indicates that the 32-dimensional fused deep fea-
tures learned by DF-CNN has more discriminative power to
distinguish different expressions than handcrafted feature Ga-
bor and pre-trained deep feature vgg-net-m-conv5.

C. DF-CNN: Saliency Map Visualization

Since different facial expressions relate to different ways of
local facial shape deformations, the importance weights of dif-
ferent facial parts are generally quite different for expression
predicting as shown in [31], [69]. In this section, we show that
the importance weights can be revealed by pixel-level expres-
sion related saliency maps of DF-CNN.

To this end, we visualize the importance of each
pixel for its final discrimination ability of different facial
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Fig. 5. Comparison of the clustering structures of t-SNE-based two-dimensional embedding of the handcrafted feature (i.e., Gabor), pre-trained deep feature
(i.e., vgg-net-m-conv5), and 32-dimensional fused deep feature learned by DF-CNN associated with six prototypical facial expressions.

expressions. For example, for “happiness”, we visualize the
saliency map for a textured 3D face by the importance of each
image pixel contributing to the final discrimination of “happi-
ness”. To compute the saliency map of a textured 3D face scan
IΛ = {Ig , I

x
n , Iy

n , Iz
n , Ic , It} w.r.t. an expression indexed by e,

we construct a score function for assigning this face to expres-
sion e by

S(IΛ |e,Θ) = we
T f(IΛ ,Θ) (14)

where Θ is the set of learned parameters (i.e., filters and biases)
of DF-CNN, f(IΛ ,Θ) is the 32-dimensional fused deep feature
of IΛ , and we is the weight of a trained SVM classifier for
expression e using f(IΛ ,Θ). Obviously, the higher value of
we

T f(IΛ ,Θ) implies higher confidence in labeling this textured
3D face as expression e. We next compute the gradient of score
function in (14) w.r.t. the input pixels

G(x|IΛ , e,Θ) =
∑

I∈IΛ

we
T ∂f(IΛ ,Θ)

∂I(x)
(15)

where x denotes any pixel of an attribute map. ∂f (IΛ ,Θ)
∂I (x) is the

gradient of fused deep feature w.r.t. the attribute map I at pixel
x, which can be computed by the back-propagation algorithm of
DF-CNN from the spatial dimension fusion layer. Its absolute
value |G(x|IΛ , e,Θ)| measures the importance of pixel x in
labeling I as expression e. We call this term computed over all
pixels of all facial attribute maps of a textured 3D face scan as
saliency map.

Fig. 6 visualizes some examples of saliency maps for different
expressions. The saliency map is re-scaled to [0, 1]. We visualize
it by fusing the face texture map with a dark blue background
using the saliency map as weights. The less important pixels are
shown in dark blue in these maps. We observe some interesting
phenomena from these maps. First, mouth is the most salient
facial part for discriminating all these expressions of interest,
particularly for sadness and surprise. Second, the distributions
of those salient maps for all expressions are approximately
consistent with the patterns of facial shape deformations, which
may spread over the whole faces with different importance.
These observations indicate that the proposed DF-CNN
can provide a discriminative facial representation and can
distinguish facial expressions using the discriminative facial
parts.

Fig. 6. Visualization of the DF-CNN based facial expression saliency maps.
From top to bottom rows: saliency maps for anger, disgust, fear, happiness,
sadness, and surprise. The less important pixels are shown in dark blue.

VI. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of DF-CNN for multi-modal
2D+3D FER, we will compare its performance with popular
handcrafted features, pre-trained deep features, fine-tuned deep
features, and state-of-the-art methods over three expression
subsets of two 3D face datasets (i.e., BU-3DFE and Bospho-
rus). Finally, we will discuss the issues of feature extraction
with or without parameter sharing, effectiveness of learning-
based fusion, and optimality of linear SVM based expression
prediction.

A. Databases and Preprocessing

BU-3DFE database: The BU-3DFE (Binghamton University
3D Facial Expression) Database [59] has been the benchmark-
ing for static 3D FER [12]. It includes 100 subjects (56 females
and 44 males), with age ranging from 18 to 70 years old, and
with a variety of racial ancestries (e.g., White, Black, East-
Asian). Each subject has 25 samples of seven expressions: one
sample for neutral, and other 24 samples for six prototypical
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Fig. 7. Samples of 2D texture maps of BU-3DFE database with different
genders, ethnicities, ages, expressions (from left to right, anger, disgust, fear,
happiness, sadness, and surprise), and levels of expression intensity (from top
to bottom: level 1 to level 4).

expressions (anger, disgust, fear, happiness, sadness, and sur-
prise), each includes four levels of intensity (see Fig. 7). As
a result, this database consists of 2,500 2D texture images and
2,500 geometric shape models. To fairly compare DF-CNN with
state-of-the-art methods, and to validate the effectiveness of
DF-CNN for samples with lower levels of expression intensity,
the following two subsets are used.

1) BU-3DFE Subset I: This subset is the standard dataset
used for 3D FER. It contains 1,200 2D and 3D face pairs
(i.e., 7,200 2D facial attribute maps) of 100 subjects with
6 prototypical expressions and two higher levels of ex-
pression intensity.

2) BU-3DFE Subset II: This subset includes all samples of
BU-3DFE except the 100 neutral samples. It contains
2,400 2D and 3D face pairs (i.e., 14,400 2D facial attribute
maps) of 100 subjects with 6 prototypical expressions of
four levels of intensity. To our knowledge, the samples
with lower levels of expression intensity have not been
used for 3D FER.

Bosphorus 3D Face Database: The Bosphorus 3D Face
Database [41] has been widely used for 3D face recognition
under adverse conditions, 3D facial action unit detection, 3D
facial landmarking, etc. It contains 105 subjects and 4,666 pairs
of 3D face models and 2D face images with different action
units, facial expressions, poses and occlusions. In this dataset,
there are totally 65 subjects performing the six prototypical ex-
pressions with near frontal view. Each person has only one 2D
(or 3D) sample for each expression, resulting in 390 2D and 3D
face pairs. To better partition, we use the following subset for
experimental evaluations.

1) Bosphorus Subset: It contains 360 2D and 3D face pairs
(i.e., 2,160 facial attribute maps) of 60 subjects with 6
prototypical expressions.

Preprocessing: We performed similar preprocessing for both
BU-3DFE subsets and Bosphorus subset. First, we used the It-
erative Closest Point algorithm for 3D face registration. Then,

Fig. 8. Six pairs of 2D texture images with fear and surprise expressions of
Bosphorus database. It’s not easy even for humans to distinguish these fear and
surprise pairs illustrated in this figure.

we performed nose detection, face cropping, re-sampling, and
projection procedures using the 3D face normalization method
proposed in [34]. Finally, we achieved the normalized 2D range
images (i.e., geometry maps) with x, y, and z coordinates.
Once we have geometry maps, other geometric facial attribute
maps can be estimated according to the method introduced in
Section IV. The 2D texture maps of BU-3DFE dataset are gen-
erated by projecting 3D texture images with linear interpola-
tion. Samples of preprocessed facial attribute maps of BU-3DFE
database are shown in Fig. 2. And Fig. 8 illustrates some samples
of 2D texture images of Bosphorus subset.

B. Evaluation and Comparison on BU-3DFE Subset I

Experimental protocol: This experimental protocol is firstly
used in [15] and has been proven to be more stable than the
one used in [53]. In this protocol, 60 subjects, each with 12
samples (i.e., 6 prototypical expressions with two higher levels
of intensity) are randomly selected from the BU-3DFE subset I.
That is to say, 720 textured 3D face scans (i.e., 4,320 2D facial
attribute maps) are used. To achieve stable results, 1,000 times
random and independent 54-versus-6-subject-partition experi-
ments (1,000 times train and test sessions in total) are performed.
For each partition, 648 textured 3D face scans of 54 subjects are
used for training and 72 textured 3D face scans of 6 subjects are
used for testing. Different partitions are independently trained
and tested, and the average expression recognition accuracy of
all the 1,000 test sessions across all 6 prototypical expressions
are reported for the final evaluation.

In particular, we use the remaining 40 subjects (i.e., 2,880
2D facial attribute maps) of BU-3DFE Subset I to train our DF-
CNN. Once DF-CNN is trained, it is then used to extract the 32-
dimensional fused deep features of the other 60 subjects. These
fused deep features are then used to train linear SVM classifiers
for expression prediction using above 1,000 times 54-versus-6-
subject-partition experiments (i.e., DF-CNNsvm). Alternatively,
expression labels of the other 60 subjects are also predicted
directly by the softmax layer of the trained DF-CNN (i.e., DF-
CNNSoftmax). It’s important to note that result of this one-time
prediction is very close to (86.20% vs. 86.25%) the one achieved
by predicting expression label using maximum value of the
6-dimensional expression probabilities with the same 1,000
times 54-versus-6 experimental protocol.
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TABLE II
COMPARISON OF THE AVERAGE ACCURACIES WITH

HANDCRAFTED FEATURES ON BU-3DFE SUBSET I

Method Ig Ix
n Iy

n Iz
n Ic It All

MS-LBP 76.47 76.77 77.87 76.41 77.70 71.65 81.74
dense-SIFT 80.29 79.97 82.35 80.95 80.28 75.56 83.16
HOG 81.89 82.09 80.58 81.81 77.95 78.11 83.74
Gabor 77.95 78.80 81.97 81.10 81.65 80.36 84.72

DF-CNNsvm – – – – – – 86.86
DF-CNNsoftmax – – – – – – 86.20

1) Comparison With Handcrafted Features: This paragraph
compares the performance of DF-CNN with the ones achieved
by using handcrafted features. Four classical handcrafted image
features: MS-LBP, dense-SIFT, HOG, and Gabor, which have
been proven to be quite efficient for both 2D and 3D facial
expression analysis, are employed for comparisons. Please refer
to [25], [52], [22], and [25], respectively for the implementations
of these features. When used for multi-modal 2D+3D FER, these
features are first extracted from each type of facial attribute
maps, then respectively fed into linear SVM2 classifier with
default parameter of C. To achieve final results, score-level
fusion of SVM scores with sum rule is used.

Table II shows the average expression recognition accuracies
across all six expressions of four handcrafted features, and the
proposed DF-CNN on BU-3DFE subset I. From Table II, we can
conclude that: 1) Gabor and HOG generally perform better than
dense-SIFT and MS-LBP. In particular, Gabor achieves the high-
est fusion accuracy of 84.72%, which outperforms HOG, dense-
SIFT, and MS-LBP by 0.98%, 1.56%, and 2.98%, respectively.
2) For different facial attribute maps, normal maps (Ix

n , Iy
n , and

Iz
n ) generally perform better than others, and the fusion of all six

attribute maps (i.e., All) achieves the best performance. These
results indicate that different facial attribute maps indeed contain
large complementary information for multi-modal 2D+3D FER.
3) DF-CNNsvm and DF-CNNsoftmax achieves similar and much
better results (86.86% vs. 86.20%) than handcrafted features.

2) Comparison With Pre-trained Deep Features: This para-
graph compares the performance of DF-CNN with the ones
achieved by using deep features extracted from three deep mod-
els (i.e., caffe-alex, vgg-net-m, and vgg-net-16) pre-trained on
the ImageNet database [4]. Notice that the convolutional lay-
ers of vgg-net-m is used to initialize our DF-CNN. Similar to
the case of handcrafted features, each type of facial attribute
maps are separately fed into these pre-trained models to extract
deep features, and then linear SVM classifiers are trained for
expression classification. The final fusion results are achieved
by performing score-level fusion of SVM scores with sum rule.
For comparisons, deep features extracted from the 5th convo-
lutional layer (net-conv5) and the penultimate fully connected
layer (net-full7) are used for each type of facial attribute maps.

Table III shows the average expression recognition accura-
cies of pre-trained deep features and DF-CNN on BU-3DFE

2[Online]. Available: http://www.csie.ntu.edu.tw/ cjlin/liblinear/

TABLE III
COMPARISON OF THE AVERAGE ACCURACIES WITH PRE-TRAINED

DEEP FEATURES ON BU-3DFE SUBSET I

Method Ig Ix
n Iy

n Iz
n Ic It All

caffe-alex-conv5 77.53 78.87 81.50 78.71 80.83 81.40 83.74
vgg-net-m-conv5 80.38 80.37 81.68 81.23 79.23 82.14 84.22
vgg-net-16-conv5-3 81.72 78.55 83.06 81.25 76.95 78.46 83.78

caffe-alex-full7 68.64 73.43 76.64 75.72 74.52 74.45 82.56
vgg-net-m-full7 73.34 74.99 77.51 76.77 68.81 70.93 81.56
vgg-net-16-full7 76.71 72.22 73.87 74.61 64.35 67.03 82.45

DF-CNNsvm – – – – – – 86.86
DF-CNNsoftmax – – – – – – 86.20

TABLE IV
COMPARISON OF THE AVERAGE CONFUSION MATRICES

WITH GABOR AND PRE-TRAINED DEEP FEATURE FOR ALL

FACIAL ATTRIBUTE MAPS ON BU-3DFE SUBSET I

Gabor (average accuracy = 84.72)

% AN DI FE HA SA SU

AN 85.53 1.67 0.93 0 11.88 0
DI 1.63 84.48 6.19 4.35 0 3.36
FE 3.56 6.24 65.98 12.70 4.34 7.18
HA 0 0.83 3.03 96.14 0 0
SA 18.70 0 1.20 0.95 79.15 0
SU 0 1.26 1.67 0 0.04 97.03

vgg-net-m-conv5 (average accuracy = 84.22)

% AN DI FE HA SA SU

AN 86.96 1.68 0.83 0 10.53 0
DI 1.88 80.43 8.47 4.29 0 4.93
FE 3.23 9.53 66.41 12.83 2.10 5.91
HA 0 0.25 3.48 96.27 0 0
SA 19.82 0 2.83 0.39 76.96 0
SU 0 0.04 1.67 0 0.01 98.28

DF-CNNsvm (average accuracy = 86.86)

% AN DI FE HA SA SU

AN 82.08 3.60 2.42 0 11.90 0
DI 3.27 84.94 5.70 2.50 0 3.59
FE 1.84 5.28 79.24 8.33 0.81 4.50
HA 0 0 3.74 96.26 0 0
SA 12.63 0.10 5.56 0.53 81.18 0
SU 0 0.07 1.67 0 0.83 97.43

subset I. From Table III, we can find that: 1) Different pre-
trained deep features have different superiorities associated with
different facial attribute maps. For example, vgg-net-16-conv5-
3 achieves the best score for Iy

n , while vgg-net-m-conv5 per-
forms best for Ix

n . 2) For the fusion scores, vgg-net-m-conv5
and caffe-alex-full7 achieve slightly better results than others
among pre-trained deep features. 3) The deep features extracted
from convolutional layers (i.e., conv5) of pre-trained deep mod-
els generally perform much better than the ones extracted from
fully connected layers (i.e., full7). 4) Our method achieves con-
sistently better results than all pre-trained deep features. No-
tice that the dimension of vgg-net-m-conv5 for one type of fa-
cial attribute maps is 18,432, which is much higher than the
32-dimensional fused deep feature produced by DF-CNN.

Table IV compares the average confusion matrices achieved
by Gabor feature, vgg-net-m-conv5 and DF-CNNsvm. It can be
seen that DF-CNNsvm outperforms Gabor for all expressions ex-
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TABLE V
COMPARISON OF THE AVERAGE ACCURACIES WITH FINE-TUNED

DEEP FEATURES ON BU-3DFE SUBSET I

Method Ig Ix
n Iy

n Iz
n Ic It All

caffe-alex-ft-full7svm 79.44 79.84 80.51 79.50 79.46 80.83 84.05
vgg-net-m-ft-full7svm 79.68 82.85 82.15 80.30 82.01 81.62 84.85
vgg-net-16-ft-full7svm 80.21 82.30 82.04 80.43 80.87 84.10 86.01

caffe-alex-ftsoftmax 78.19 80.96 81.94 78.75 78.89 80.83 83.61
vgg-net-m-ftsoftmax 78.33 83.06 82.78 81.11 81.11 80.42 85.00
vgg-net-16-ftsoftmax 78.33 82.08 80.69 79.19 79.31 84.17 85.14

DF-CNNsvm – – – – – – 86.86
DF-CNNsoftmax – – – – – – 86.20

cept anger (with a difference of 3.45%). It is worth noting that
DF-CNNsvm has more powerful discriminative ability to distin-
guish fear expression, promoting the accuracy upto 13.26% and
12.83% for Gabor feature and vgg-net-m-conv5.

3) Comparison With Fine-Tuned Deep Models: To further
demonstrate the effectiveness of DF-CNN, we also compared it
with fine-tuned deep models. The same pre-trained deep models:
caffe-alex, vgg-net-m, and vgg-net-16 are used for fine-tuning.
For each pre-trained deep model, we keep the net architec-
ture of all layers and parameters unchanged except the final
fully connected layer. In particular, since we have six expres-
sion classes, the filter weight with size of 1 × 1 × 4096 × 1000
is changed to 1 × 1 × 4096 × 6 and randomly initialized, and
the corresponding 1000-dimensional bias vector is also replaced
by a 6-dimensional zero vector. Then, we separately fine-tune
the pre-trained deep models using different facial attribute maps,
resulting in six fine-tuned deep models for each pre-trained
deep model. Finally, testing data associated with each kind of
attribute maps are fed into the corresponding fine-tuned deep
model for feature extraction. Similar to DF-CNN, expression
prediction for each kind of attribute maps is achieved by the
following two ways: 1) learning linear SVM classifiers us-
ing the 4,096-dimensional fine-tuned deep features (e.g., vgg-
net-m-ft-full7svm); 2) performing softmax prediction using the
6-dimensional fine-tuned deep features of expression probabil-
ities (e.g., vgg-net-m-ftsoftmax). To achieve fusion results, score-
level fusion with sum rule are used for both cases.

Table V shows the average expression recognition accuracies
of fine-tuned deep features and DF-CNN on BU-3DFE subset I.
From Table V, we can find that: 1) Fusion of multiple facial
attribute maps can also significantly improve the accuracies for
all fine-tuned deep features. 2) Fine-tuned deep feature vgg-
net-16 achieves significantly better results for texture maps,
and also achieves the highest accuracies (86.01% and 85.14%)
for both two prediction ways. This conclusion of deeper net
performs better is consistent with the one in [4]. 3) Our DF-
CNN initialized by vgg-net-m still achieves the best results. It’s
necessary to compare the results of Table III and Table V. It’s
easy to find that significant improvements have been achieved
from pre-trained to fine-tuned deep features, particularly for
the case of 4096-dimensional deep features extracted from the
penultimate fully connected layer (i.e., full7). For example, the
improvements are upto 16.52% for curvature maps and 17.07%

TABLE VI
COMPARISON OF THE AVERAGE CONFUSION MATRICES WITH FINE-TUNED

DEEP MODEL FOR ALL FACIAL ATTRIBUTE MAPS ON BU-3DFE SUBSET I

vgg-net-m-ft-full7svm (average accuracy = 84.85)

% AN DI FE HA SA SU

AN 81.48 1.92 0.83 0 15.77 0
DI 1.95 81.91 8.58 3.14 0 4.42
FE 3.42 6.96 73.51 11.57 1.99 2.56
HA 0 0.77 3.48 95.74 0 0
SA 15.88 0.19 4.18 0 79.75 0
SU 0 0.83 1.67 0 0.78 96.72

vgg-net-16-ft-full7svm (average accuracy = 86.01)

% AN DI FE HA SA SU

AN 86.19 2.52 0.83 0 10.45 0
DI 1.97 82.00 9.59 2.27 0 4.17
FE 2.73 7.42 74.38 12.99 0.79 1.68
HA 0 0.83 3.47 95.69 0 0
SA 16.21 0 4.29 0 79.50 0
SU 0 0 1.67 0 0.06 98.27

DF-CNNsvm (average accuracy = 86.86)

% AN DI FE HA SA SU

AN 82.08 3.60 2.42 0 11.90 0
DI 3.27 84.94 5.70 2.50 0 3.59
FE 1.84 5.28 79.24 8.33 0.81 4.50
HA 0 0 3.74 96.26 0 0
SA 12.63 0.10 5.56 0.53 81.18 0
SU 0 0.07 1.67 0 0.83 97.43

for texture maps when considering the pre-trained and fine-tuned
vgg-net-16-full7.

Table VI compares the average confusion matrices achieved
by two fine-tuned deep features: vgg-net-m-ft-full7svm, vgg-net-
16-ft-full7svm, and our DF-CNNsvm. It’s not difficult to see that
DF-CNNsvm achieves consistent better results than vgg-net-m-
ft-full7svm for all six expressions. It even achieves better results
than vgg-net-16-ft-full7svm, which is fine-tuned from a much
deeper pre-trained deep model. In particular, the superiority for
fear expression is upto 4.86% .

4) Comparison With Other Methods: To comprehensively
evaluate the effectiveness of DF-CNN, we compared it with
18 state-of-the-art methods on BU-3DFE subset I. To give a
thoroughly analysis, four aspects, including the data modality,
expression feature, expression classifier, and recognition accu-
racy are compared in Table VII.

1) For data modality, we can see that all previous meth-
ods reported their results using only 3D data exception of [24]
and [66]. It is worth noting that Li et al. [24] proposed a local
feature-based multimodal 2D+3D FER method, and studied the
complementarity between 2D and 3D features. However, their
fusion results were produced by handcrafted feature-level and
score-level fusion schemes. In contrast, our method can auto-
matically combine different 3D geometric and 2D photometric
maps into a single 32-dimensional fused deep feature.

2) For expression feature, one way is directly building his-
tograms of surface geometric quantities, such as coordinates
(e.g., [66], [67]), normals (e.g., [24], [26], [67]), and curvatures
(e.g., [24], [26], [53], [66], [67]). Another way is extracting pop-
ular handcrafted features (e.g., HOG, SIFT, LBP, DWT) from
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TABLE VII
COMPARISON OF EXPRESSION FEATURES, CLASSIFIERS, AND ACCURACIES

WITH THE STATE-OF-THE-ART ON BU-3DFE SUBSET I (NOTICE THAT THE

ACCURACIES IN THE LEFT COLUMN ARE ACHIEVED BY AVERAGING 100
ROUND INDEPENDENT 10-FOLD CROSS-VALIDATION TESTS, WHILE THE

ONES IN THE RIGHT COLUMN ARE ACHIEVED BY AVERAGING ONLY

ONE OR TWO ROUND 10-FOLD CROSS-VALIDATION TESTS)

Methods Data Feature Classifier Accuracy

Wang et al. [53] 3D curvatures/hist. LDA 61.79 83.60
Soyel et al. [44] 3D points/distance NN 67.52 91.30
Soyel et al. [45] 3D points/distance NN – 93.72
Tang et al. [46] 3D points/distance LDA 74.51 95.10
Tang et al. [47] 3D slopes, distance SVM – 87.10
Mpiperis [35] 3D deformable model ML – 90.50
Gong et al. [15] 3D depth/PAC SVM 76.22 –
Berretti et al. [1] 3D depth/SIFT SVM 77.54 –
Maalej et al.
[33]

3D facial curves muiti-
boosting

– 98.81
92.75

Li et al. [26] 3D normals, curv./hist. SVM 82.01 –
Li et al. [23] 3D normals/LBP MKL 80.14 –
Lemaire [22] 3D curvature/HOG SVM 76.61 –
Ocegueda [36] 3D coordinates, normals

curvatures/DWT
Logistic

Reg.
– 90.40

Zeng et al. [63] 3D curvatures/LBP SRC 70.93 –
Zhen et al. [67] 3D coordinates, normals,

shape index
SVM 84.50 –

Yang et al. [57] 3D depth, normals,
curv./scattering

SVM 84.80 –

Zhao et al. [66] 2D+3D intensity,coordinates,
shape index/LBP

BBN – 82.30

Li et al. [24] 2D+3D meshHOG/SIFT
meshHOS/HSOG

SVM 86.32 –

DF-CNNsvm 2D+3D 32-D deep feature SVM 86.86 –
DF-CNNsoftmax 2D+3D 6-D deep feature Softmax 86.20 –

depth maps (e.g., [1], [15], [36], [57]), normal maps (e.g., [23],
[36], [57], [22]), or curvature maps (e.g., [36], [57], [63]). As
mentioned in our introduction section, all these state-of-the-art
works for 3D-FER are based on handcrafted expression fea-
tures. In contrast, our method can learn highly concentrated and
discriminative facial representation (only 32-dimensional) from
six types of facial attribute maps.

3) For expression classifier, SVM (e.g., [1], [15], [26]) is the
most popular classifier compared with others such as Neural
Networks (NN), Maximal Likelihood (ML), Bayesian Belief
Net (BBN), multi-boosting, and Sparse Representation-based
Classifier (SRC). It is worth noting that a majority of methods
are based on SVM classifier with non-linear RBF kernel (e.g.,
[26], [57], [63], [67]) or using multiple kernel learning [23] to
combine multiple high-dimensional features (e.g., normal-LBP
in [23]), while our results are based on linear SVM classifier
with default parameter.

4) For recognition accuracy, benefiting from the end-to-
end training framework of DF-CNN, the fused deep features
produced by DF-CNN have strong discriminative ability to dis-
tinguish different expressions. In particular, our method (DF-
CNNsvm) achieves the highest accuracy of 86.86% compared
with all state-of-the-art methods using the same (or very simi-
lar [1]) experimental protocol. Notice that both the experimental
protocol used in our paper [15] and the similar one used in [1]
have been proved stable since the scores are achieved by av-
eraging 100 times independent 10-fold cross-validation tests.

TABLE VIII
COMPARISON OF THE AVERAGE ACCURACIES WITH HANDCRAFTED

FEATURES, PRE-TRAINED DEEP FEATURES, AND FINE-TUNED

DEEP FEATURES ON BU-3DFE SUBSET II

Method Ig Ix
n Iy

n Iz
n Ic It All

MS-LBP 73.50 74.58 73.54 73.21 73.37 66.08 77.75
dense-SIFT 76.25 75.79 77.42 76.58 75.88 71.79 79.42
HOG 76.25 76.88 76.29 77.75 76.29 72.04 79.71
Gabor 73.04 75.00 78.29 76.42 76.33 75.86 80.00

vgg-net-m-conv5 76.17 75.04 76.92 76.54 75.54 76.42 79.75
vgg-net-m-full7 70.21 69.71 72.67 70.67 67.00 66.83 77.38

vgg-net-m-ft-full7svm 75.17 76.62 77.08 75.83 78.12 78.67 81.08
vgg-net-m-ftsoftmax 74.62 75.33 76.96 75.79 77.88 78.54 80.71

DF-CNNsvm – – – – – – 81.04
DF-CNNsoftmax – – – – – – 81.33

It should be pointed out that directly comparisons of the two
accuracy columns in Table VII are far from fair since the results
listed in the second column were achieved based on an unstable
experimental protocol (i.e., 10-fold or 20-fold cross-validation)
firstly used in [53]. For example, the accuracy of [33] is reduced
from 98.81% to 92.75% when using 20-fold instead of 10-fold
cross-validation. As produced by Gong et al. [15], the accura-
cies of [53], [44], [46] were dropped significantly (more than
20%) when using a more stable experimental protocol. Overall,
different from state-of-the-art methods, the proposed DF-CNN
combines feature learning and fusion learning into a single end-
to-end training framework, and achieves the best accuracy for
multimodal 2D+3D FER under the more stable experimental
protocol.

C. Evaluation and Comparison on Other Datasets

This section will show more experimental results evaluated
on BU-3DFE subset II and Bosphorus subset.

Experimental protocol: To get more training data and to re-
duce the effect of data bias for DF-CNN training, we used the
standard 10-fold cross-validation (10 train and test sessions) ex-
perimental setting. That is, different DF-CNNs should be trained
for different sessions, and the average recognition accuracies of
10 different DF-CNNs across all six prototypical expressions
are reported for evaluations and comparisons. In particular, for
BU-3DFE subset II, 100 subjects are randomly divided into
10 subsets, and for each session, 12,960 attribute maps of 90
subjects are used for training and the remaining 1,440 attribute
maps of 10 subjects are used for testing. Similarly, for Bospho-
rus subset, 60 subjects are randomly divided into 10 subsets, and
for each session, 1,944 attribute maps of 54 subjects are used
for training and the remaining 216 attribute maps of 6 subjects
are used for testing.

1) Results on BU-3DFE Subset II: Table VIII reports the
performance comparisons of the proposed DF-CNN with hand-
crafted features, pre-trained deep features, and fine-tuned deep
features on BU-3DFE Subset II. From this table, we can con-
clude that: 1) As before, Gabor feature still achieves the best
results among handcrafted features. It even slightly outperforms
the pre-trained deep feature vgg-net-m-conv5 (80% vs. 79.75%).
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TABLE IX
COMPARISON OF THE AVERAGE ACCURACIES WITH HANDCRAFTED

FEATURES PRE-TRAINED DEEP FEATURES, AND FINE-TUNED

DEEP FEATURES ON BOSPHORUS SUBSET

Method Ig Ix
n Iy

n Iz
n Ic It All

MS-LBP 71.11 69.44 70.56 66.67 62.78 62.50 73.33
dense-SIFT 70.28 73.89 72.78 73.89 72.50 65.56 76.39
HOG 72.50 74.22 73.89 74.72 71.94 71.94 77.22
Gabor 67.78 73.61 75.83 71.61 75.56 70.56 77.50

vgg-net-m-conv5 71.94 72.50 73.61 71.67 72.78 73.06 79.72
vgg-net-m-full7 61.11 63.33 63.89 65.83 60.56 61.94 75.56

vgg-net-m-ft-full7svm 71.67 72.78 74.72 76.11 71.94 73.61 79.17
vgg-net-m-ftsoftmax 71.39 72.78 75.28 75.00 73.33 73.61 79.72

DF-CNNsvm – – – – – – 80.28
DF-CNNsoftmax – – – – – – 80.00

2) Fine-tuned deep features achieve significantly better results
than pre-trained deep features, e.g., 81.08% for vgg-net-m-ft-
full7 vs. 77.38% for vgg-net-m-full7. 3) Our DF-CNN based
methods achieve comparable (81.04% vs. 81.08%) or slightly
better (81.33% vs. 81.08%) results compared with fine-tuned
deep features. It is worth noting that for each train and test ses-
sion, DF-CNN only needs to train a single CNN for both feature
learning and feature fusion, while fine-tuned deep feature based
method needs to respectively train different deep models for
different types of facial attribute maps, and respectively extract
fine-tuned deep features from different deep models and com-
bine all scores by hand. This leads to much more consumptions
of training time and parameter space compared with DF-CNN.
Notice that the results of two BU-3DFE subsets clearly indicate
that the samples with lower levels of expression intensity are
indeed much more difficult to be recognized than the higher
level ones.

2) Results on Bosphorus Subset: Table IX reports the perfor-
mance comparisons of the proposed DF-CNN with handcrafted
features, pre-trained deep features, and fine-tuned deep features
on Bosphorus subset. Similar to the conclusions achieved on
BU-3DFE subset I and subset II, we have: 1) Gabor feature
achieves the highest accuracy of 77.50% among handcrafted
features. 2) Fine-tuned deep feature (i.e., vgg-net-m-ft-full7)
also significantly outperforms the pre-trained one (i.e., vgg-
net-m-full7). Note that although the pre-trained deep feature
vgg-net-m-conv5 achieves the same accuracy of 79.72% as the
fine-tuned deep feature vgg-net-m-ftsoftmax, the feature dimen-
sion is much higher (18,432 × 6 vs. 6). 3) Our DF-CNN based
methods achieve slightly better results compared with the fine-
tuned deep features. Overall, Bosphorus subset is the most dif-
ficult dataset among the three subsets used in this paper.

3) Comparison With Other Methods: To compare the per-
formance of the proposed DF-CNN with other methods on BU-
3DFE subset II and Bosphorus subset, we reproduced three
state-of-the-art methods (i.e., [23], [24], and [57]) on these
two datasets using the same experimental protocol (i.e., 10-fold
cross-validation with the same subjects for training and testing
in each train and test session) as DF-CNN. In particular, [23]
and [24] are two of our previous methods. Results of [57] were
reproduced using the code shared by the authors. Notice that

TABLE X
COMPARISON WITH THE STATE-OF-THE-ART ON THE

BU-3DFE SUBSET II AND BOSPHORUS SUBSET

Method BU-3DFE Subset II Bosphorus subset

Li et al. (2012) [23] 78.50 75.83
Li et al. (2015) [24] 80.42 79.72
Yang et al. (2015) [57] 80.46 77.50
DF-CNNsvm 81.04 80.28
DF-CNNsoftmax 81.33 80.00

multiple kernel learning was used in [23], non-linear SVM was
used in [24] and [57] for expression prediction, respectively.
For fair comparison, the non-linear SVM was replaced by linear
SVM classifier, and the sum rule based score-level fusion was
used for [24] and [57].

Table X reports the performance comparisons of DF-CNN
with state-of-the-art methods [23], [24] and [57] on both BU-
3DFE subset II and Bosphorus subset. From this table, we can
see that method [23] achieves the lowest accuracy on both sub-
sets. Methods [24] and [57] achieve very similar results (80.42%
vs. 80.46%) on BU-3DFE subset II, while method [24] performs
better by 2.22% on Bosphorus subset. Our DF-CNN achieves the
best results on both two subsets. Similar to the case on BU-3DFE
subset I, DF-CNN has significant superiority to distinguish fear
expression. For example, on the Bosphorus subset, DF-CNNsvm

achieves an average recognition rate of 65% for fear expression,
which is much higher than the results of 36.67%, 51.67%, and
43.33% achieved by [23], [24], and [57], respectively. It is worth
noting that distinguishing the samples of Bosphorus subset with
fear expression and surprise expression is a very difficult task
even for humans as illustrated in Fig. 8. From this figure, we
can see that there only exist very subtle differences between fear
and surprise pairs of the same person.

Overall, the proposed DF-CNN unifies feature learning and
fusion learning into a single end-to-end training framework,
and performs better than handcrafted features, pre-trained deep
features, fine-tuned deep features, and state-of-the-art methods,
resulting in a good generalization ability on BU-3DFE subset II
and Bosphorus subset for multimodal 2D+3D FER.

D. Discussion

To further validate the effectiveness of DF-CNN, three is-
sues: feature extraction with or without parameter sharing, ef-
fectiveness of learning-based fusion, and optimality of linear
SVM based expression prediction are discussed in this para-
graph. Noting that all the following discussions are based on
BU-3DFE subset I and the corresponding experimental proto-
col introduced in Section VI-B.

1) Feature Extraction With or Without Parameter Sharing:
As shown in Fig. 1, the CNN parameters are shared for dif-
ferent types of facial attribute maps in the feature extraction
subnet of DF-CNN. Alternatively, different attribute maps can
also been separately fed into different CNNs for feature fusion,
then adding the following feature fusion and expression predic-
tion layers. Clearly, the latter one (namely DF-CNNa ) needs
to learn more parameters and thus perhaps performs better. In
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TABLE XI
COMPARISON OF DF-CNN AND DF-CNNa (WITHOUT PARAMETER SHARING,

I.E., DIFFERENT ATTRIBUTE MAPS CORRESPONDING TO DIFFERENT

FEATURE EXTRACTION SUBNETS) ON BU-3DFE SUBSET I

Method Parameter Time/epoch Accuracy

DF-CNNsvm � 50 MB 7.4 Hz 86.86
DF-CNNsoftmax � 50 MB 7.4 Hz 86.20

DF-CNNa
svm � 300 MB 4.1 Hz 86.48

DF-CNNa
softmax � 300 MB 4.1 Hz 85.97

TABLE XII
COMPARISON OF THE LEARNING-BASED FUSION STRATEGY

(DF-CNN) WITH OTHERS ON BU-SUBSET I

Feature and
fusion

linear SVM
(score-level)

MKL (kernel) DF-CNNsvm
(learning-based)

DF-CNNsoftmax
(learning-based)

DF-CNN-
in-conv5

84.22 85.07 84.79 83.90

DF-CNN-ft-
conv5

84.17 85.73 86.86 86.20

Table XI, we compared the parameter quantity, compute time,
and accuracy between DF-CNN and DF-CNNa . We can see
that, comparing with DF-CNN, DF-CNNa has much more pa-
rameters (50M vs. 300M) and thus runs more slowly (7.4 Hz vs.
4.1 Hz). However, DF-CNN still achieves slightly better results
than DF-CNNa . This might be due to that we used very limited
number of training samples to train DF-CNN and DF-CNNa .
Therefore, we guess that if one has sufficient training samples
available, DF-CNNa still has a large potential to outperform
DF-CNN in general but needs to learn more parameters, and to
take more training time.

2) Effectiveness of Learning-Based Fusion: To show the ef-
fectiveness of learning-based fusion, we compared DF-CNN
with two popular classifiers: linear SVM with score-level fusion
and multiple kernel learning (MKL) with kernel-level fusion.
Deep CNN features DF-CNN-in-conv5 and DF-CNN-ft-conv5
are respectively extracted from the feature extraction subnet
of DF-CNN with initialized and fine-tuned CNN parameters.
From Table XII, we can see that MKL with kernel-level fusion
achieves better results than liner SVM with score-level fusion
in both cases. Our fine-tuned DF-CNN, which combines fea-
ture learning and fusion learning in a single end-to-end training
framework, achieves significant better results than liner SVM
and MKL.

Moreover, to see the effect of feature fusion subnet, we fixed
all the initialized CNN parameters of the feature extraction sub-
net, and only learned the parameters of the following feature
fusion subnet. This is equivalent to learn hierarchical fusion
weights to combine the high-dimensional pre-trained deep fea-
tures. From Table XII, we can see that this kind of pure fu-
sion learning-based DF-CNN can achieve slightly better results
(84.79% vs. 84.22%) than linear SVM with handcrafted score-
level fusion, but significantly worse than the proposed DF-CNN.
This indicates that the combination of feature learning and fu-
sion learning into a single end-to-end training framework is very
important for the proposed DF-CNN.

TABLE XIII
COMPARISON OF DIFFERENT CLASSIFIERS OVER THE 32-DIMENSIONAL DEEP

FEATURES EXTRACTED FROM DF-CNN ON BU-3DFE SUBSET I

Classifier Logistic
Regres.

k-Nearest
Neighbor

Naive
Bayes

Random
Forests

kernel
SVM

linear
SVM

Accuracy
(%)

81.03 85.84 85.90 85.18 86.76 86.86

3) Optimality of Linear SVM-Based Prediction: To validate
the optimality of using linear SVM classifier for expression pre-
diction, we compared it with five popular classifiers: logistic
regression, k-Nearest Neighbor, naive bayes, random forests,
and rbf-kernel SVM. All experiments were carried out on BU-
3DFE subset I based on the 1,000 times 54-vs-6 experimental
setting, and using the 32-dimensional fused deep features pro-
duced by DF-CNN. The hyper-parameters of these classifiers
(e.g., the value of k in k-Nearest Neighbor, number of trees
in random forests, and γ in rbf-kernel SVM) were carefully
selected by cross-validation on the training set of each train ses-
sion. In contrast, the parameter C in linear SVM was set to be
the default value 1 for all 1,000 times train sessions.

Table XIII reports the comparison results. We can see that:
1) All classifiers achieve comparable results except logistic re-
gression, which indicates again that the 32-dimensional fused
deep feature is very discriminative. 2) Among all classifiers,
linear SVM has obvious advantages in both accuracy and speed
(without parameter tuning). Therefore, linear SVM is gener-
ally the best candidate classifier for expression prediction using
fused deep features produced by DF-CNN.

Finally, it is worth noting that we have also studied the issue
of optimal dimension for the fused deep feature produced by
DF-CNN. Our experimental results indicate that the 32-dimens-
ional fused deep feature can achieve slightly better results than
both 16-dimensional and 64-dimensional fused deep features.

VII. CONCLUSION AND FUTURE WORK

This paper presents a novel deep fusion convolution neu-
ral network (DF-CNN) for subject-independent multi-modal
2D+3D FER. DF-CNN comprises a feature extraction sub-
net, a feature fusion subnet, and a softmax-loss layer. Each
textured 3D face scan is firstly represented as six types of
facial attribute maps, all of which are then jointly fed into
DF-CNN for feature extraction and feature fusion, resulting
in a highly concentrated facial representation. Expression pre-
diction is performed by two ways: 1) learning linear SVM
classifiers using the 32-dimensional fused deep features; 2) di-
rectly performing softmax prediction using the 6-dimensional
expression probabilities. Different from existing methods for 3D
FER, DF-CNN combines feature learning and fusion learning
into a single end-to-end training framework. To demonstrate
the effectiveness of DF-CNN, we conducted comprehensive
experiments to compare the performance of DF-CNN with
handcrafted features, pre-trained deep features, fine-tuned
deep features, and the state-of-the-art methods on three sub-
sets of two popular 3D face datasets (i.e., BU-3DFE and
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Bosphorus). In all cases, DF-CNN consistently achieves the
best results. Both visualization and quantification results indi-
cate that the 32-dimensional fused deep feature of DF-CNN
has strong discriminative ability to distinguish different facial
expressions.

In the future, some other issues of DF-CNN such as how to
choose the optimal pre-trained deep CNN for initialization, and
the optimal loss function for training will be studied. More-
over, we will also study to extend current DF-CNN framework
to multi-modal 2D+3D video based facial expression recog-
nition, or other multi-modal facial emotion prediction prob-
lems such as action unit detection and expression intensity
estimation.
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