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Shrinkage Degree in L2-Rescale Boosting
for Regression

Lin Xu, Shaobo Lin, Yao Wang, and Zongben Xu

Abstract— L2-rescale boosting (L2-RBoosting) is a variant of
L2-Boosting, which can essentially improve the generalization
performance of L2-Boosting. The key feature of L2-RBoosting
lies in introducing a shrinkage degree to rescale the ensemble
estimate in each iteration. Thus, the shrinkage degree determines
the performance of L2-RBoosting. The aim of this paper is to
develop a concrete analysis concerning how to determine the
shrinkage degree in L2-RBoosting. We propose two feasible ways
to select the shrinkage degree. The first one is to parameterize
the shrinkage degree and the other one is to develop a data-
driven approach. After rigorously analyzing the importance of
the shrinkage degree in L2-RBoosting, we compare the pros
and cons of the proposed methods. We find that although these
approaches can reach the same learning rates, the structure
of the final estimator of the parameterized approach is better,
which sometimes yields a better generalization capability when
the number of sample is finite. With this, we recommend to
parameterize the shrinkage degree of L2-RBoosting. We also
present an adaptive parameter-selection strategy for shrinkage
degree and verify its feasibility through both theoretical analysis
and numerical verification. The obtained results enhance the
understanding of L2-RBoosting and give guidance on how to
use it for regression tasks.

Index Terms— Boosting, generalization capability, L2-rescale
boosting (L2-RBoosting), regression, shrinkage degree.

I. INTRODUCTION

BOOSTING is a learning system, which combines many
parsimonious models to produce a model with prominent

predictive performance. The underlying intuition is that com-
bines many rough rules of thumb can yield a good composite
learner. From the statistical viewpoint, boosting can be viewed
as a form of functional gradient decent [1]. It connects various
boosting algorithms to optimization problems with specific
loss functions. Typically, L2-Boosting [2] can be interpreted
as a stepwise additive learning scheme that concerns the
problem of minimizing the L2 risk. Boosting is resistant to
overfitting [3] and, thus, has triggered enormous research
activities in the past 20 years [1], [4]–[7].
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Although the universal consistency of boosting has already
been verified in [8], its numerical convergence rate is a bit
slow [8], [9]. The main reason for is that the step size
derived via linear search in boosting is usually not the most
appropriate [10]. Under this circumstance, various variants
of boosting, comprising the regularized boosting via shrink-
age (RSBoosting) [11], regularized boosting via truncation
(RTBoosting) [12], and ε-Boosting [13], have been developed
via introducing additional parameters to control the step size.
Both the experimental and theoretical results [1], [4], [11], [14]
showed that these variants outperform boosting. However, it
also needs verifying whether the learning performances of
these variants can be further improved, say, to the best of
our knowledge, there is not any related theoretical analysis
to illustrate the optimality of these variants, at least for a
certain aspect, such as the generalization capability, numerical
(or population) convergence rate, and so on.

Motivated by the development of the relaxed greedy algo-
rithm [15] and sequential greedy algorithm [16], Lin et al. [17]
introduced a new variant of boosting named the rescale
boosting (RBoosting). Different from the existing variants that
concentrate on controlling the step size, RBoosting builds
upon rescaling the ensemble estimator and implementing the
linear search without any restrictions on the step size in
each iteration. Under such setting, almost optimal (up to a
logarithmic factor) numerical convergence rates of RBoosting
with convex loss functions were derived in [17]. The first
purpose of this paper is to prove that, when restricted to
L2-rescale boosting (L2-RBoosting), the logarithmic term can
be omitted. In short, the optimal numerical convergence rate
can be derived.

As there is no free lunch, all the variants improve the
learning performance of boosting at the cost of introducing
an additional parameter, such as the truncated parameter in
RTBoosting, regularization parameter in RSBoosting, ε in
ε-Boosting, and shrinkage degree in RBoosting. To facilitate
the use of these variants, one should also present the strategies
to select such parameters. In particular, Elith et al. [18]
showed that 0.1 is a feasible choice of ε in ε-Boosting;
Bühlmann and Hothorn [4] recommended the selection
of 0.1 for the regularization parameter in RSBoosting;
Zhang and Yu [12] proved that O(k−2/3) is a good value of
the truncated parameter in RTBoosting, where k is the number
of iterations. Thus, it is interesting and important to provide a
feasible strategy for selecting shrinkage degree in RBoosting.

The second and main purpose of this paper is to propose
several feasible strategies to determine the shrinkage degree
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in L2-RBoosting for regression and analyze their pros and
cons. For this purpose, we need to show the essential role of
the shrinkage degree in L2-RBoosting. Based on the rigorous
theoretical analysis, we find that, different from other para-
meters, such as the truncated value, regularization parameter,
and ε value, the shrinkage degree does not affect the learning
rate, in the sense that, for arbitrary finite shrinkage degree,
the learning rate of corresponding L2-RBoosting can reach the
existing best record of all boosting-type algorithms. It means
that if the number of samples is infinite, the shrinkage degree
does not affect the generalization capability of L2-RBoosting.
However, our result also shows that the essential role of the
shrinkage degree in L2-RBoosting lies in its important impact
on the constant of the generalization error, which is crucial
when there are only finite number of samples. In such a sense,
we theoretically prove that there exists an optimal shrinkage
degree to minimize the generalization error of L2-RBoosting.

We then develop two effective methods for selecting an
appropriate shrinkage degree. The first one is to consider
the shrinkage degree as a parameter in the learning process
of L2-RBoosting. The other one is to learn the shrinkage
degree from the samples directly and we call it as the
L2-data-driven RBoosting (L2-DDRBoosting). We find that
the two approaches can reach the same learning rate and
the number of parameters in L2-DDRBoosting is less than
those in L2-RBoosting. However, we also prove that the
estimator deduced from L2-RBoosting possesses a better struc-
ture (smaller L1 norm), which sometimes leads to a much
better generalization capability for some special weak learners.
Thus, we recommend the use of L2-RBoosting in practice.
Finally, we present an adaptive shrinkage degree selection
strategy for L2-RBoosting. Both the theoretical and exper-
imental results verify the feasibility and outperformance of
L2-RBoosting.

The rest of this paper is organized as follows.
In Section II, we introduce the L2-Boosting, L2-RBoosting,
and L2-DDRBoosting. In Section III, we study the related
theoretical behaviors of L2-RBoosting. In Section IV, a series
of simulations and real data experiments are employed to
illustrate our theoretical assertions. Finally, the conclusion is
drawn in Section V.

II. L2-BOOSTING, L2-RBOOSTING,
AND L2-DDRBOOSTING

Ensemble techniques, such as bagging [19], boosting [6],
stacking [20], Bayesian averaging [21], and random for-
est [22], can significantly improve the performance in practice
and benefit from favorable learning capability. In particular,
boosting and its variants are based on a rich theoretical
analysis, to just name a few [2], [3], [8], [12], [17], [23],
[24], [25]. The aim of this section is to introduce some
concrete boosting-type learning schemes for regression.

In a regression problem with a covariate X on X ⊆ Rd and a
real response variable Y ∈ Y ⊆ R, we observe m independent
identically distributed. samples Dm = {(xi , yi )}m

i=1 from an
unknown distribution ρ. Without loss of generality, we always
assume Y ⊆ [−M, M], where M < ∞ is a positive real
number. The aim is to find a function to minimize the

Algorithm 1 L2-Boosting
Step 1 (Initialization):
Given data{(xi , yi ) : i = 1, . . . , m} and dictionary S.
Given initial estimator f0 ∈ span(S).
Set the maximum number of iterations K , iteration k := 0.
Step 2 (Projection of gradient):
Find g∗

k ∈ S such that

g∗
k = arg max

g∈S
|〈rk−1, g〉m |,

where residual rk−1 = y− fk−1 and y is a function satisfying
y(xi ) = yi .
Step 3 (Linear search):
Generate the kth estimator as

fk = fk−1 + 〈rk−1, g∗
k 〉m g∗

k .

Step 4 (Iteration process):
Increase k by one and repeat steps 2 and 3 if k < K .

generalization error

E( f ) =
∫

φ( f (x), y)dρ

where φ : R × R → R+ is called a loss function [12].
If φ( f (x), y) = ( f (x) − y)2, then the known regression
function

fρ(x) = E{Y |X = x}
minimizes the generalization error. In such a setting, one is
interested in finding a function fD based on Dm , such that
E( fD) − E( fρ) is small. Buhlmann and Yu [2] showed that
L2-Boosting can successfully tackle this problem.

Let S = {g1, . . . , gn} be the set of weak learners (regressors)
and define

span(S) =
⎧⎨
⎩

n∑
j=1

a j g j : g j ∈ S, a j ∈ R, n ∈ N

⎫⎬
⎭.

Let

‖ f ‖m =
√√√√ 1

m

m∑
i=1

f (xi )2 and 〈 f, g〉m = 1

m

m∑
i=1

f (xi )g(xi)

be the empirical norm and empirical inner product, respec-
tively. Furthermore, we define the empirical risk as

ED( f ) = 1

m

m∑
i=1

| f (xi ) − yi |2.

Then, the gradient descent view of L2-Boosting [1] can be
interpreted as follows.

Remark 1: In step 3 of Algorithm 1, it is easy to check that〈
rk−1, g∗

k

〉
m = arg min

βk∈R
ED

(
fk−1 + βkg∗

k

)
.

Therefore, we call it as the linear search step.
Remark 2: In the kth iteration, searching through the set S

(projection of gradient) has a complexity of O(mn). After
selecting a new weak learner g∗

k , 1-D linear search for
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the step size βk needs a complexity of O(m). Thus, the
kth iteration of the naive boosting implementation has com-
plexity O(mn+m), which shows that the projection of gradient
dominates complexity. If the total iteration number is set as K ,
then the overall complexity of boosting is O(K mn) and the
memory required for the naive approach is O(mn).

Although L2-Boosting was proved to be consistent [8]
and overfitting resistance [2], multiple studies [9], [26], [27]
showed that its numerical convergence rate is far slower than
the best nonlinear approximant. The main reason is that the
linear search in Algorithm 1 makes fk+1 to be not always
the greediest one [10], [17]. Hence, an advisable method is to
control the step size in the linear search step of Algorithm 1.
Thus, various variants of boosting, such as the ε-Boosting [13],
which specifies the step size as a fixed small positive number
ε rather than using the linear search, RSBoosting [11], which
multiplies a small regularized factor to the step size deduced
from the linear search and RTBoosting [12], which truncates
the linear search in a small interval, have been developed. It is
obvious that the core difficulty of these schemes roots in how
to select an appropriate step size. If the step size is too large,
then these algorithms may face the same problem as that of
Algorithm 1. If the step size is too small, then the numerical
convergence rate is also fairly slow.

Other than the aforementioned strategies that focus on
controlling the step size of g∗

k , Lin et al. [17] also derived a
new backward type strategy, called the RBoosting, to improve
the numerical convergence rate and, consequently, the gen-
eralization capability of boosting. The core idea is that if the
approximation (or learning) effect of the kth iteration does not
work as expected, then fk is regarded to be too aggressive.
That is, if a new iteration is employed, then the previous
estimator fk should be rescaled. Suppose L2 loss is considered
for regression tasks, the main idea of L2-RBoosting is depicted
as in Algorithm 2.

Remark 3: It is easy to see that
〈
r s

k−1, g∗
k

〉
m = arg min

βk∈R
ED

(
(1 − αk) fk−1 + βk g∗

k

)
.

This is the only difference between L2-Boosting and
L2-RBoosting. Here, we call αk as the shrinkage degree.
It can be found in Algorithm 2 that the shrinkage degree is
considered as a parameter.

Remark 4: Suppose we have L candidate values of the
parameter, then the overall complexity of parameterized
L2-RBoosting is about O(L K mn). The memory required is
also O(mn) for the dictionary and inner products. Note that, as
there is no free lunch, parameterized L2-RBoosting improves
the learning performance of boosting by imposing additional
computational burden, especially when the candidate value L
is large.

L2-RBoosting stems from the greedy algorithm with fixed
relaxation [27] in nonlinear approximation. It is different
from the L2-Boosting algorithm proposed in [23], which
adopts the idea of X-greedy algorithm with relaxation [28].
In particular, we employ rk−1 in step 2 to represent residual
rather than the shrinkage residual r s

k−1 in step 3. Such a
difference makes the design principles of L2-RBoosting and

Algorithm 2 L2-RBoosting
Step 1 (Initialization):
Given data {(xi , yi ) : i = 1, . . . , m} and dictionary S. Given
a set of {αk}k∗

k=1 with αk = 2/(u + k) and u ∈ N being the
shrinkage degree.
Given initial estimator f0 ∈ span(S).
Set the maximum number of iterations K , iteration k := 0.
Step 2 (Projection of gradient):
Find g∗

k ∈ S such that

g∗
k = arg max

g∈S
|〈rk−1, g〉m |,

where the residual rk−1 = y − fk−1 and y is a function
satisfying y(xi ) = yi .
Step 3 (Re-scaled linear search):
Generate the kth estimator as

fk = (1 − αk) fk−1 + 〈r s
k−1, g∗

k 〉m g∗
k ,

where the shrinkage residual r s
k−1 = y − (1 − αk) fk−1.

Step 4 (Iteration process):
Increase k by one and repeat Step 2 and Step 3 if k < K .

the L2-Boosting algorithm in [23] to be totally distinct.
In L2-RBoosting, the algorithm comprises two steps: the
projection of gradient step to find the optimum weak learner
g∗

k and the rescale linear search step to fix its step size βk .
However, the L2-Boosting algorithm in [23] only concerns
the optimization problem

arg min
g∗

k ∈S,βk∈R

∥∥(1 − αk) fk−1 + βkg∗
k

∥∥2
m .

The main drawback is, to the best of our knowledge, the
closed-form solution of the optimization problem only holds
for the L2 loss. When faced with other loss, the L2-Boosting
algorithm in [23] cannot be efficiently numerical solved due
to it needs to tune two parameters simultaneously in an
optimization problem.

Previous works [16], [17], [23], [28], [29] have shown that
introducing a parameter to rescale the previous estimator can
improve the numerical convergence rate and generalization
capability of boosting. However, the difficulty is how to tune
such an additional parameter, the shrinkage degree αk , just like
the step-size parameter ε in ε-Boosting [13], regularization
parameter in RSBoosting [11], and truncation parameter in
RTBoosting [12]. Therefore, it is urgent to develop a feasible
method to select the shrinkage degree. There are two ways to
choose a good value of shrinkage degree in L2-RBoosting.
The first one is to parameterize the shrinkage degree as
in Algorithm 2. We set the shrinkage degree αk = 2/(k + u)
and hope to choose an appropriate value of u via a certain
parameter-selection strategy. The other one is to learn the
shrinkage degree αk from the samples directly. As we are only
concerned with L2 loss for regression in this paper, this idea
can be primitively realized by Algorithm 3, which is called
the L2-DDRBoosting.

Remark 5: The projection of gradient step in Algorithm 3
also has a complexity of O(mn) in the kth iteration. For 2-D
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Algorithm 3 L2-DDRBoosting
Step 1 (Initialization):
Given data {(xi , yi ) : i = 1, . . . , m} and dictionary S.
Given initial estimator f0 ∈ span(S).
Set the maximum number of iterations K , iteration k := 0.
Step 2 (Projection of gradient):
Find g∗

k ∈ S such that

g∗
k = arg max

g∈S
|〈rk−1, g〉m |,

where residual rk−1 = y− fk−1 and y is a function satisfying
y(xi) = yi .
Step 3 (Two dimensional linear search):
Find α∗

k and β∗
k ∈ R such that(

α∗
k , β∗

k

) = arg min
(αk ,βk)∈R2

ED
(
(1 − αk) fk−1 + βk g∗

k

)

Update fk = (1 − α∗
k ) fk−1 + β∗

k g∗
k .

Step 4 (Iteration process):
Increase k by one and repeat Step 2 and Step 3 if k < K .

linear search step, assuming the cost of inverting a complex
d × d matrix is at least O(d3), then d-dimensional linear
search for the step size needs a complexity of O(md3).
Thus, 2-D (d = 2) linear search in L2-DDRBoosting
for the step size βk needs a complexity of O(m), when
m 
 8. Thus, the overall complexity and the memory
required of L2-DDRBoosting are still O(K mn) and O(mn),
respectively. Note that, L2-DDRBoosting can perfectly solve
the parameter-selection problem in the rescale-type boosting
algorithm with almost negligible additional computational
complexity.

Remark 6: Algorithm 3 is motivated by the greedy algo-
rithm with free relaxation [29]. As far as the L2 loss is
concerned, it is easy to deduce the close-form representation
of fk [27]. However, for other loss functions, we have not
found any papers concerning the analytical solvability of the
optimization problem in step 3 of Algorithm 3.

III. THEORETICAL BEHAVIORS

In this section, we present some theoretical results concern-
ing the shrinkage degree. First, we derive optimal numerical
convergence rates of L2-RBoosting. Second, we study the rela-
tionship between the shrinkage degree and the generalization
capability in L2-RBoosting. The theoretical result reveals that
the shrinkage degree plays a crucial role in L2-RBoosting
for regression with finite samples. Third, we analyze the pros
and cons of L2-RBoosting and L2-DDRBoosting. It is shown
that the potential performance of L2-RBoosting is somewhat
better than that of L2-DDRBoosting. Finally, we propose an
adaptive parameter-selection strategy for the shrinkage degree
and theoretically verify its feasibility.

A. Optimal Numerical Convergence Rates

Let S = {g1, . . . , gn} be the set of weak learners. Denote
by L1(S) := { f : f = ∑

g∈S agg}, the space of l1-summable

functions with respect to S endowed with the norm

‖ f ‖L1(S) := inf

⎧⎨
⎩

∑
g∈S

|ag| : f =
∑
g∈S

agg

⎫⎬
⎭.

We assume supx∈X |g(x)| ≤ 1 for all g ∈ S.
The numerical convergence rate of a boosting-type

algorithm describes the relation between the approximation
accuracy and the number of boosting iterations. It determines
not only the efficiency of the algorithm in implementation,
but also the generalization capability [12]. Thus, the boosting-
type algorithms with optimal numerical convergence rate
verification are preferable. Theorem 7, which will be proved
in Section V, describes the numerical convergence rates
of L2-RBoosting.

Theorem 7: Let fk be the estimator defined in Algorithm 2.
Then, for arbitrary h ∈ span(S) and u ∈ N, there holds

‖ fk − y‖2
m ≤ 2‖y − h‖2

m + 2(M + ‖h‖L1(S))
22

3u2+14u+20
8u+8 k−1.

Since ‖y−h‖m only depicts the richness of S, the numerical
convergence rates derived in Theorem 7 is O(k−1). As shown
in [26], the deduced convergence rate is optimal in the sense
that there are an h∗ ∈ span(S) with bounded ‖h∗‖L1 and a
constant C independent of k such that∣∣‖ fk − y‖2

m − ‖y − h∗‖2
m

∣∣ ≥ Ck−1.

The assertion implies that L2-RBoosting is one of the most
efficient boosting-type algorithms in the worst case analysis.
The derived numerical convergence rate is much better than
that of RTBoosting [12], which behaves asymptomatically as
O(k−1/3). Furthermore, our estimate is also better than the
numerical convergence rate derived in [17] for L2-RBoosting,
since there is an additional logarithmic factor in the estimate.

According to the greedy algorithm with free relaxation
in [29], the numerical convergence rate of L2-DDRBoosting
is still O(k−1).

B. Relationship Between the Generalization Capability
and the Shrinkage Degree

To describe the generalization capability of L2-Rboosting,
we should present the classes of regression functions. The
space Lr

1 is defined to be the set of all the functions f , such
that, there exists a h ∈ span{S}, such that

‖h‖L1(S) ≤ B, and ‖ f − h‖ ≤ Bn−r . (III.1)

The infimum of all such B defines the norm for f on Lr
1.

It follows from [28] that (III.1) defines an interpolation
space, which has been widely used in nonlinear approxi-
mation [25], [27], [28].

Let πM t denote the clipped value of t at ±M , that is,
πM t := min{M, |t|}sgn(t). Then, it is obvious that [30] for
all t ∈ R and y ∈ [−M, M], there holds

E(πM fk) − E( fρ) ≤ E( fk) − E( fρ).

By the help of the descriptions, we are in a position to
present Theorem 8, which depicts the role that the shrinkage
degree plays in L2-RBoosting.
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Theorem 8: Let 0 < t < 1, and fk be the estimator defined
in Algorithm 2. If fρ ∈ Lr

1, then for arbitrary k, u ∈ N

E(πM fk) − E( fρ)

≤ C(M+B)2
(

2
3u2+14u+20

8u+8 k−1+(m/k)−1 log m log
2

t
+ n−2r

)

holds with probability at least 1 − t , where C is a positive
constant depending only on d .

Let us first give some remarks of Theorem 8. If we set
the number of iterations and the size of dictionary to satisfy
k = O(m1/2), and n ≥ O(m(1/4r)), then we can deduce a
learning rate of πM fk asymptotically as O(m−1/2 log m). This
rate is independent of the dimension and is the same as the
optimal record for the greedy learning [28] and boosting-type
algorithms [12]. Furthermore, under the same assumptions,
this rate is faster than those of boosting [8] and RTBoost-
ing [12]. Thus, we can draw a rough conclusion that the
learning rate deduced in Theorem 8 is tight. Under this circum-
stance, we think that it can reveal the essential performance
of L2-RBoosting.

Then, it can be found in Theorem 8 that if u is finite and
the number of samples is infinite, the shrinkage degree u does
not affect the learning rate of L2-RBoosting, which means that
its generalization capability is independent of u. However, it
is known that in the real-world application, there are only
finite number of samples available. Thus, u plays a crucial
role in the learning process of L2-RBoosting in practice. Our
results in Theorem 8 implies two simple guidance to deepen
the understanding of L2-RBoosting. The first one is that there
does exist an optimal u (may be not unique) minimizing
the generalization error of L2-RBoosting. In particular, we
can deduce a concrete value of optimal u via minimizing
(3u2 + 14u + 20/8u + 8). As it is very difficult to prove the
optimality of the constant, we think that it is more reasonable
to reveal a rough trend for choosing u rather than providing
a concrete value. The other one is that when u → ∞,
L2-RBoosting behaves as L2-Boosting, and the learning rate
cannot achieve O(m−1/2 log m). Thus, we indeed present
a theoretical verification that L2-RBoosting outperforms
L2-Boosting.

C. Pros and Cons of L2-RBoosting and L2-DDRBoosting

There is only one parameter, k∗, in L2-DDRBoosting, as
shown in Algorithm 3. This implies that L2-DDRBoosting
improves the performance of L2-Boosting without tuning
another additional parameter αk , which is superior to the
other variants of boosting. Theorem 9 shows that, as the
same as L2-RBoosting, L2-DDRBoosting can also improve
the generalization capability of L2-Boosting.

Theorem 9: Let 0 < t < 1, and f ′
k be the estimator defined

in Algorithm 3. If fρ ∈ Lr
1, then for any arbitrary k ∈ N

E(πM f ′
k

) − E( fρ)

≤ C(M + B)2
(

k−1 + (m/k)−1 log m log
2

t
+ n−2r

)

holds with probability at least 1 − t , where C is a constant
depending only on d .

By Theorem 9, it seems that L2-DDRBoosting can per-
fectly solve the parameter-selection problem in the rescale-
type boosting algorithm. However, we also show that
compared with L2-DDRBoosting, L2-RBoosting possesses
an important advantage, which is crucial to guaranteeing
the outperformance of L2-RBoosting. In fact, noting that
L2-DDRBoosting depends on a 2-D linear search problem
(step 3 in Algorithm 3), the structure of the estimator
(L1 norm) cannot always be good. If the estimate f ′

k−1 and
g∗

k are almost linear dependent, then the values of αk and βk

may be very large, which automatically leads a huge L1 norm
of f ′

k . We show in Proposition 10 that L2-RBoosting can avoid
this phenomenon.

Proposition 10: If the fk is the estimate defined in
Algorithm 2, then there holds

‖ fk‖L1(S) ≤ C((M + ‖h‖L1(S))k
1/2 + kn−r ).

Proposition 10 implies that the estimator defined in
Algorithm 2 possesses a controllable structure. This may sig-
nificantly improve the learning performance of L2-RBoosting
when faced with some specified weak learners. For this
purpose, we need to introduce some definitions and conditions
to qualify the weak learners.

Definition 11: Let (M, d) be a pseudometric space and
T ⊂ M a subset. For every ε > 0, the covering number
N (T, ε, d) of T with respect to ε and d is defined as the
minimal number of balls of radius ε whose union covers T ,
that is

N (T, ε, d) := min

⎧⎨
⎩l ∈ N : T ⊂

l⋃
j=1

B(t j , ε)

⎫⎬
⎭

for some {t j }l
j=1 ⊂ M, where B(t j , ε) = {t ∈ M :

d(t, t j ) ≤ ε}.
The l2-empirical covering number of a function set

is defined by means of the normalized l2-metric d2 on
the Euclidean space Rd given in [31] with d2(a, b) =(
1/m

∑m
i=1 |ai − bi |2

)1/2
for a = (ai )

m
i=1, b = (bi )

m
i=1 ∈ Rm .

Definition 12: Let F be a set of functions on X ,
x = (xi )

m
i=1 ⊂ Xm , and let

F |x := {
( f (xi ))

m
i=1 : f ∈ F} ⊂ Rm .

Set N2,x(F , ε) = N (F |x, ε, d2). The l2-empirical covering
number of F is defined by

N2(F , ε) := sup
m∈N

sup
x∈Sm

N2,x(F , ε), ε > 0.

Before presenting the main result in this section, we shall
introduce Assumption 13.

Assumption 13: The l2-empirical covering number of
span(S) satisfies

logN2(B1, ε) ≤ Lε−μ ∀ε > 0

where

BR = { f ∈ span(S) : ‖ f ‖L1(S) ≤ R}.
Such an assumption is widely used in a statistical learn-

ing theory. For example, Shi et al. [31] proved that the
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linear spanning of some smooth kernel functions satisfies
Assumption 13 with a small value of μ. By the help of
Assumption 13, we can prove that the learning performance
of L2-RBoosting can be essentially improved due to the good
structure of the corresponding estimator.

Theorem 14: Let 0 < t < 1, μ ∈ (0, 1) and fk be the esti-
mator defined in Algorithm 2. If fρ ∈ Lr

1 and Assumption 13
holds, then we have

E(πM fk) − E( fρ)

≤ C log
2

t
(3M + B)2

⎛
⎝n−2r + k−1+

(
(kn−r +√

k)μ

m

) 2−μ
2+μ

⎞
⎠.

It can be found in Theorem 14 that if μ → 0, then the
learning rate of L2-RBoosting can be near to m−1. This depicts
that, with good weak learners, L2-RBoosting can reach a fairly
fast learning rate.

D. Adaptive Parameter-Selection Strategy for L2-RBoosting

In Section III-C, we point out that L2-RBoosting is
potentially better than L2-DDRBoosting. Consequently, how
to select the parameter, u, is of great importance in
L2-RBoosting. We present an adaptive way to determine the
shrinkage degree in this section and show that, the estimator
based on such a parameter-selection strategy does not degrade
the generalization capability very much. To this end, we split
the samples Dm = (xi , yi )

m
i=1 into two parts of size [m/2] and

m − [m/2], respectively (assuming m ≥ 2). The first half is
denoted by Dl

m (the learning set), which is used to construct
the L2-RBoosting estimate fDl

m ,αk ,k . The second half, denoted
by Dv

m (the validation set), is used to choose αk by picking
αk ∈ I := [0, 1] to minimize the empirical risk

1

m − [m/2]
m∑

i=[m/2]+1

(
yi − fDl

m ,α∗
k ,k

)2
.

Then, we obtain the estimator

f ∗
Dl

m ,αk ,k
= fDl

m ,α∗
k ,k .

Since y ∈ [−M, M], a straightforward adaptation
of [32, Th. 7.1] yields that, for any δ > 0

E
[‖ f ∗

Dl
m ,αk ,k

− fρ‖2
ρ

] ≤ (1 + δ) inf
αk∈I

E
[‖ fDl

m ,α∗
k ,k − fρ‖2

ρ

]

+ C
log m

m
holds some positive constant C depending only on M , d , and δ.
Immediately, from Theorem 8, we can conclude the following.

Theorem 15: Let f ∗
Dl

m ,αk ,k
be the adaptive L2-RBoosting

estimator. If fρ ∈ Lr
1, then for arbitrary constants k, u ∈ N

E
{E(πM f ∗

Dl
m ,αk ,k

) − E( fρ)
}

≤ C(M + B)2
(

2
3u2+14u+20

8u+8 k−1 + (m/k)−1 log m + n−2r
)

where C is an absolute positive constant.
Remark 16: Theorem 15 also implies that the holdout

method (or twofold cross validation) is used to tune the para-
meters of an adaptive estimator is feasible in L2-RBoosting.

IV. NUMERICAL RESULTS

In this section, a series of simulations and real data experi-
ments will be carried out to illustrate our theoretical assertions.

A. Simulation Experiments

In this section, we first introduce the simulation settings,
including the data sets, weak learners, and experimental
environment. Second, we analyze the relationship between
shrinkage degree and generalization capability for the pro-
posed L2-RBoosting by means of ideal performance curve.
Third, we draw a performance comparison of L2-Boosting,
L2-RBoosting, and L2-DDRBoosting. The results illustrate
that L2-RBoosting with an appropriate shrinkage degree
outperforms others, especially for high-dimensional data sim-
ulations. Finally, we justify the feasibility of the adap-
tive parameter-selection strategy for shrinkage degree in
L2-RBoosting.

1) Simulation Settings: In the simulations, we generate the
data from the following model:

Y = m(X) + σ · ε (IV.1)

where ε is the standard Gaussian noise and independent
of X . The noise level σ varies among in {0, 0.5, 1}, and
X is uniformly distributed on [−2, 2]d with d ∈ {1, 2, 10}.
Nine typical regression functions are considered in this set
of simulations, where these functions are the same as those
in [23, Sec. IV].

1) m1(x) = 2 ∗ max(1, min(3 + 2 ∗ x, 3 − 8 ∗ x)).

2) m2(x) =
{

10
√−x sin(8πx) −0.25 ≤ x < 0

0 else.

3) m3(x) = 3 ∗ sin(π ∗ x/2).
4) m4(x1, x2) = x1 ∗ sin(x2

1) − x2 ∗ sin(x2
2).

5) m5(x1, x2) = 4/(1 + 4 ∗ x2
1 + 4 ∗ x2

2).
6) m6(x1, x2) = 6 − 2 ∗ min(3, 4 ∗ x2

1 + 4 ∗ |x2|).
7) m7(x1, . . . , x10) = ∑10

j=1 (−1) j−1x j sin(x j
2).

8) m8(x1, . . . , x10) = m6(x1 + · · · + x5, x6 + · · · + x10).

9) m9(x) =
{

1, x1 + · · · + x10 ≤ 0

3, else.
For each regression function and each value of σ ∈ {0, 0.5, 1},
we first generate a training set of size m = 500 and an inde-
pendent test set, including m′ = 1000 noiseless observations.
We then evaluate the generalization capability of each boosting
algorithm in terms of root mean squared error (RMSE).

It is known that the boosting tree algorithm requires the
specification of two parameters. One is the number of splits
(or the number of nodes) that is used for fitting each regression
tree. The number of leaves equals the number of splits plus
one. Specifying J splits corresponds to an estimate with up to
J -way interactions. Friedman and Hastie [33] suggested that
4 ≤ J ≤ 8 generally works well and the estimate is typically
not sensitive to the exact choice of J within that range. Thus,
in the following simulations, we use the CART [34] (with the
number of splits J = 4) to build up the week learners for
regression. The other parameter is the number of iterations or
the number of trees to be fitted. A suitable value of iterations
can range from a few dozen to several thousand, depending on
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Fig. 1. Test error (RMSE) curve with respect to the rescale factor u in
L2-RBoosting. Three rows denote the 1-D regression functions m1, m2,
and m3 and three columns indicate that the noise level σ varies among in
{0, 0.5, 1}, respectively.

Fig. 2. Three rows denote the 2-D regression functions m4, m5, and m6
and three columns indicate that the noise level σ varies among in {0, 0.5, 1},
respectively.

the shrinkage degree parameter and which data set we used.
Considering the fact that we mainly focus on the impact of
the shrinkage degree, the easiest way to do it is to select the
theoretically optimal number of iterations via the test data
set. More precisely, we select the number of iterations, k∗, as
the best one according to Dm′ directly. Furthermore, for the
additional shrinkage degree parameter, αk = 2/(k +u), u ∈ N,
in L2-RBoosting, we create 20 equally spaced values of u in
the logarithmic space between 1 and 106.

All numerical studies are implemented using MATLAB
R2014a on a Windows personal computer with
Core i7-3770 3.40-GHz CPUs and RAM 4 GB, and
the statistics are averaged based on 20 independent trails for
each simulation.

2) Relationship Between Shrinkage Degree and General-
ization Performance: For each given rescale factor u ∈
[1, 106], we employ L2-RBoosting to train the corresponding
estimates on the whole training samples Dm , and then use
the independent test samples Dm′ to evaluate their general-
ization performance. Figs. 1–3 show the performance curves
of the L2-RBoosting estimates for the aforementioned nine
regression functions m1, . . . , m9. It can be distinctly observed
from Figs. 1–3 that, except for m8, u has a great influence on
the learning performance of L2-RBoosting. Furthermore, the

Fig. 3. Three rows denote the 10-D regression functions m7, m8, and m9
and three columns indicate that the noise level σ varies among in {0, 0.5, 1},
respectively.

TABLE I

PERFORMANCE COMPARISON OF L2-BOOSTING, L2-RBOOSTING,
AND L2-DDRBOOSTING ON SIMULATED REGRESSION

DATA SETS (1-D CASES)

performance curves generally imply that there exists an
optimal u, which may be not unique, to minimize the gener-
alization error. This is consistent with our previous theoretical
assertions. For m8, the test error curve of L2-RBoosting is
flat with respect to u, that is, the generalization performance
of L2-RBoosting is irrelevant with u. The likely explanation
for this observation is that the adopted weak learner is too
strong (i.e., we preset the number of splits J = 4). Over
grown tree trained on all samples are liable to autocracy and
rescale operation does not bring performance benefits at all
in such case. All numerical results illustrate the importance
of selecting an appropriate shrinkage degree in L2-RBoosting
for regression tasks.

3) Performance Comparison of L2-Boosting, L2-RBoosting,
and L2-DDRBoosting: In this section, we compare the learn-
ing performances among L2-Boosting, L2-RBoosting, and
L2-DDRBoosting to analyze their cons and pons. Tables I–III
document the generalization errors (RMSE) of L2-Boosting,
L2-RBoosting, and L2-DDRBoosting for regression functions
m1, . . . , m9, respectively. The bold numbers in Tables I–III
denote the optimal performance, and the standard errors are
also reported as the numbers in parentheses. From Tables I–III,
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TABLE II

PERFORMANCE COMPARISON OF L2-BOOSTING, L2-RBOOSTING,
AND L2-DDRBOOSTING ON SIMULATED REGRESSION

DATA SETS (2-D CASES)

TABLE III

PERFORMANCE COMPARISON OF L2-BOOSTING, L2-RBOOSTING,
AND L2-DDRBOOSTING ON SIMULATED REGRESSION

DATA SETS (10-D CASES)

we can get the clear results that, except for the noiseless
1-D cases, the performance of L2-RBoosting dominates both
L2-Boosting and L2-DDRBoosting for all regression functions
by a large margin. Through this series of numerical studies,
including 27 different learning tasks, we can come up with
the following guidelines. First, we verify the second guidance
deduced from Theorem 8 that L2-RBoosting outperforms
L2-Boosting with finite samples available. Second, although
L2-DDRBoosting can perfectly solve the parameter-selection
problem in the rescale-type boosting algorithms, the compar-
ative results also illustrate that L2-RBoosting endows better
performance once an appropriate u is selected.

4) Adaptive Parameter-Selection Strategy for Shrinkage
Degree: We employ the simulations to verify the feasibility
of the proposed parameter-selection strategy. As described in
Section III-C, we randomly split the train samples Dm =
(Xi , Yi )

500
i=1 into two disjoint equal size subsets, i.e., a learning

set and a validation set. We first train on the learning set Dl
m

to construct the L2-RBoosting estimates fDl
m ,αk ,k and then

use the validation set Dv
m to choose the appropriate shrinkage

TABLE IV

PERFORMANCE OF L2-RBOOSTING VIA PARAMETER-SELECTION
STRATEGY ON SIMULATED REGRESSION DATA SETS (1-D CASE)

TABLE V

PERFORMANCE OF L2-RBOOSTING VIA PARAMETER-SELECTION
STRATEGY ON SIMULATED REGRESSION DATA SETS (2-D CASE)

TABLE VI

PERFORMANCE OF L2-RBOOSTING VIA PARAMETER-SELECTION
STRATEGY ON SIMULATED REGRESSION DATA SETS (10-D CASE)

degree α∗
k and iteration k∗ by minimizing the validation risk.

Third, we retrain the obtained α∗
k on the entire training set Dm

to construct fDm ,α∗
k ,k (in general, if we have enough training

samples at hand, this step is optional). Finally, an independent
test set of 1000 noiseless observations are used to evaluate the
performance of fDm ,α∗

k ,k .
Tables IV–VI document the test errors (RMSE) for regres-

sion functions m1, . . . , m9. The corresponding bold num-
bers denote the ideal generalization performance of the
L2-RBoosting (choose optimal iteration k∗ and optimal shrink-
age degree α∗

k both according to minimize the test error via
the test sets). We also report the standard errors (numbers in
parentheses) of selected rescale parameter u over 20 indepen-
dent runs in order to check the stability of such parameter-
selection strategy. From Tables IV–VI, we can easily find that
the performance with such strategy approximates the ideal
one. More important, comparing the mean values and standard
errors of u with the performance curves in Figs. 1–3, apart
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TABLE VII

PERFORMANCE COMPARISON OF DIFFERENT BOOSTING-TYPE ALGORITHMS ON REAL DATA SETS

from m8, we can distinctly detect that the selected u values
by the proposed parameter-selection strategy are all located
near the low valleys.

B. Real Data Experiments

We have verified that L2-RBoosting outperforms
L2-Boosting and L2-DDRBoosting on the 3 × 9 = 27
different distributions in the previous simulations. Now,
we further compare the learning performances of these
algorithms with other popular boosted-type schemes, including
ε-Boosting [13], RSBoosting [1], and RTBoosting [12] on
five real data sets.

The first data set is the Diabetes data set [10]. This data
set contains 442 diabetes patients that were measured on ten
independent variables, i.e., age, sex, body mass index, and
so on and one response variable, i.e., a measure of disease
progression. The second one is the Prostate Cancer data set
derived from a study of prostate cancer in [35]. The data set
consists of the medical records of 97 patients who were about
to receive a radical prostatectomy. The predictors are eight
clinical measures, i.e., cancer volume, prostate weight, age,
and so on and one response variable, i.e., the logarithm of
prostate-specific antigen. The third one is the Boston Housing
data set created form a housing values survey in suburbs
of Boston in [36]. This data set contains 506 instances,
which include 13 attributions, i.e., per capita crime rate by
town, proportion of nonretail business acres per town, average
number of rooms per dwelling, and so on and one response
variable, i.e., median value of owner-occupied homes. The
fourth one is the concrete compressive strength (CCS) data
set created from [37]. The data set contains 1030 instances,
including eight quantitative independent variables, i.e., age
and ingredients, and so on and one dependent variable,
i.e., quantitative CCS. The fifth one is the Abalone data
set, which comes from an original study in [38] for pre-
dicting the age of abalone from physical measurements. The
data set contains 4177 instances, which were measured on

eight independent variables, i.e., length, sex, height, and so
on and one response variable, i.e., the number of rings.

Similarly, we randomly divide all the real data sets into
two disjoint equal parts. The first half serves as the training
set and the second half serves as the test set. We parameterize
both the number of iterations and the value of shrinkage
degrees within the specified interval (i.e., k in [0, 104] and u in
[1, 106]) and then adopt the method of twofold cross validation
based on grid search for tuning corresponding parameters.
We also utilize the Z-score standardization method [39] to
normalize the data sets, in order to avoid the error caused by
considerable magnitude difference among data dimensions.

For each real data experiment, weak learners are first
changed to the decision stumps (specifying one split of each
tree, J = 1) corresponding to an additive model with only
main effects. Then, weak learners are changed to the vanilla
neural networks to further show that the proposed approach
can also boost the performance of neural networks. The neural
networks are set with one sigmoid hidden layer, where the
input units equal to the dimension of samples, the hidden units
is set to five, and the output units (with affine transformation)
is the same as the dimension of the labels, and the backprop-
agation algorithm is employed to train each neural network.

Table VII documents the performance (test RMSE) compar-
ison results of different boosting-type algorithms on five real
data sets, respectively (the bold numbers denote the optimal
performance). We can observe from Table VII that the perfor-
mance of L2-RBoosting with u selected via our recommended
strategy outperforms both L2-Boosting and L2-DDRBoosting
on all real data sets, especially for some data sets,
i.e., diabetes, prostate, and CCS, making a large improvement.
It is consistent with the previous toy simulations and, therefore,
experimentally verifies our theoretical assertions. Furthermore,
it can be found that all the boosting variants outperform the
original boosting algorithm to some extent and L2-RBoosting
generally performs as the second best algorithm among all
the variants. It indicates that the idea of rescale in boosting
is feasible and comparable with the idea of regularization in



1860 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 8, AUGUST 2017

other variants, which provides a new direction to improve the
performance of boosting.

V. CONCLUSION AND DISCUSSION

In this paper, we draw a concrete analysis concerning
L2-RBoosting and how to determine the shrinkage degree
in L2-RBoosting. The contributions can be concluded in six
aspects. First, we derived the optimal numerical convergence
rate of L2-RBoosting. Second, we deduced the generalization
error bound of L2-RBoosting and demonstrated the impor-
tance of the shrinkage degree. It was shown that, under
certain conditions, the learning rate of L2-RBoosting can reach
O(m−1/2 log m), which is the same as the optimal record
for the greedy-type learning and boosting-type algorithms.
Furthermore, our results showed that although the shrinkage
degree did not affect the learning rate, it determined the con-
stant of the generalization error bound and, therefore, played
a crucial role in L2-RBoosting learning with finite samples.
Third, we proposed two schemes to determine the shrinkage
degree. The first one is the parameterized L2-RBoosting,
and the other one is to learn the shrinkage degree from
the samples directly (L2-DDRBoosting). We further provided
the theoretical optimality of these approaches. Fourth, we
compared these two approaches and proved that, although
L2-DDRBoosting avoided introducing additional parameters,
the estimator deduced from L2-RBoosting possessed a bet-
ter structure (L1 norm). Therefore, for some special weak
learners, L2-RBoosting can achieve better performance than
L2-DDRBoosting. Fifth, we developed an adaptive parameter-
selection strategy for the shrinkage degree. Our theoretical
results demonstrated that L2-RBoosting with such a shrink-
age degree selection strategy did not degrade the general-
ization capability very much. Finally, a series of numerical
simulations and real data experiments have been carried
out to verify our theoretical assertions. The obtained results
enhanced the understanding of RBoosting and could pro-
vide guidance on how to utilize L2-RBoosting for regression
tasks.

Eventually, we present the following three remarks at the
end of this paper to demonstrate the generality and potential
research or application directions of RBoosting.

Remark 17: RBoosting is a variant of boosting, which
can essentially improve the generalization performance of
boosting learning. According to [17, Remark 1], it is also
a general idea for promoting other regularized boosting-type
algorithms, such as RSBoosting [11], RTBoosting [12], and
ε-Boosting [13]. Some preliminary results about such synthe-
sized new boosting-type algorithms are shown in Fig. 4, where
the simulation settings are the same as described previously in
Section IV. The ε value is chosen from a 20 points set whose
elements are uniformly localized in [0.01, 1] for ε-Boosting,
and the truncated parameter value in RTboosting is set as that
in [12]. The results illustrate that, if the two additional parame-
ters appropriately selected, then the performance of such a syn-
thesized new boosting-type algorithm can be further improved.
However, the current primary difficulties lies in how to adjust
two additional parameters simultaneously and how to balance
the performance and additional cost (may be tremendous)

Fig. 4. Performance of synthesized new boosting-type algorithm. Left: rescale
ε-Boosting for fitting regression function m1. Right: rescale RTBoosting for
fitting regression function m9. The noise level σ = 0.5.

in practice. We will keep working on this issue and report
our progress in a future publication.

Remark 18: According to [17], the general idea of RBoost-
ing is feasible for arbitrary convex loss and can be used
to tackle both regression and classification tasks. Thus, we
also present some empirical results to reveal the relationship
between the shrinkage degree and the generalization perfor-
mance in RBoosting for classification. In the case of categori-
cal response, the response variable y typically takes on binary
values y ∈ {0, 1}, and thus, two popular choice of categorical
loss functions are utilized in boosting for classification [1]. The
one is commonly referred to as the Bernoulli loss (or logistic
loss) [1] �(y, f )Logit = log(1+ exp(−2y f )), as it is employed
in the Logitboost algorithm [40]. Another common choice is
the exponential loss function �(y, f )Ada = exp(−y f ), as used
in the Adaboost algorithm [41].

Both two categorical loss functions are utilized to illus-
trating the relationship between the shrinkage degree and
the classification error. Two real data sets are considered for
classification. The first data set is the Banknote Authentica-
tion data set [42], which contains 1372 instances that were
measured on 5 independent variables. Data were extracted
from images that were taken for the evaluation of an authen-
tication procedure for banknotes. Another data set is Breast
Cancer Wisconsin (Original) data set [43], which contains
699 instances with 10 features. It is used to identify whether
a patient suffered from breast cancer. In addition, the other
settings are the same as described previously in Section IV-B.

It can be observed in Fig. 5 that the shrinkage degree still
has a great influence on the classification error (or general-
ization performance) in Logitboost and Adaboost, which is
consistent with our analysis on L2-Boosting. It implies that
the rescale operator can be used to improve the performance
of boosting in both the regression and classification tasks.

The aim of this paper is to develop a concrete analysis only
concerning regression tasks, which is vital for the following
reasons. First, our theoretical results (Theorems 7–9) for
RBoosting and DDRBoosting are specific to the L2 loss.
For other loss functions, the theoretical behaviors need to be
further pursued. Second, as far as the L2 loss is concerned, it is
easy to deduce the close-form representation of the estimator
of DDRBoosting [27]. For other loss functions, we have not
found any works concerning the analytical solvability of the
optimization problem defined in step 3 of the DDRBoosting
algorithm. Finally, compared with logistic loss, exponential
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Fig. 5. Relationship between shrinkage degree and classification error in
Logitboost and Adaboost. (a) Bernoulli loss function. (b) Exponential loss
function. (c) and (d) Rescale Logitboost performs on Banknote Authentication
and Breast Cancer Wisconsin (Original) data sets. (e) and (f) Rescale Adaboost
performs on Banknote Authentication and Breast Cancer Wisconsin (Original)
data sets.

loss or hinge loss and L2 loss (or squared loss) are not
commonly employed for the classification and maybe badly
behaved [1], [18]. That is why, we only focus on L2-RBoosting
for the regression tasks in this paper.

Remark 19: To facilitate the use of RBoosting, a feasible
parameter-selection strategy is crucial. For this purpose, we
developed two approaches for selecting shrinkage degree for
L2-RBoosting in this paper. L2-DDRBoosting can improve the
performance of the boosting without tuning additional parame-
ters, which is superior to the other variants of boosting. How-
ever, the fact that parameterized L2-RBoosting can work better
than L2-DDRBoosting is an empirical observation, despite the
fact that their theoretical behavior is equal. We showed that
the performance of L2-DDRBoosting cannot be guaranteed
in some special cases, such as data with high-level noise or
the previous estimate f ′

k−1, which is highly linear correlate
with the current selected atom g∗

k . This motivated us to fur-
ther study some model selection strategies for parameterized
L2-RBoosting and further developed an adaptive parameter-
selection strategy for it. Assuredly, it should pay more com-
putational complexity for training and may be unsuitable for
some real-time request applications. Nonetheless, we supposed
that RBoosting may be applicable for some high-performance
requirement tasks, such as anomaly detection, informa-
tion retrieval, and so on. In addition, in the recent work,
Yang et al. [44] have already tried to apply RBoosting for
attack detection in collaborative filtering recommender sys-
tems, and the results demonstrated that it is competent for such
tasks. We plan to do more application studies for RBoosting
in our future work.

APPENDIX A
PROOF OF THEOREM 7

To prove Theorem 7, we need the following two lemmas.
The first one can be found in [17], which is a direct general-
ization of [15, Lemma 2.3].

Lemma 20: Let j0 > 2 be a natural number. Suppose that
three positive numbers c1 < c2 ≤ j0, C0 be given. Assume
that a sequence {an}∞n=1 has the following two properties.

1) For all 1 ≤ n ≤ j0

an ≤ C0n−c1

and, for all n ≥ j0

an ≤ an−1 + C0(n − 1)−c1 .

2) If for some v ≥ j0, we have

av ≥ C0v
−c1

then

av+1 ≤ av (1 − c2/v).

Then, for all n = 1, 2, . . . , we have

an ≤ 2
1+ c2

1+c1
c2−c1 C0n−c1 .

The second one can be easily deduced from
[15, Lemma 2.2].

Lemma 21: Let h ∈ span(S), f,k be the estimate defined
in Algorithm 2 and y(·) is an arbitrary function satisfying
y(xi) = yi . Then, for arbitrary k = 1, 2, . . . , we have

‖ fk − y‖m ≤ ‖ fk−1 − y‖m(
1−αk

(
1− ‖y − h‖m

‖ fk−1 − y‖m

)
+2

(
αk(‖y‖m +‖h‖L1(S))

(1 − αk)‖ fk−1 − y‖m

)2
)

.

Now, we are in a position to present the proof of Theorem 7.
Proof of Theorem 7: By Lemma 21, for k ≥ 1, we obtain

‖ fk − y‖m − ‖y − h‖m

≤ (1 − αk)(‖ fk−1 − y‖m − ‖y − h‖m)

+ C‖ fk−1 − y‖m

(
αk(‖y‖m + ‖h‖L1(S))

‖ fk−1 − y‖m

)2

.

Let

ak+1 = ‖ fk − y‖m − ‖y − h‖m .

Then, by noting ‖y‖m ≤ M , we have

ak+1 ≤ (1 − αk)ak + C
α2

k (M + ‖h‖L1(S))
2

ak
.

We plan to apply Lemma 20 to the sequence {an}. Let

C0 = max{1,
√

C}2(M + ‖h‖l1(Dn)). According to the defi-
nitions of {ak}∞k=1 and fk , we obtain

a1 = ‖y‖m − ‖y − h‖m ≤ 2M + ‖h‖L1(S) ≤ C0

and

ak+1 ≤ ak + αk‖y‖m ≤ ak + C0k−1/2.
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Let ak ≥ C0k−1/2, since αk = 2/k + u, we then obtain

ak ≤ k + u − 2

k + u
ak−1 + Cak−1k

4

C2
0 (k + u)2

(M + ‖h‖L1(S))
2

that is

ak ≤ ak−1

(
1 − 2

k + u
+ C

4k

C2
0 (k + u)2

(M + ‖h‖L1(S))
2

)

≤
(

1 −
(

1

2
+ 2u + 2

(2 + u)2

)
1

k − 1

)
.

Now, it follows from Lemma 20 with c1 = (1/2) and
c2 = (1/2) + (2u + 2/(2 + u)2) that:

an ≤ max{1,
√

C}2(M + ‖h‖L1(S))2
1+ 3(u+2)2

8u+8 n−1/2.

Therefore, we obtain

‖ fk − y‖m ≤ ‖y − h‖m + (M + ‖h‖L1(S))2
3u2+14u+20

8u+8 k−1/2.

This finishes the proof of Theorem 7. �

APPENDIX B
PROOF OF THEOREM 8

To prove Theorem 8, we shall give an error decomposition
strategy for E(πM fk)− E( fρ). The method is somewhat stan-
dard and similar to the proof [25], [45]. Let fk be defined as
in Algorithm 2 and arbitrary f ∗ ∈ spanS. Direct computation
yields

E(πM fk) − E( fρ)

= E( f ∗) − E( fρ) + Ez(πM fk) − ED( f ∗)
+ ED( f ∗) − E( f ∗) + E(πM fk) − ED(πM fk).

Upon making the shorthand notations

D(k) := E( f ∗) − E( fρ)

S(D, k) := ED( f ∗) − E( f ∗) + E(πM fk) − ED(πM fk)

and

P(D, k) := ED(πM fk) − ED( f ∗)

respectively, for the approximation error, sample error, and
hypothesis error, we have

E(πM fk) − E( fρ) = D(k) + S(D, k) + P(D, k). (B.1)

In order to give a bound for D(k), we need to use
Lemma 22, which can be easily deduced from [15] and
[25, Proposition 1, Lemma 1].

Lemma 22: If fρ ∈ Lr
1, then there exists an f ∗ ∈ spanS,

such that ‖ f ∗‖L1(S) ≤ B and

D(k) ≤ B2(k−1/2 + n−r )2. (B.2)

Now, we proceed the proof of Theorem 8.
Proof of Theorem 8: Based on Theorem 7 and the fact

‖ f ∗‖L1(S) ≤ B, we obtain

P(D, k) ≤ 2ED(πM fk) − ED
(

f ∗
k

)

≤ 2(M + B)22
3u2+14u+20

8u+8 k−1. (B.3)

Therefore, both the approximation error and hypothesis
error are deduced. The only thing remainder is to bound the
sample error S(D, k). Upon using the shorthand notations

S1(D, k) := {ED( f ∗
k ) − ED( fρ)} − {E( f ∗

k ) − E( fρ)}
and

S2(D, k) := {E(πM fk) − E( fρ)} − {ED(πM fk) − ED( fρ)}
we write

S(D, k) = S1(D, k) + S2(D, k). (B.4)

It can be found in [25, Proposition 2] that for any 0 < t < 1,
with confidence 1 − (t/2)

S1(D, k) ≤ 7
(
3M + B log 2

t

)
3m

+ 1

2
D(k). (B.5)

It also follows from [46, eq. (A.10)] that:

S2(D, k) ≤ 1

2
E(πM fk) − E( fρ) + log

2

t

Ck log m

m
(B.6)

holds with confidence at least 1 − t/2. Therefore, (B.1)–(B.6)
yield that

E(πM fk) − E( fρ)

≤ C(M+B)2
(

2
3u2+14u+20

8u+8 k−1+(m/k)−1 log m log
2

t
+ n−2r

)

holds with confidence at least 1 − t . This finishes the proof
of Theorem 8. �

APPENDIX C
PROOF OF THEOREM 9

Proof of Theorem 9: It can be deduced from [15, Th. 1.2]
and the same method as in the proof of Theorem 8. For the
sake of brevity, we omit the details. �

APPENDIX D
PROOF OF PROPOSITION 10

Proof of Proposition 10: It is easy to check that

fk = (1 − αk) fk−1 + 〈y − (1 − αk) fk−1, gk〉2gk .

As ‖gk‖ ≤ 1, we obtain from the Hölder inequality that

〈y − (1 − αk) fk−1, gk〉2 ≤ ‖y − (1 − αk) fk−1‖2

≤ (1 − αk)‖y − fk−1‖2 + αk M.

As

‖y − fk−1‖2 ≤ C(M + ‖h‖L1(S))k
−1/2 + n−r

we can obtain

‖ fk‖1 ≤ C((M + ‖h‖L1(S))k
1/2 + kn−r ).

This finishes the proof of Proposition 10. �
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APPENDIX E
PROOF OF THEOREM 14

Now, we turn to prove Theorem 14. The following concen-
tration inequality [47] plays a crucial role in the proof.

Lemma 23: Let F be a class of measurable functions on Z .
Assume that there are constants B, c > 0 and α ∈ [0, 1], such
that ‖ f ‖∞ ≤ B and E f 2 ≤ c(E f )α for every f ∈ F . If for
some a > 0 and μ ∈ (0, 2)

logN2(F , ε) ≤ aε−μ ∀ε > 0 (E.1)

then there exists a constant c′
p depending only on p, such that

for any t > 0, with probability at least 1 − e−t , there holds

E f − 1

m

m∑
i=1

f (zi )

≤ 1

2
η1−α(E f )α + c′

μη + 2

(
ct

m

) 1
2−α + 18Bt

m
∀ f ∈ F

(E.2)

where

η := max

{
c

2−μ
4−2α+μα

( a

m

) 2
4−2α+μα

, B
2−μ
2+μ

( a

m

) 2
2+μ

}
.

We continue the proof of Theorem 14.
Proof of Theorem 14: For arbitrary h ∈ span(S)

E( fk) − E(h) = E( fk) − E(h) − (ED( fk) − ED(h))

+ ED( fk) − ED(h).

Set

GR := {g(z) = (πM f (x) − y)2 − (h(x) − y)2 : f ∈ BR}.
(E.3)

Using the obvious inequalities ‖πM f ‖∞ ≤ M , |y| ≤ M a.e.,
we get the inequalities

|g(z)| ≤ (3M + ‖h‖L1(S))
2

and

Eg2 ≤ (3M + ‖h‖L1(S))
2Eg.

For g1, g2 ∈ GR , it follows that:
|g1(z) − g2(z)| ≤ (3M + ‖h‖L1(S))| f1(x) − f2(x)|.

Then

N2(GR, ε) ≤ N2,x

(
BR,

ε

3M + ‖h‖L1(S)

)

≤ N2,x

(
B1,

ε

R(3M + ‖h‖L1(S))

)
.

Using the inequality and Assumption 13, we have

logN2(FR, ε) ≤ L(R(3M + ‖h‖L1(S)))
με−μ.

By Lemma 23 with B = c = (3M + ‖h‖L1(S))
2, α = 1, and

a = L(R(3M+‖h‖1))
μ, we know that for any t ∈ (0, 1), with

confidence 1−(t/2), there exists a constant C depending only
on d , such that for all g ∈ GR

Eg − 1

m

m∑
i=1

g(zi ) ≤ 1

2
Eg + c′

μη

+ 20(3M + ‖h‖L1(S))
2 log 4/t

m
.

Here

η = ((3M + ‖h‖L1(S))
2)

2−μ
2+μ

(L(R(3M + ‖h‖L1(S)))
μ

m

) 2−μ
2+μ

.

It then follows from Proposition 10 that:
E(πM fk) − E( fρ)

≤ C log
2

t
(3M+B)2

⎛
⎝n−2r + k−1 +

(
(kn−r + √

k)μ

m

) 2−μ
2+μ

⎞
⎠.

This finishes the proof of Theorem 14. �
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