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Denoising Hyperspectral Image With
Non-i.i.d. Noise Structure
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Abstract—Hyperspectral image (HSI) denoising has been
attracting much research attention in remote sensing area due
to its importance in improving the HSI qualities. The existing
HSI denoising methods mainly focus on specific spectral and
spatial prior knowledge in HSIs, and share a common underly-
ing assumption that the embedded noise in HSI is independent
and identically distributed (i.i.d.). In real scenarios, however, the
noise existed in a natural HSI is always with much more com-
plicated non-i.i.d. statistical structures and the under-estimation
to this noise complexity often tends to evidently degenerate the
robustness of current methods. To alleviate this issue, this paper
attempts the first effort to model the HSI noise using a non-
i.i.d. mixture of Gaussians (NMoGs) noise assumption, which
finely accords with the noise characteristics possessed by a nat-
ural HSI and thus is capable of adapting various practical noise
shapes. Then we integrate such noise modeling strategy into the
low-rank matrix factorization (LRMF) model and propose an
NMoG-LRMF model in the Bayesian framework. A variational
Bayes algorithm is then designed to infer the posterior of the pro-
posed model. As substantiated by our experiments implemented
on synthetic and real noisy HSIs, the proposed method performs
more robust beyond the state-of-the-arts.

Index Terms—Hyperspectral image (HSI) denoising, low-rank
matrix factorization (LRMF), non independent and identically
distributed (i.i.d.) noise modeling.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) is captured from sen-
sors over various bands and contains abundant spatial

and spectral knowledge across all these bands beyond the
traditional gray-scale or RGB images. Due to its preserva-
tion of full-bands information under a real scene, it has been
widely used in military and civilian aspects such as terrain
detection, mineral exploration, pharmaceutical counterfeiting,
vegetation and environmental monitoring [16]. In real cases,
however, an HSI is always corrupted by noises due to equip-
ment limitations, such as sensor sensitivity, photon effects and
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calibration error. Besides, due to the limited radiance energy
and generally narrow band width, the energy captured by each
sensor might be low and thus the shot noise and thermal noise
then always happen inevitably. These noise severely degrades
the quality of the imagery and limits the performance of the
subsequent processing, e.g., classification [39], unmixing [2],
and target detection [41], on data. Therefore, it is a critical pre-
processing step to reduce the HSI noise [20], [38] to a general
HSI processing task.

The simplest denoising way is to utilize the traditional 2-D
or 1-D denoising methods to reduce noise in the HSI pixel
by pixel [17] or band by band [12], [14], [29], [40], [46].
However, this kind of processing method ignores the correla-
tions between different spectral bands or adjacent pixels, and
often results in a relatively low-quality result. Recently, more
efficient methods have been proposed to handle this issue. the
main idea is to elaborately encode the prior knowledge on
the structure underlying a natural HSI, especially the char-
acteristic across the spatial and spectral dimensionality. For
example, Othman and Qian [37] made an initial attempt to
this issue by designing a hybrid spatial-spectral derivative-
domain wavelet shrinkage model based on the dissimilarity of
the signal regularity existing along the space and spectrum of
a natural HSI. And then Chen and Qian [6] proposed another
approach to encoding both spatial and spectral knowledge by
combining the bivariate wavelet thresholding with principal
component analysis. To further enhance the denoising capa-
bility, Yuan et al. [47] employed a spectral-spatial adaptive
total variation. Later, Chen et al. [10] proposed a spatially
adaptive weighted prior by combining the smoothness and
discontinuity preserving properties along the spectral domain.
By further considering the spatial and spectral dependencies,
Zhong and Wang [52] proposed a multiple-spectral-band CRF
(MSB-CRF) model in a unified probabilistic framework.

Besides, by explicitly treating HSI data as a tensor,
a series of methods that expanding wavelet-based method
from 2-D to 3-D has been proposed [45]. For example,
Dabov et al. [11] designed VBM3D method by apply-
ing the concepts of grouping and collaborative filtering to
video denoising. Then, Letexier and Bourennane [27] pro-
posed a generalized multidimensional Wiener filter for denois-
ing HSI. Similarly, Chen and Qian [7] extended Sendur
and Selesnick’s bivariate wavelet thresholding from 2-D
image denoising to 3-D data cube denoising. For better
denoising results, Chen and Zhu [8] proposed a new signal
denoising algorithm by using neighboring wavelet coeffi-
cients, which considered both translation-invariant (TI) and
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non-TI versions. Later, as an extension of BM3D method,
Maggioni et al. [31] presented BM4D model. Meanwhile,
another type of method that based on tensor decomposition
has appeared. Karami et al. [25] developed a genetic kernel
Tucker decomposition algorithm to exploit both spectral and
the spatial information in HSIs. To address the uniqueness of
multiple ranks of Tucker decomposition, Liu et al. [30] pro-
posed PARAFAC method that make the number of estimated
rank reduced to one. Later, Peng et al. [38] proposed a decom-
posable nonlocal tensor dictionary learning (TDL) model,
which fully considered the nonlocal similarity over space and
the global correlation across spectrum. Among these methods,
BM4D and TDL achieved the state-of-the-art performance in
more general noisy MSI cases.

Most of current HSI denoising methods have mainly con-
sidered the HSI prior spectral and spatial knowledge into their
methods, while only use L2 loss term to rectify the deviation
between the reconstruction and the original HSI. In the view-
point of statistical theory, the utilization of such loss term
implies that the HSI data noise follows an independent and
identically distributed (i.i.d.) Gaussian distribution. However,
in real scenarios, HSI noises generally have more complicated
statistical structures. This means that such easy loss term is
too subjective to reflect the real cases and inclines to degen-
erate the performance of the methods in more complex while
more realistic non-i.i.d. noise case.

The idea of considering more complex HSI noise beyond
only Gaussian in HSI denoising has been attracting attention
very recently in the framework of low-rank matrix analysis.
Since adjacent HSI bands usually exhibit strong correlations,
by reshaping each band as a vector and stacking all the vec-
tors into a matrix, the reshaped HSI matrix can be assumed to
be with low rank. Various low-rank matrix models have been
presented in different noise scenes in recent decades. Along
this line, the classical low-rank matrix factorization (LRMF)
model is presented [35], [36] for Gaussian noise, and its global
optimal solution can be directly obtained by using singular
value decomposition (SVD) [18]. To add more robustness, the
L1-norm LRMF [13], [15], [24], [26] is generally used and
many algorithms have been designed to solve this model, such
as L1 Wiberg [15], CWM [34], and RegL1ALM [51]. This
L1-norm LRMF model actually assumes an i.i.d. Laplacian
noises embedded in data. To handle more complex noise
cases, [33] modeled the noise as more adaptable i.i.d. mixture
of Gaussians (MoGs) distributions to represent noise. Such
noise modeling idea was further extended to the Bayesian
framework in [9], to RPCA in [50] and to the tensor fac-
torization in [44]. Very recently, Cao et al. [4], [5] modeled
the noise as a more general i.i.d. mixture of exponential
power (MoEP) distribution, which achieves competitive per-
formance in HSI denoising under real noise scenarios. Besides,
some other attempts have also been proposed to model the
noise as a combination of sparse and Gaussian noise [1], and
Zhang et al. [49] also utilized this idea for HSI denoising
task. Later, He et al. [20] further enhanced the capability of
the method by adding a TV regularization to low-rank recon-
struction. Besides, based on the mixture noise assumption,
He et al. [19] proposed a noise-adjusted low-rank methods
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Fig. 1. (a) Different bands of images in the original HSI. (b) Restored
HSIs obtained by our proposed method. (c) Extracted noise by the proposed
method. (d) Histograms of the noise in all bands.

and Wang et al. [42] proposed a GLRR denoising method for
the reconstruction of the corrupted HSIs. All these approaches
also achieve good performance on HSI denoising in mixed
noise cases.

From Gaussian noise assumption to MoEP noise assump-
tion, such advancements make the model more adaptive to
various HSI noises encountered in practice. However, all of the
aforementioned LRMF models just simply assume that the HSI
noise is i.i.d., which is more or less deviated from the practical
scenarios, where the noises in an HSI is generally with non-
i.i.d. configurations. In this sense, there is still a large room
to further improve the capability of current HSI denoising
techniques especially under real complicated scenarios.

To make this point clearer, let us try to analyze some evi-
dent noise characteristics possessed by a practical HSI. Fig. 1
presents an HSI for auxiliary understanding. First, an image
in a band is generally collected under the similar sensor set-
ting, and thus the i.i.d. distribution is a rational assumption
for the noise over the elements in the band. This can be evi-
dently observed from the band-noise of the HSI image shown
in Fig. 1. Second, due to the difference of the sensor sensi-
tivity for collecting images located in various HSI bands, the
noise of different-band-images always depicts evident distinc-
tions [19]. From Fig. 1, it is easy to see that images located
in some bands are very clean, while are extremely noisy in
some others [16], [48]. Third, albeit different, the noise dis-
tributions along different bands have certain correlation. For
example, along adjacent bands, the noise tends to be more
or less similar since images on neighboring spectrums are
generally collected under small deviation of sensor settings
and wavelength [52]. From Fig. 1, it is easy to see the noise
similarity for images located in 189-191 bands. Accordingly,
the real HSI noise distribution is generally non-i.i.d. and
has a more complicated configurations than the i.i.d. noise
assumption of the current HSI denoising techniques. Such
deviation inclines to make their performance degenerate under
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more practical cases, which will be clearly observed in our
experiments.

To address this issue, this paper proposes a new noise
modeling framework, by carefully designing noise distribu-
tion structure to make it possibly faithfully deliver the real
HSI noise configurations. Specifically, we model the noise
of each HSI band with different MoG distributions. Besides,
MoG parameters across different bands are encoded under a
similar top-level prior distribution, representing the correlation
between noise distributions across different bands. In this way,
the non-i.i.d. noise structure under a practical HSI image can
be more properly encoded and an appropriate HSI denoising
effect is thus to be expected.

In this paper, we embed such noise modeling framework
into the LRMF realization, which easily assumes a low-rank
structure (both spatial and spectral) of the to-be-recovered HSI.
Our experimental results show that, even under this simple
setting of HSI structure, such noise modeling idea can help
evidently enhance the HSI denoising ability beyond previous
techniques.

The rest of this paper is organized as follows. The proposed
model and the corresponding variational inference algorithm
are presented in Section II. Experimental results are shown
in Section III. Finally, conclusions are drawn in Section IV.
Throughout this paper, we denote scalars, vectors, matrices,
and tensors as nonbold letters, bold lower case letters, bold
upper case letters, and decorated letters, respectively.

II. NON-I.I.D. MOG METHOD FOR HSI DENOISING

In this section, we first introduce our non-i.i.d. noise
encoding strategy and then propose a non-i.i.d. MoG LRMF
(NMoG-LRMF) model by using this strategy in the LRMF
model for HSI denoising. Finally, the corresponding varia-
tional inference algorithm for the proposed model is designed.

A. Non-i.i.d. Noise Encoding

Let us represent a given HSI as a matrix Y ∈ R
N×B, where

N and B mean the spatial and spectral dimensions of the HSI,
respectively. By assuming that noise is addictive, we have

Y = L+ E (1)

where L ∈ R
N×B denotes the clean HSI and E ∈ R

N×B denotes
the embedded noise.

Owing to the three intrinsic properties possessed by HSI
noise.

1) Noise of an image located in the same band are i.i.d.
2) Noise of images located in different bands are

nonidentical.
3) Noise distributions in different bands are correlated, we

can present a proper model for noises in an HSI.
Via the above properties 1 and 2 of HSI noise structure,

we model noise located in each band as an independent MoG
distribution while assume that the parameters for MoG distri-
butions in different bands are different. The MoG is utilized
due to its universal approximation capability for any con-
tinuous densities [32], which has been extensively used and
studied in [33] and [50].

Fig. 2. Graphical model of NMoG-LRMF. Yij denotes the ith HSI element
in its jth band. ui and vj are columns of low-rank matrix U and V , respec-
tively, generated from a Gaussian distribution with precise γ , with Gamma
prior distribution with hyper-parameters ξ0 and δ0. The portion in the red
box corresponds to the noise encoding part. μj, τ j are the k-dimensional vec-
tors representing the mean and variance of all MoG components in the jth
band, with hyper-parameters β0, m0, d, c0, where d is with hyper-parameters
η0, λ0. zij is the hidden variable generated from Multinomial distribution with
parameter π j, with hyper-parameters α0.

Express eij as the element located in ith row and jth col-
umn of the noise matrix E, and as aforementioned, the noise
distribution located in the jth band can be modeled as

p(eij) =
K∑

k=1

πjkN
(

eij|μjk, τ
−1
jk

)
(2)

where πjk is the mixing proportion with πjk ≥ 0 and∑K
k=1 πjk = 1, K is the Gaussian component number, μjk and

τjk are mean and precision of the kth Gaussian component in
the jth band, respectively. Note that MoG parameters πjk, μjk,
and τjk are different, implying different MoG distributions
across different bands.

We then consider the noise property 3, and can further pro-
vide the hypothesis that MoG parameters μjs and τ js of all
bands are generated from a two-level prior distribution

μjk, τjk ∼ N
(
μjk|m0,

(
β0τjk

)−1
)

Gam
(
τjk|c0, d

)

d ∼ Gam(d|η0, λ0) (3)

where Gam(·) represents the Gamma distribution. In this way,
the correlation between noise distributions among different
bands is then rationally encoded. Through introducing a latent
variable zijk, we can equivalently rewrite (2) as

eij ∼
K∏

k=1

N
(

eij|μjk, τ
−1
jk

)zijk

zij ∼ Multinomial
(
zij|π j

)

π j ∼ Dir
(
π j|α0

)
(4)

where Multinomial(.) and Dir(.) represent the multinomial and
Dirichlet distributions, respectively. Then, (3) and (4) together
encode the noise structure embedded in an HSI. Fig. 2 shows
the graphical model for noise encoding within the red box. All
involved parameters can be inferred from data, as introduced
in Section II-C.
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B. NMoG-LRMF Model

Readily employing the low-rank structure of a clean HSI,
we can encode the prior structure of the latent HSI matrix L.
Specifically, let us consider the following LRMF model:

Y = UVT + E (5)

where L = UVT implies the low-rank structure underlying the
clean HSI.

For most deterministic LRMF model, the rank r of matrix
L is fixed. By modeling the problem into certain generative
model [1], [50], the rank can also be adaptively learned from
data. Specifically, suppose the columns of U and V are gen-
erated from Gaussian distribution. For l = 1, 2, . . . , R, where
R is a preset larger value beyond the true rank r, then

u·l ∼ N
(

u·l|0, γ−1
l IN

)
, v·l ∼ N

(
v·l|0, γ−1

l IB

)
(6)

where u·l and v·l are the lth columns of U and V, respectively.
IN(IB) denotes the N × N(B × B) identity matrix. γl is the
precision of u·l and v·l with prior as follows:

γl ∼ Gam(γl|ξ0, δ0). (7)

Note that each column pair u·l and v·l of U, V has the same
sparsity profile characterized by the common precision vari-
able γl. It has been validated that such a modeling could lead
to large precision values of some γls, and hence is capable of
automatically conducting low-rank estimate of L [1].

Combining (2)–(7) together, we can construct the full
NMoG-LRMF Bayesian model. And the graphical model rep-
resentation of this model is shown in Fig. 2. The goal turns
to infer the posterior of all involved variables

p(U, V,Z,μ, τ ,π , γ , d|Y) (8)

where Z = {zij}N×B, μ = {μjk}B×K , τ = {τjk}B×K , π =
(π1, . . . ,πB), and γ = (γ1, . . . , γR).

C. Variational Inference

We use variational Bayes (VB) method [3] for posterior
inference. Specifically, VB aims to use a variational distri-
bution q(θ) to approximate the true posterior p(θ |D), where
θ denotes the set of parameters and D denotes the observed
data. To achieve this goal, we need to solve the following
optimization problem:

min
q∈C KL(q(θ)||p(θ |D)) = −

∫
q(θ) ln

{
p(θ |D)

q(θ)

}
dθ (9)

where KL(q||p) represents the KL divergence between two
distributions q and p, and C denotes the constraint set
of probability densities to make the minimization tractable.
Assuming C is the distribution family which can be factor-
ized with respect to some disjoint groups: q(θ) = ∏i qi(θ i),
the closed-form optimal solution q∗i (θ i) can be obtained by

q∗i (θ i) = exp
{〈ln p(θ, D)〉θ\θ i

}
∫

exp
{〈ln p(θ, D)〉θ\θ i

} (10)

where 〈·〉 denotes the expectation and θ\θ i denotes the set of
θ with θ i removed.

Then we can analytically infer all the factorized distributions
involved in (8). Suppose that the approximation of posterior
distribution (8) possesses a factorized form as follows:

q(U, V,Z, μ, τ, π, γ, d) =
∏

i

q(ui·)
∏

j

q(vj·)
∏

ij

q(zij)

×
∏

j

q
(
μj, τj

)
q(πj)

∏

l

q(γl)q(d) (11)

where ui· (vj·) are the ith ( jth) row of matrix U(V), respec-
tively. According to (10), we can get the closed-form inference
equation for each component of (11).1

1) Estimation of Noise Component: We first list the updat-
ing equation for the noise components involved in (11). The
posterior distribution of mean and precision for noise in each
band is updated by the following equation:

q∗
(
μj,τ j

) =
∏

k

N

(
μjk|mjk,

1

βjkτjk

)
Gam

(
τjk|cjk, djk

)
(12)

where the parameters in the above equation can be calculated
from data in the following way:

mjk = 1

βjk

{
+β0m0

∑

i

〈zijk〉
(
Yij − 〈μjk〉

)
}

(13)

βjk = β0 +
∑

i

〈
zijk
〉
, cjk = c0 + 1

2

∑

i

〈
zijk
〉

(14)

djk = 〈d〉 + 1

2

⎧
⎨

⎩
∑

i

〈
zijk
〉〈(

Yij − ui·vT
j·
)2
〉
+ β0m2

0

− 1

βjk

[
∑

i

〈zijk〉
(

Yij − ui·vT
j·
)
+ β2

0 m2
0

]2
⎫
⎬

⎭.

(15)

The update equation of the latent variable Z is

q∗(zij) =
∏

k
�

zijk
ijk (16)

where the involved parameters are calculated by

�ijk = ρijk

/∑

k

ρijk

ln ρijk =
〈
ln πjk

〉− ln
√

2π + 〈ln τjk
〉/

2

−
〈
τjk

(
Yij − μjk − ui·vT

j·
)2
〉/

2. (17)

Similarly, the update equation for the mixing proportion π j

over the jth band can be written as

q∗(π j) =
∏

k
π

αjk−1
jk (18)

where αjk = α0 +∑i 〈zijk〉.
The update equation on the hyper-parameter d is

q∗(d) = Gam(d|η, λ) (19)

where η = η0 + c0KB and λ = λ0 +∑j,k 〈τjk〉.
1Inference details to obtain these equations can be referred to in

http://dymeng.gr.xjtu.edu.cn.
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2) Estimation of Low-Rank Component: Completing the
component update for noise, we then estimate the poste-
rior of low-rank component ui·(i = 1, . . . , N) and vj·( j =
1, . . . , B) as

q∗(ui·) = N
(
ui·|μui· ,�ui·

)
(20)

where

μui· =
⎧
⎨

⎩
∑

j,k

〈
zijk
〉〈
τjk
〉(

Yij −
〈
μjk
〉)〈

vj·
〉
⎫
⎬

⎭�ui·

�ui· =
⎧
⎨

⎩
∑

j,k

〈
zijk
〉〈
τjk
〉〈

vT
j·vj·
〉
+ 〈�〉

⎫
⎬

⎭

−1

q∗
(
vj·
) = N

(
vj·|μvj· ,�vj·

)
(21)

where

μvj· =
⎧
⎨

⎩
∑

i,k

〈
zijk
〉〈
τjk
〉(

Yij −
〈
μjk
〉)〈ui·〉

⎫
⎬

⎭�vj·

�vj· =
⎧
⎨

⎩
∑

i,k

〈
zijk
〉〈
τjk
〉〈

uT
i·ui·
〉+ 〈〉

⎫
⎬

⎭

−1

(22)

where � = diag(〈γ 〉). For γl which controls the rank of U
and V, we have

q∗(γl) = Gam(γr|ξl, δl) (23)

where

ξl = ξ0 + (m+ n)/2

δl = δ0 +
∑

i

〈
u2

il

〉/
2+
∑

j

〈
v2

jl

〉/
2

m and n represent the image size among the spatial dimen-
sion. As discussed by Babacan et al. [1], some γls tend to be
very large during the inference process and the corresponding
rows will be removed from U and V. The low-rank purpose
can thus be rationally conducted. In all our experiments, we
just automatically infer the rank of the reconstructed matrix
through throwing away those comparatively very large γl as
previous literatures did [50].

The proposed variational inference method for the NMoG-
LRMF model can then be summarized in Algorithm 1.

3) Setting of Hyper-Parameters: We set all the hyper-
parameters involved in our model in a noninformative manner
to make them possibly less affect the inference of posterior
distributions [3]. Throughout our experiments, we set m0 as
0, and α0, β0, c0, d0, η0, λ0, ξ0, δ0 as a small value 10−3. Our
method performs stably well under such easy settings.

III. EXPERIMENTAL RESULTS

In this section, to evaluate the performance of the proposed
NMoG-LRMF method, we conducted a series of experiments
on both synthetic and real HSI data. Compared methods
include LRMR [49] and LRTV [20], considering deter-
ministic Gaussian noise and sparse noise. Meanwhile, five
representative low-rank matrix analysis methods considering

Algorithm 1 NMoG-LRMF Algorithm

Input: the original HSI matrix Y ∈ R
N×B, Gaussian component

number K, and maximum iteration number.
Output: Uopt = Ut, Vopt = Vt.
Initialization: Parameters (m0, β0, c0, d0, η0, λ0) in noise prior.

Low-rank components U0, V0 and α0 parameters in model prior
(ξ0, δ0); t = 1.

1: while not coverged do
2: Update approximate posterior of noise component Z t, π t by

Eq. (16)-(18).
3: Update approximate posterior of noise component μt, τ t by

Eq. (12)-(15).
4: Update approximate posterior of noise component dt by Eq.

(19).
5: Update approximate posterior of low-rank component Ut, Vt

by Eq. (20)-(22).
6: Update approximate posterior of parameters in noise compo-

nent γ t by Eq. (23).
7: t← t + 1.
8: end while

different kinds of i.i.d. noise distributions were also consid-
ered for comparison, including PMoEP [4] (assuming i.i.d.
MoEP noise), MoG-RPCA [50] (assuming i.i.d. MoG noise),
RegL1ALM [51], CWM [34] (assuming i.i.d. Laplace noise),
and SVD [18] (assuming i.i.d. Gaussian noise). Besides, the
performance of TDL [38] and BM4D [31] are also compared,
and both methods represent the state-of-the-art methods for
HSI denoising by considering HSI priors. All experiments
were implemented in MATLAB R2014b on a PC with
3.4-GHz CPU and 32-GB RAM.

A. Simulated HSI Denoising Experiments

In this experiment, we focus on the performance of NMoG-
LRMR in HSI denoising with synthetic noise. Two HSIs were
employed: Washington DC Mall2 with size of 1208×307×191
and RemoteImage3 provided by Liu et al. [28] with size of
205 × 246 × 96. After cropping the main part of HSI and
deleting some evident visual contaminative spectral channels,
Washington DC Mall and RemoteImage are resized to 200×
200 × 160 and 200 × 200 × 89, respectively. The gray value
of HSIs are normalized into [0, 1].

Real-world HSIs are usually contaminated by several dif-
ferent types of noise, including the most common Gaussian
noise, impulse noise, dead pixels or lines, and stripes [49]. In
order to simulate these real HSI noise scenarios, we added six
kinds of noises to the original HSI data.

1) i.i.d. Gaussian Noise: Entries in all bands were cor-
rupted by zero-mean i.i.d. Gaussian noise N(0, σ 2) with
σ = 0.05.

2) Non-i.i.d. Gaussian Noise: Entries in all bands were
corrupted by zero-mean Gaussian noise with different
intensity. The signal noise ratio (SNR) value of each
band is generated from uniform distribution with value
in the range of [10, 20]dB.

3) Gaussian + Stripe Noise: All bands were corrupted by
Gaussian noise as case 2. Besides, 40 bands in DCmall

2http://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
3http://peterwonka.net/Publications/code/LRTC_Package_Ji.zip

http://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://peterwonka.net/Publications/code/LRTC_Package_Ji.zip
http://peterwonka.net/Publications/code/LRTC_Package_Ji.zip
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TABLE I
PERFORMANCE COMPARISON OF ALL COMPETING METHODS ON DCMALL DATA

TABLE II
PERFORMANCE COMPARISON OF ALL COMPETING METHODS ON REMOTEIMAGE DATA

data (30 bands in RemoteImage data) were randomly
chosen to add stripe noise. The number of stripes in
each band is from 20 to 40.

4) Gaussian + Deadline Noise: Each band was contam-
inated by Gaussian noise as case 2. Forty bands in
DCmall data (30 bands in RemoteImage data) were cho-
sen randomly to add deadline noise. The number of
deadline is from 5 to 15.

5) Gaussian + Impulse Noise: All bands were corrupted
by Gaussian noise as case 2. Forty bands in DCmall
(30 bands in RemoteImage data) were randomly chosen
to added impulse noise with different intensity, and the
percentage of impulse is from 50% to 70%.

6) Mixture Noise: Each band was randomly corrupted by
at least one kind of noise mentioned in case 2–5.

Three criteria were utilized to measure performance.
1) MPSNR [23]: Mean of peak SNR (PSNR) over all bands

between clean HSI and recovered HSI.
2) MSSIM [43]: Mean of structural similarity (SSIM)

between clean HSI and recovered HSI over all bands.
3) Time: Time cost of each method used to complete the

denoising process.
The parameters of competing methods are set as follows:

the block size in LRMR is 20× 20×B and the step size is 4.
For LRTV, ε1 = ε2 = 10−8 and λ = 1/

√
NB. For TDL, we set

the block size as 6× 6×B and the step size is 2. For BM4D,
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(a) (b) (c) (d) (e) (f)

Fig. 3. Each column shows the average PSNR and SSIM measurements among 20 initializations of all methods under certain type of noise in DCmall data.
(a) Gaussian noise. (b) Gaussian + stripe noise. (c) Gaussian + deadline noise. (d) Gaussian + impulse noise. (e) Mixture noise. The demarcated area of the
subfigure indicates the curve locality on a larger scale.

(a) (b) (c) (d) (e) (f)

Fig. 4. Each column shows the average PSNR and SSIM measurements among 20 initializations of all methods under certain type of noise in RemoteImage
data. (a) Gaussian noise. (b) Gaussian + Stripe noise. (c) Gaussian + deadline noise. (d) Gaussian + impulse noise. (e) Mixture noise.

we set the block size as 8 × 8 × 64 and the step size is 4.
For NMoG-LRMF method, The component number K in each
band was fixed as 1 in cases 1 and 2, and 3 in cases 3–6. The
rank of all low-rank based methods is set as 5 in DCmall data
experiment and 4 in RemoteImage data experiment. All param-
eters involved in the competing methods were carefully tuned
or specified as suggested by the related literatures to guaran-
tee their possibly good performance. All competing methods
run with 20 random initializations in each noise case, and the
average result is reported.

The results of all competing methods in DCmall and
RemoteImage HSI data are shown in Tables I and II, respec-
tively. The superiority of the proposed method can be easily
observed, except in the i.i.d. Gaussian noise case, which
complies with the basic noise assumption of conventional
methods. In i.i.d. Gaussian case, instead of only using the
simple low-rank prior in our method, multiple competing
methods, like TDL, BM4D and LRMR, utilize more useful

HSI priors in their model, and thus tend to have relatively
better performance. While on more complex but more prac-
tical complicated non-i.i.d. noise cases, the advantage of the
proposed method is evident. This can be easily explained by
the better noise fitting capability of the proposed method, i.e.,
it can more properly extract noises embedded in HSI, which
then naturally leads to its better HSI recovery performance.

Furthermore, it also can be seen that the computational cost
of the proposed method is with almost similar order of magni-
tude with other competing methods, except the known SVD,
which we use the mature toolkit in MATLAB and can be
implemented very efficiently. Considering its better capability
in fitting much wider range of noises than current methods, it
should be rational to say that the proposed method is efficient.

We further show the PSNR and SSIM measurements across
all bands of the HSI under six types of noise settings in
two experiments in Figs. 3 and 4, respectively. From the fig-
ures, it is easy to see that TDL obtains the best PSNR and
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 5. Restoration results of band 75 under mixture noise in DCmall data. (a) Original HSI. (b) Noisy HSI. (c) SVD. (d) RegL1ALM. (e) CWM.
(f) MoG-RPCA. (g) PMoEP. (h) LRMR. (i) LRTV. (j) TDL. (k) BM4D. (l) NMoG.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6. Restoration results of band 86 under mixture noise in RemoteImage data. (a) Original HSI. (b) Noisy HSI. (c) SVD. (d) RegL1ALM. (e) CWM.
(f) MoG-RPCA. (g) PMoEP. (h) LRMR. (i) LRTV. (j) TDL. (k) BM4D. (l) NMoG.

SSIM values across all bands in the i.i.d. Gaussian noise. In
overwhelming majority of other more complex noise cases,
NMoG-LRMF achieves the best PSNR and SSIM values
across almost all bands. This verifies the robustness of the
proposed method over entire HSI bands.

Figs. 5 and 6 give the restoration results of two typical
bands in DCmall and RemoteImage HSIs, respectively. The
original HSIs are corrupted by MoG, stripes, deadline, and
impulse noise. It can be observed that the competing meth-
ods SVD, RegL1ALM, TDL, and BM4D can hardly remove
this complex mixture noise from the images. We can also see
that although CWM, MoG-RPCA, PMoEP, LRMR, and LRTV
have a better denoising performance, the restored HSI still

relatively blur many details or maintain some noise as com-
pared with the ground truth. Comparatively, our NMoG-LRMF
method achieves better reconstruction effect both visually
and quantitatively, and both finely removes the unexpected
noises, and better recovers HSI details like edges and
textures.

B. Real HSI Denoising Experiments

In this section, we evaluate the performance of the pro-
posed method on two real HSI datasets, Urban dataset4 and

4http://www.tec.army.mil/hypercube

http://www.tec.army.mil/hypercube
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 7. Restoration results of all methods on band 103 in Urban HSI data. (a) Original HSI. (b) SVD. (c) RegL1ALM. (d) CWM. (e) MoG-RPCA.
(f) PMoEP. (g) LRMR. (h) LRTV. (i) TDL. (j) BM4D. (k) NMoG.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 8. Restoration results of all methods on band 207 in Urban HSI data. (a) Original HSI. (b) SVD. (c) RegL1ALM. (d) CWM. (e) MoG-RPCA.
(f) PMoEP. (g) LRMR. (h) LRTV. (i) TDL. (j) BM4D. (k) NMoG.

EO-1 Hyperion dataset.5 The similar competing methods as
the last section were compared in the real HSI experiments.
Like the synthetic experiments, all involved parameters have
been finely tuned or directly suggested by the original refer-
ences to promise a possibly well performance of all competing
methods. The component number of each band in the proposed
method is set as 3 throughout all experiments. The gray value
of HSIs were normalized into [0, 1]. The first Urban dataset
is of the size 307× 307× 210, and some bands are seriously
polluted by atmosphere and water. We use all of data without
removing any bands to more rationally verify the robustness
of the proposed method in the presence of such heavy noises.

Figs. 7 and 8 present bands 103 and 207 of the Urban
HSI obtained by all competing methods, respectively. From
the figures, we can see that the original HSI bands are

5http://datamirror.csdb.cn/admin/dataEO1Main.jsp

contaminated by complex structural noise, like the stripe noise.
It can be easily observed from Figs. 7(b)–(f) and 8(b)–(f)
that the LRMF methods with different i.i.d. noise distribution
assumptions cannot finely restore a clean HSI. This can be eas-
ily explained by the fact that such structural noises is obvious
non-i.i.d. and the deviation between the real noise configura-
tion and the encoded knowledge in the model then naturally
degenerate the performance of the corresponding methods.
Comparatively, albeit considering less prior knowledge on the
to-be-recovered HSI, our method can still achieve a better
recovery effect in visualization in its better restoration of tex-
ture and edge details and less preservation of structural noises
due to its powerful noise modeling ability. This further sub-
stantiates the robustness of the proposed method in practical
scenarios.

Then we give some quantitative comparison by showing
the horizontal mean profiles of band 207 in Urban dataset

http://datamirror.csdb.cn/admin/dataEO1Main.jsp
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 9. Horizontal mean profiles of band 207 in Urban HSI data. (a) Original HSI. (b) SVD. (c) RegL1ALM. (d) CWM. (e) MoG-RPCA.
(f) PMoEP. (g) LRMR. (h) LRTV. (i) TDL. (j) BM4D. (k) NMoG.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 10. Restoration results of all methods on band 100 in EO-1 Hyperion data. (a) Original HSI. (b) SVD. (c) RegL1ALM. (d) CWM. (e) MoG-RPCA.
(f) PMoEP. (g) LRMR. (h) LRTV. (i) TDL. (j) BM4D. (k) NMoG.

before and after restoration in Fig. 9. The horizontal axis in
the figure represents the row number, and the vertical axis rep-
resents the mean digital number value of each row. As shown
in Fig. 9(a), due to the existence of mixed noise, there are
rapid fluctuations in the curve. After the restoration process-
ing, the fluctuations are more or less suppressed. It is easy to
observe that the restoration curve of our NMoG-LRMF method
provides evidently smoother curves.

The second Hyperion dataset is of the size 3128×256×242
and some bands are so seriously polluted that all signatures
of pixel is equal 0. Thus we only use a subset of its 198
bands in this experiment after removing those zero signa-
tures bands 1–7, 58–76, and 225–242, which are evidently
outliers without any intrinsically useful information. We fur-
ther spatially cropped a square area from the HSI with size
256× 256× 198 with relatively evident noises to specifically
testify the denoising capability of a utilized method.

Figs. 10 and 11 show bands 100 and 197 of the restored
HSI images by all competing methods. From the figures, it

can be easily observed that SVD and TDL methods have little
effects in removing the noise; RegL1ALM and CWM meth-
ods can only partially eliminate the noise and MoG-RPCA,
PMoEP, LRMR, and LRTV methods have a better perfor-
mance than SVD, RegL1ALM, and CWM due to their better
noise fitting ability brought by more appropriate models. They,
however, still miss lots of details in their HSI recovery due
to their implicit improper i.i.d. assumptions on noise distri-
butions under HSI. All other competing methods also cannot
achieve a satisfactory HSI denoising results even though they
have considered more HSI prior knowledge in their mod-
els. Comparatively, the superiority of the proposed method
can be easily observed in both detail preservation and noise
removing.

Fig. 12 shows the vertical mean profiles of band 100 before
and after restoration. As shown in Fig. 12(a), due to the exis-
tence of mixed noise especially the stripes disorderly located
in the image, there are evident fluctuations over various places
of the curve. After the restoration processing, all competing
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 11. Restoration results of all methods on band 197 in EO-1 Hyperion data. (a) Original HSI. (b) SVD. (c) RegL1ALM. (d) CWM. (e) MoG-RPCA.
(f) PMoEP. (g) LRMR. (h) LRTV. (i) TDL. (j) BM4D. (k) NMoG.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 12. Vertical mean profiles of band 100 in EO-1 Hyperion data. (a) Original HSI. (b) SVD. (c) RegL1ALM. (d) CWM. (e) MoG-RPCA. (f) PMoEP.
(g) LRMR. (h) LRTV. (i) TDL. (j) BM4D. (k) NMoG.

(a) (b)

Fig. 13. Stability test of the proposed method to Gaussian component number
K on DC Mall data in Gaussian + impulse noise and mixture noise cases.
(a) MPSNR tendency curve with respect to K. (b) MSSIM tendency curve
with respect to K.

methods show evident nonsmoothness over the correspond-
ing curves, except that obtained from the proposed one. This
implies that the HSI obtained by proposed NMoG-LRMF
method can better preserve such prior knowledge possessed
by real HSIs, as also substantiated by Fig. 9.

C. Effect of Component Number on Denoising Performance

In this section, we examine the sensitivity of NMoG-LRMF
method to the setting of the Gaussian component number K.
We run NMoG-LRMF with 20 initializations on the DC Mall
data in Gaussian + impulse noise and mixture noise cases,
respectively, with K varying from 1 to 10. The results are
shown in Fig. 13. It can be easily observed that after K is larger
than 2, the denoising performance of the proposed method
tends to be stable and not very sensitive to the choice of K
value. Actually, in all our real experiments, we just simply
set K as 3, and our method can consistently perform well
throughout all our experiments.

IV. CONCLUSION

In this paper, we initially propose a strategy to model the
HSI noise using a non-i.i.d. noise assumption. Then we embed
such noise modeling strategy into the LRMF model and pro-
pose a non-i.i.d LRMF model under the Bayesian framework.
A VB algorithm is presented to infer the posterior of the
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proposed model. Compared with the current state-of-the-arts
techniques, the proposed method performs more robust due to
its capability of adapting to various noise shapes encountered
in applications, which is substantiated by our experiments
implemented on synthetic and real noisy HSIs.

In our future work, we will try to extend the application
of our method to video and face image data. Also, we will
integrate more useful HSI prior terms into our model to further
enhance its denoising capability. Besides, the proposed noise
modeling strategy can be specifically redesigned under certain
application context, like the wind speed prediction problem as
indicated in [21] and [22].
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