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Unsupervised PolSAR Image Classification
Using Discriminative Clustering
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Abstract— This paper presents a novel unsupervised image
classification method for polarimetric synthetic aperture radar
(PolSAR) data. The proposed method is based on a discriminative
clustering framework that explicitly relies on a discriminative
supervised classification technique to perform unsupervised clus-
tering. To implement this idea, we design an energy function
for unsupervised PolSAR image classification by combining a
supervised softmax regression model with a Markov random
field smoothness constraint. In this model, both the pixelwise
class labels and classifiers are taken as unknown variables to be
optimized. Starting from the initialized class labels generated
by Cloude–Pottier decomposition and K -Wishart distribution
hypothesis, we iteratively optimize the classifiers and class labels
by alternately minimizing the energy function with respect to
them. Finally, the optimized class labels are taken as the clas-
sification result, and the classifiers for different classes are also
derived as a side effect. We apply this approach to real PolSAR
benchmark data. Extensive experiments justify that our approach
can effectively classify the PolSAR image in an unsupervised way
and produce higher accuracies than the compared state-of-the-art
methods.

Index Terms— Discriminative clustering, Markov random field
(MRF), polarimetric synthetic aperture radar (PolSAR) image
classification, softmax regression (SR) model.

I. INTRODUCTION

POLARIMETRIC synthetic aperture radar (PolSAR) is an
active microwave remote sensing radar system that can

obtain scattering characteristics of diverse terrains by trans-
mitting and receiving radar signals in different polarization
ways. It has been one of the most advanced and important
environmental monitoring techniques due to its all-time and
all-weather observation character and abundant high-resolution
target information. PolSAR technique has been extensively
applied in civil and military fields in recent years.

The successful applications of PolSAR rely heavily on Pol-
SAR image interpretation techniques. The target information
in images should be revealed and extracted by an effective
interpretation and analysis approach on PolSAR data. PolSAR
image classification is one of the most important steps in image
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interpretation process. The classification result can be further
employed in edge extraction, target detection, or recognition
for subsequent decision making or directly taken as output
to users as the final result. Due to its importance, PolSAR
image classification problem has always been a hot research
topic in PolSAR information processing in recent years.
However, owing to the complexity and diversity of natural
terrains and the inherent characteristics of PolSAR technique
such as speckle noise, PolSAR image classification is still a
challenging task.

PolSAR image classification methods can be categorized
from three perspectives. Considering whether a training set
is utilized, they can be categorized into supervised classifica-
tion methods [1]–[12] and unsupervised classification meth-
ods [13]–[16], [18]–[23]. Considering the utilized scattering
characteristics, they can be categorized into methods based
on PolSAR statistical distribution [1], [15], [27]–[30], [34],
polarimetric scattering mechanisms [12], [13], [26], [31], and
both of them [14], [19], [22]. Considering the employed clas-
sification algorithms, they fall into methods based on neural
network [2]–[5], support vector machine (SVM) [6]–[8], [12],
Markov random field (MRF) [9], [12], [21], spectral cluster-
ing [16], [18], and fuzzy logic [4], [32], [33].

A. Related Works on PolSAR Image Classification

Machine learning approach has been a dominant approach
in PolSAR image classification task in recent years. In the fol-
lowing, we will review the smachine learning-based PolSAR
classification approach from the perspective of supervised and
unsupervised methods.

1) Supervised Methods: In supervised classification meth-
ods, a training set composed of labeled image regions for
different terrain classes should be set in advance and classifiers
are then trained by virtue of different learning algorithms.
After that, the learned classifiers are applied to the test set.
The research on supervised methods mainly focus on the
classification and feature extraction algorithms.

Kong et al. [1] first integrated a Bayesian classifier that is
based on polarimetric statistical assumption in PolSAR image
classification. Neural network technique was first utilized in
this problem by Pottier and Saillard [2]. After that, different
novel neural network techniques [3]–[5] were employed in
PolSAR image classification. SVM is the most extensively
utilized supervised learning algorithm in PolSAR image clas-
sification and achieved favorable results due to its elabo-
rate optimization architecture and well generalization ability.
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Fukuda and Hirosawa [6] first introduced SVM into PolSAR
image classification. Then Lardeux et al. [7] and He et al. [8]
extended the utilization of SVM in this area. The success of
SVM-based classification method relies on effective features
extracted from PolSAR data. The method in [8] extracted high-
dimensional features using wavelet, textons, and sparse coding
techniques, and then SVM classifier was utilized upon them.

Tao et al. [10] combined 48 PolSAR data features and
applied Tucker tensor decomposition and independent com-
ponent analysis techniques to get an intrinsic feature set, and
then SVM and KNN classifiers were employed to classify
the PolSAR image. Fisher linear discriminant technique was
employed by Chen et al. [11] to adjust the weight of different
parameters in PolSAR image classification, which signifi-
cantly improved the classification results. To make use of
the anisotropic information embedded among different looks,
Xu et al. [24] decomposed both polarimetric and anisotropic
features simultaneously. Experimental results demonstrated the
effectiveness of the proposed anisotropic entropies.

MRF technique was employed by Wu et al. [9] in PolSAR
image classification, making use of the spatial relationship
between adjacent pixels in classification process. It resulted in
smooth classification label map by enforcing the connectivity
of class labels within each class. Masjedi et al. [12] incor-
porated texture features and contextual information realized
by MRF technique in PolSAR image classification, which
significantly increased the accuracy.

With the booming development of deep learning in recent
years, many advanced deep learning architectures have been
proposed [35], [36], which provide a new way for PolSAR
image classification. Deep belief network was applied to Pol-
SAR image classification by Liu et al. [37]. Zhang et al. [38]
employed stacked sparse autoencoder to learn deep spatial
sparse features of PolSAR. Jiao and Liu [39] designed a
PolSAR image classification method based on deep stack-
ing network, which established a novel connection between
PolSAR image interpretation and deep learning.

For supervised algorithms, if the chosen training pixels
are enough to cover all terrain types and well express the
terrain characteristics, they can achieve more precise and
reliable classification results than unsupervised algorithms.
This means that the performance of supervised algorithms
largely relies on the manual selection of a good training set
with ground-truth class labels. However, ground-truth class
labels are not always available for PolSAR images, and the
homogeneity and integrality of the selected training sets cannot
be guaranteed through manual operation in many cases. All
of these factors make supervised methods nonautomatic and
uncontrollable.

2) Unsupervised Methods: Different from supervised clas-
sification methods, unsupervised methods aim at labeling all
pixels without the aid of any manually labeled image pixels
with ground-truth class labels. The key point of unsupervised
methods is to find physically explicable and effective polari-
metric characteristics that can discriminate different terrain
classes. Unsupervised methods mostly start from an initializa-
tion, which is generated by executing an initial segmentation
rule, and then perform classification according to different

strategies, which are derived from diverse PolSAR data statis-
tical laws.

Most unsupervised PolSAR image classification methods
are based on target decomposition and polarimetric data dis-
tribution theories. The most classical unsupervised method
is the one proposed by Cloude and Pottier [13], which is
based on Cloude–Pottier decomposition theory. In this method,
Cloude–Pottier target decomposition is first performed on the
complex coherency matrix T, and then the 2-D feature plane
constructed by scattering entropy H and scattering angle ᾱ is
divided into eight subspaces, and hence all scattering mecha-
nisms can be classified into eight basic zones. Initialized with
the classified basic zones, an iterative maximum a posteriori
classification based on Wishart distance is employed on the
PolSAR data [14].

Along with the research on polarimetric scattering
theory, it reveals that Wishart distribution, which is based
on Gaussian model, is suitable only for describing evenly
distributed regions. However, K -Wishart distribution based on
non-Gaussian model is the generalization form of Wishart
distribution. It well fits both Gaussian and non-Gaussian real
PolSAR cases [15], [25], [34]. According to this result, many
unsupervised classification algorithms based on non-Gaussian
K -Wishart distribution were presented [15], [28].

There are extensive unsupervised image classification
algorithms based either on different target decomposition the-
ories, such as deorientation theory [23], Freeman decomposi-
tion [26], four-component decomposition [31], or on different
PolSAR data statistical theories, such as G distribution [27].
Many machine-learning-based methods have been utilized in
unsupervised PolSAR classification in recent years. Spectral
clustering technique was first applied to segmentation of SAR
images [17], and then extended to PolSAR image classification
by Ersahin et al. [16] and Lin et al. [18]. Wang et al. [19]
proposed a novel unsupervised PolSAR image classification
algorithm based on scattering power, entropy, and copolarized
ratio. Liu et al. [20] designed an unsupervised classification
method based on Wishart triplet Markov field (TMF). MRF
was also applied in unsupervised PolSAR image classification
by Doulgeris [21].

Unsupervised methods are fast and totally automatic. These
methods do not require the ground-truth class labels in train-
ing, and the classification results are physically explicable.
However, the classification accuracy (CA) relies heavily on the
design of the unsupervised algorithm. It is still a challenging
task to design an effective unsupervised algorithm for PolSAR
image classification.

B. Related Works on Discriminative Clustering
Discriminative clustering is a framework with ingenious

design, which relies explicitly on supervised classification
techniques to perform unsupervised clustering. It was first
introduced by Xu et al. [40], where an SVM model is
employed to find maximum margin hyperplanes through data.
To solve this combinatorial optimization problem over labels,
a convex relaxation in terms of a semidefinite program is
considered. Bach and Harchaoui [41] presented a discrimi-
native clustering framework using linear discriminative cost
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Fig. 1. Overview of our PolSAR image classification method based on discriminative clustering.

function based on a convex relaxation of a combinatorial
problem. Joulin et al. [42], [43] and Sun and Ponce [44]
introduced discriminative clustering to image cosegmentation
problem that segments the common objects from a collection
of images. The discriminative clustering method was also
applied to investigate discriminative image part templates for
different image classes, which are then taken as features for
image classification [45].

The discriminative clustering approach has two advantages
that motivate us to apply it to PolSAR image classification.
First, discriminative clustering approach incorporates the dis-
criminative power of supervised classification method into
the automatic unsupervised classification problem. Reusing
of the existing supervised learning tools has been proved
to be advantageous in weakly supervised tasks [42]–[44]
and unsupervised task [45]. Second, discriminative clustering
is a general framework allowing for incorporating different
discriminative loss functions or the other domain-specific
constraints into a single loss function, which is suitable and
flexible for different applications.

C. Our Contributions

In this paper, we introduce a novel discriminative clustering-
based model to PolSAR image classification, which solves
an unsupervised classification problem taking advantage of
the discriminative learning power of supervised classification
method. We design an energy function combing a cross-
entropy loss term and a class label smoothness term. The first
term is responsible for learning classifiers to discriminate dif-
ferent classes and the second term enforces label smoothness.
The classifiers and class labels are both taken as variables to
be optimized.

Given a rough initialization of labels based on the
Cloude–Pottier decomposition theory and K -Wishart polari-
metric statistical distribution, we propose to iteratively and
alternately optimize the classifiers and class labels. The opti-
mization of classifiers is implemented by solving a softmax
regression (SR) problem, and the optimization of class labels
boils down to a combinatorial optimization problem effectively
solved by a belief propagation (BP) algorithm. By alternately
optimizing the classifiers and class labels in an iterative
manner, the class labels will be updated step by step until
the termination criterion is met.

This paper first introduces the idea of discriminative cluster-
ing to PolSAR image classification. For this application, our
designed energy model differs from the original discriminative

clustering model [41] in two points. First, instead of using a
linear regression model as in [42] and [43], an SR model is
employed to perform multiclass classification based on a cross-
entropy loss. Second, to get contextually smooth classification
result, spatial smoothness constraint is incorporated, which is
realized by an MRF model in optimization. The experiments
on benchmark data clearly show the advantages of our pro-
posed method over other state-of-the-art unsupervised PolSAR
classification methods.

II. MODEL AND ITS OPTIMIZATION

A. Overview of Our Method

We now present the basic pipeline of the proposed discrim-
inative clustering-based PolSAR image classification method.
Given a PolSAR image with N pixels, the input of each pixel
is a coherency matrix T . A 58-D pixelwise feature vector xi

for each pixel i(i ∈ {1, . . . N}) is extracted from coherency
matrix T . The algorithm is designed to assign class label
yi (yi ∈ {1, . . . K }) to each pixel i , where there are K classes
in total. We further denote X = {xi } and Y = {yi } in the
following sections.

Taking the AIRSAR Felvoland PolSAR image for example,
Fig. 1 illustrates an overview of the proposed PolSAR image
classification approach. It comprises three steps.

1) Feature Extraction: Pixelwise feature vectors X are
extracted from coherency matrix T through implement-
ing mathematical transforms and target decompositions
on it.

2) Initialization: An initialized class label map is produced
as the input of the following step.

3) Discriminative Clustering: An iterative optimization
algorithm is run to optimize the discriminative
clustering-based model for refining the classification
label.

The discriminative clustering steps and initialization will be
presented from Sections II-B–II-D, and the feature extraction
step will be discussed in Section III. We organize the dis-
cussions of feature extraction after discriminative clustering
because the discriminative clustering method is the main
contribution of this paper.

B. Discriminative Clustering-Based Model

The proposed approach aims at estimating pixelwise class
labels using pixelwise features of the given PolSAR image.
Based on the idea of discriminative clustering, we define
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a novel loss function for the unsupervised PolSAR image
classification, and the class labels Y and classifiers W can
be derived by minimizing it. The loss function is defined as

E(Y, W |X) = Ec(Y, W |X) + Es(Y, W |X) (1)

where Ec(Y, W |X) is named as discriminative clustering term
and Es(Y, W |X) is the label smoothness term.

1) Discriminative Clustering Term: The discriminative clus-
tering term Ec(Y, W |X) is defined following the formula of
SR model (i.e., multinomial logistic regression model). The SR
model is the generalized form of logistic regression, which
aims at resolving the multiclass classification problem. The
hypothesis of SR model is defined as

hW (xi ) =

⎡
⎢⎢⎢⎣

P(yi = 1|xi; W )
P(yi = 2|xi ; W )

...
P(yi = K |xi; W )

⎤
⎥⎥⎥⎦

= 1
∑K

j=1 eW T
j xi

⎡
⎢⎢⎢⎢⎣

eW T
1 xi

eW T
2 xi

...

eW T
K xi

⎤
⎥⎥⎥⎥⎦

(2)

where W = [W1, W2, . . . , WK ]T . Wi is the classifier parame-
ter vector of the i th category, which will be learned through the
supervised training process. The output of SR model hW (xi )
is a normalized vector that exactly interprets the probability of
pixel i belonging to different classes [46]. Due to this favor-
able character, its easy implementation, and fast computation
speed, the SR model has been successfully applied in many
fields [47]–[52].

The loss function Ec for a regularized SR model is
defined as

Ec(Y, W |X) = L(Y, W |X) + R(W ) (3)

where L(Y, W |X) is the softmax loss function and R(W ) is
the regularization item. The softmax loss function is defined
as the cross-entropy loss

L(Y, W |X) = −
N∑

i=1

K∑
j=1

1

N j
1{yi = j} log

eW T
j xi

∑K
l=1 eW T

l xi
(4)

where 1{yi = j} is an indicator function that is equal to 1
when {yi = j} is true and is equal to 0 otherwise. Different
from the classical softmax loss function, a parameter N j is
added, which is defined as the number of pixels whose labels
are equal to j . The purpose of this parameter is to reduce the
sample imbalance caused by discrepancy among the number
of pixels belonging to different categories. The softmax loss
function measures the agreement between the predictions of
classifiers W and target class labels. Both classifiers and target
class labels are taken as variables to be learned since we do
not have ground-truth class labels for training. They will be
alternately and iteratively optimized as shown in Section II-C.

To prevent possible overfitting caused by data noise and
outliers, a regularization item R(W ) is incorporated after the

cross-entropy loss. L2-norm regularizer is employed in this
paper, which is defined as

R(W ) = αc

K∑
i=1

M∑
j=1

W 2
i j (5)

where αc is the regularization parameter and M is the number
of vector dimension. With this convex regularization term (for
any αc > 0), the loss function Ec is strictly convex and
guaranteed to have a unique solution theoretically. In this
paper, αc is fixed as 5 × 10−5.

2) Label Smoothness Term: The label smoothness term
Es(Y, W |X) is defined to enforce that the neighboring pixels
in an image should have similar class labels. We define it as

Es(Y, W |X) = αs

N∑
i=1

∑
j∈N (i)

Si j (6)

where αs is the label smoothness factor and N (i) is the set
of neighboring pixels of pixel i . Si j is defined as

Si j = |yi − y j | exp

(
−‖vi − v j ‖2

2

2σ

)
(7)

where vi is a feature vector located at pixel i , which should
be selected as the features significantly changing values across
the edges in image. We take it as combination of Pauli
matrix components in this paper. σ is the mean squared
distance between features of two adjacent pixels i and j . Label
smoothness term tends to make adjacent pixels have the same
label and encourages the label boundaries to align with strong
edges. For neighboring pixels i and j within flat regions,
exp(−(‖vi − v j ‖2

2)/2σ) in (7) is large, then minimizing Si j

strongly enforces that labels yi and y j should take the same
value. However, for neighboring pixels across strong edges,
exp(−(‖vi − v j ‖2

2)/2σ) is smaller (or even near to zero) and
thus the discrepancy between labels of neighboring pixels i
and j is allowable in optimization.

3) Discussion on the Final Loss Function: Summarized
from the above formulations, the final integrated loss function
is defined as

E(Y, W |X) = −
N∑

i=1

K∑
j=1

1

N j
1{yi = j} log

eW T
j xi

∑K
l=1 eW T

l xi

+ αc

K∑
i=1

M∑
j=1

W 2
i j

+ αs

N∑
i=1

∑
j∈N (i)

|yi − y j | exp

(
−‖vi − v j‖2

2

2σ

)

(8)

where the classifier parameter matrix W and class labels Y
are the variables to be optimized.

It should be noted that although the discriminative clustering
loss function Ec(Y, W |X) follows the formula of SR model,
they are substantially different. In the softmax classification
method, the labels in Y are given as constant, which are the
ground-truth class labels in a training data set. However, in the
discriminative clustering method, Y is one of the variable sets
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to be optimized in an unsupervised setting. In this way, our
proposed approach solves unsupervised classification problem
by virtue of discriminative learning idea, which interprets the
essence of the discriminative clustering method.

C. Optimization

The classifiers W for different classes and the class labels Y
can be solved by minimizing the loss function defined in (8).
This optimization problem can be decomposed into two sub-
problems, which could be solved alternately and iteratively.

The iterative optimization algorithm is discussed as follows.
Initial class labels Y are generated in advance. In each itera-
tion, classifiers W are first solved by optimizing (8) with fixed
class labels Y (subproblem 1). Then class labels Y are derived
by optimizing (8) with fixed classifiers W (subproblem 2).
subproblem 1 learns classifiers based on the current class
labels, and subproblem 2 updates the class labels using the
updated classifiers considering the label smoothness constraint.

1) Subproblem 1: Solve W with fixed Y.
The purpose of subproblem 1 is to learn classifiers W from

the currently estimated class labels Y, which act as fixed
variables in this subproblem. Therefore, in an iteration t ,
the currently estimated class labels are taken as the initialized
class labels for iteration t = 1 and the class labels estimated
in iteration t − 1 for iteration t > 1.

In this subproblem, since class labels Y are taken as
constant, the loss function in (8) can be rewritten as

E(W |X, Y ) = −
N∑

i=1

K∑
j=1

1

N j
1{yi = j} log

eW T
j xi

∑K
l=1 eW T

l xi

+ αc

K∑
i=1

M∑
j=1

W 2
i j . (9)

We optimize W by minimizing the above SR problem.
It cannot be solved with a closed-form solution, and thus an
iterative optimization algorithm is employed. Taking deriva-
tives of E(W |X, Y ) with respect to W j , the gradient can be
computed as

∇W j E(W |X, Y ) = −
N∑

i=1

[
xi

(
1

N j
1{yi = j}

−P(yi = j |xi; W )

)]
+ 2αcW j . (10)

It should be noted that ∇W j is itself a vector. Its kth
element ((∂ E(W |X, Y ))/(∂W jk)) is the partial derivative of
E(W |X, Y ) with respect to the kth element of W j . With this
formula for the derivative, we then use the L-BFGS [55]
optimization algorithm1 to minimize E(W |X, Y ) in (9).

With the optimized classifiers W , the hypothesis function
defined in (2) exactly gives the probabilities of a pixel belong-
ing to different classes.

1https://www.cs.ubc.ca/ schmidtm/Software/minFunc.html.

2) Subproblem 2: Solve Y with fixed W .
Based on the updated classifiers W in Subproblem 1,

Subproblem 2 aims to estimate pixelwise class labels Y . Label
smoothness constraint is taken into account in this process.

Since classifiers W are taken as constant, the loss function
in (8) can be rewritten as

E(Y |X, W ) = −
N∑

i=1

K∑
j=1

1

N j
1{yi = j} log

eW T
j xi

∑K
l=1 eW T

l xi

+ αs

N∑
i=1

∑
j∈N (i)

|yi − y j | exp

(
−‖vi − v j ‖2

2

2σ

)
.

(11)

Class labels Y can be solved by minimizing (11) with fixed W .
This label assignment problem is a combinatorial optimization
problem in essence. The model in (11) can be regarded as
an MRF model. An undirected graph G =< V, E > can
be established over the image, where image node set V
corresponds to pixels and undirected edge set E represents the
neighborhood relationship between the pixels [53]. We then
define the label variable yi as a random variable on each node
vi ∈ V , and then the class labels Y over the graph constitute
an MRF, and E(Y |X, W ) is the energy function on it. The
first term of the energy function reflects the cost of a pixel to
be assigned to different categories. The larger the probability
of a pixel belonging to a certain category, the more probable
that the pixel to be assigned with the corresponding label.
The second term constrains that labels of neighboring pixels
should be close.

Labeling problem in an MRF has been demonstrated to be
a nondeterministic polynomial time hard problem, and a graph
cut [53], or BP [54] algorithm can be used to approximately
achieve the optimal solution. The BP algorithm is employed
in this paper. The advantage of BP algorithm is that labeling
information can be quickly propagated across the image. The
scheme of “top-bottom–left-right” message passing schedule
makes the BP algorithm converge fast.

3) Updating N j ( j = 1 . . . K ): The pixel number N j of
each category changes after updating class labels in subprob-
lem 2. The pixel numbers for different categories should be
updated accordingly and act as inputs to the next iteration.

D. Initialization

Given the pixelwise coherency matrix T for a PolSAR
image, the initialization step is to generate initial estimates
of the class labels, acting as the input to the subse-
quent iterative optimization procedures. The initialization step
is based on the Cloude–Pottier decomposition theory and
K -Wishart polarimetric statistical distribution.

Cloude–Pottier decomposition proposed by
Cloude and Pottier [13] is employed first to generate
initialized class labels of image pixels. The process is detailed
in the following section.

Coherency matrix T is decomposed into a weighted sum of
the matrices of three targets through eigenvalue analysis as

T = λ1e1e∗
1 + λ2e2e∗

2 + λ3e3e∗
3 (12)
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where λi and ei are eigenvalues and eigenvectors of T ,
respectively. The superscript * denotes the complex conjugate
transpose operation. Each eigenvector can be parameterized as

ei = eiφi [cos αi sin αi cos βi e
iδi sin αi sin βi e

iγi ]′ (13)

where angle αi represents the scattering mechanism of the
i th decomposed target and angle βi is twice the polarization
orientation angle of the i th decomposed target. The superscript
′ denotes the matrix transpose operation. Average scattering
angle ᾱ and entropy H are further defined as

ᾱ = P1α1 + P2α2 + P3α3 (14)

H =
3∑

i=1

−Pi log3 Pi where Pi = λi∑
j λ j

. (15)

It can be observed from the above definition that angle ᾱ
represents the average scattering mechanism of random targets
and entropy H reveals the randomness of scattering targets.
Then the H − ᾱ space is divided into eight subspaces by
predefined horizontal and vertical straight lines [13], where
each subspace represents a terrain type ranging from high
entropy multiple scattering to low entropy surface scattering.

The initial division (i.e., classification) gives a rough inter-
pretation of terrain types, but the division is arbitrary. A max-
imum likelihood classifier based on polarimetric statistical
distribution is then applied to refine the classification map.
The most commonly used polarimetric statistical distributions
include complex Wishart distribution [14] and K -Wishart
distribution [34]. K -Wishart distribution is employed in this
paper, under which the probability density function for the
coherency matrix T can be written as

P(T )

= 2|T |L−d(LαL)
1
2 (αL+Ld)

R(L, d)|V |L
(αL )

KαL−Ld(2
√

LαLTr(V −1T ))

Tr(V −1T )−(αL−Ld)/2

(16)

where Tr(·) and | · | denote the trace operation and the deter-
minant, respectively. Kα(·) is the modified Bessel function of
the second kind, 
(·) is the standard Gamma function, V is
the mean coherency matrix, L represents the number of looks,
d is the vector dimension, and αL is the shape parameter that
represents the data distribution of land cover.

According to Bayesian classification method, if the follow-
ing condition is met, T will be assigned to class m:

dm(T ) < d j (T ) ∀ j �= m (17)

where dm(T ) is the K -Wishart distance defined as

dm(T ) = L ln |Vm | + ln(
(αL )) − αL + Ld

2
ln(LαL)

− αL − Ld

2
ln

(
Tr

(
V −1

m T
))

− ln KαL−Ld
(
2
√

LαL Tr
(
V −1

m T
))

(18)

where Vm is the cluster center of mean coherency matrix of
class m. The above K -Wishart distance is defined to reveal
the similarity of a pixel to a certain terrain cluster. The
initial cluster center is set as the cluster mean of the initial

Fig. 2. Flowchart of the proposed algorithm.

division generated by Cloude–Pottier decomposition. Then
the K -Wishart distances of each pixel to all cluster means
are computed. A pixel will be assigned to a cluster with
smallest K -Wishart distance. Then the new cluster centers
are generated. We iterate the above process until convergence.
If the desired class number is less than 8, a merging process
will be implemented according to the distance between classes
measured by the K -Wishart distances between cluster means.
Two classes with smaller cluster distance will be merged with
higher priority until the class number reaches the expected
one. If the desired number of classes K is larger than 8, a finer
initial H − ᾱ subspace division should be carried out. Each
of the original eight subspaces is divided to n2 average parts
by equivalently adding n horizontal and n vertical lines on
it, where n is defined as the nearest ceiling integer of square
root of K/8. Then K -Wishart clustering based on the finer
division is iteratively executed until the desired class number
is reached.

E. Summary of the Algorithm

Fig. 2 gives the flowchart of the proposed algo-
rithm, which will be summarized as follows. The refined
Lee et al.’s filter [56] is first employed to reduce the speckle
noise and then feature vectors are extracted from the PolSAR
data. After that, an initialization map is generated based on
Cloude–Pottier decomposition and K -Wishart distribution
hypothesis as discussed in Section II-D. Next, the classification
result is solved through a discriminative clustering framework,
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TABLE I

FEATURES EMPLOYED IN A DISCRIMINATIVE CLUSTERING METHOD

as discussed in Sections II-B and II-C. The features used in
this paper will be discussed in Section III. The parameter
selection and termination condition of the proposed method
will be discussed in Section IV-C.

III. FEATURES

To carry out discriminative learning and prediction,
an exquisitely defined polarimetric feature vector is essential.
In general, polarimetric features fall into two categories: orig-
inal polarimetric matrices and their direct mathematical trans-
forms and features derived from classical target decomposition
methods. The original polarimetric matrices generally include
scattering matrix S, coherency matrix T , and covariance
matrix C . The target decomposition methods employed here
include Pauli decomposition, Cloude–Pottier decomposition,
and Freeman decomposition. To clearly interpret the choice
of the features, the derivations of the matrices S and T will
be detailed as follows.

For coherent scattering targets, based on the horizontal
and vertical polarimetric basis, scattering matrix S can be
expressed as

S =
[

Shh Shv
Svh Svv

]
(19)

where Spq denotes the scattering matrix element corresponding
to the p–q polarization of a receiving transmitting wave ( p and
q refer to horizontal h or vertical v for linear polarization).
Under reciprocity condition, Shv = Svh. However, for distrib-
uted targets, the backscatter waves are not fully polarized and
matrix S cannot well represent the scattering characteristics
of complex targets. One possible representation is the second-
order polarimetric representation T , which is based on the
Pauli basis of scattering matrix S [57]

K p = 1√
2

⎡
⎣

Shh + Svv
Shh − Svv

2Shv

⎤
⎦ T = 〈

K p K ∗
p

〉
(20)

where 〈·〉 stands for the spatial averaging during the multilook
processing.

In total, 58 features are extracted from PolSAR data in
this paper. All of them are listed in Table I and discussed
as follows.

1) Intensities and phases of coherence matrices under three
different polarimetric ways: a) horizontal and vertical
linear polarization; b) +45◦/ − 45◦ linear polarization;
and c) left and right circular polarization.

2) The ratios between different intensity channels in hori-
zontal and vertical linear, +45◦/−45◦ linear, and left and
right circular polarization. Ipq stands for the intensity of
p–q polarization, where p and q belong to the subscript
set {h, v, l, r, m, n} representing horizontal linear, verti-
cal linear, left circular, right circular, +45◦ linear, and
−45◦ linear polarization, respectively.

3) The SPAN is defined as SPAN = Ihh + 2Ihv + Ivv.
SPAN represents the total polarimetric power, which is
an important PolSAR discriminator.

4) Nine Pauli decompositions parameters based on Pauli
basis of horizontal and vertical linear, +45◦/ − 45◦
linear, and left and right circular polarization ways. For
each polarization way, there are three Pauli decomposi-
tion channels, which represent isotropic odd, even, and
π/4 even scattering power, respectively.

5) Parameters Ps , Pd , Pv , and αL are extracted from Free-
man decomposition, where Ps , Pd , and Pv represent
powers of surface scatter, double bounce scatter, and vol-
ume scatter, respectively, and αL is the shape parameter.
The smaller the value, the stronger the non-Gaussianity.

6) Eight parameters are extracted from Cloude–Pottier
decomposition, where H represents the randomness of
targets, ᾱ reveals the average scattering mechanism of
targets, A is the anisotropy, which reflects the ratio of the
two weaker scattering mechanisms, and β shows the tar-
get orientation. Other four parameters are mathematical
combinations of H and A.

In the above features, features in (1)–(3) belong to the first
category, i.e., polarimetric matrices and their mathematical
transforms, and features in (4)–(6) fall into the second cat-
egory, i.e., target decomposition features.

IV. EXPERIMENTS

A. Experimental Data and Settings

Experiments are carried out on three real PolSAR images,
which are shown in Fig. 3. The first data are for Flevoland
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Fig. 3. Original images of (a) Flevoland, (b) San Francisco, and (c) Oberpfaffenhofen areas.

Fig. 4. Ground-truth class labels and color codes on Flevoland area data and
Oberpfaffenhofen area data. (a) Ground-truth class labels of Flevoland area
data. (b) Color code of Flevoland area data. (c) Ground-truth class labels of
Oberpfaffenhofen area data. (d) Color code of Oberpfaffenhofen area data.

area in Netherlands, which was acquired by NASA/JPL
AIRSAR on August 16, 1989. The size of the image we
used is 300×270, as shown in Fig. 3(a). The ground-truth
class labels and the corresponding color codes are shown
in Fig. 4(a) and (b), respectively. As observed from the ground-
truth class labels of the Flevoland area data, there are seven
classes in the PolSAR image including Bare soil, Barley,
Lucerne, Peas, Potatoes, Beet, and Wheat. The second data
are four-look NASA/JPL AIRSAR L-band data of the San
Francisco area. The size of the image is 900×1024, as shown
in Fig. 3(b). In these data, the terrain types include vegetation,

sea, suburban areas, and bare land. The last one is an E-SAR
data of Oberpfaffenhofen area in Germany, which is provided
by the German Aerospace Center. The size of this image is
800×700, as shown in Fig. 3(c). The ground-truth class labels
and color codes are shown in Fig. 4(c) and (d). There are four
classes in the image: woodland, suburban areas, road, and open
areas.

We first justify the validity of key components in our
proposed method in Section IV-B. Then parameter analysis
will be presented in Section IV-C. Finally, we demonstrate the
effectiveness of the proposed method by comparison on three
real PolSAR images with the other state-of-the-art algorithms:
Wishart MRF algorithm [9], H/ᾱ-Wishart algorithm [14],
power entropy and copolarized ratio algorithm [19], Wishart
TMF method [20], and Freemen Wishart algorithm [22].
Quantitative comparisons of Flevoland area data and
Oberpfaffenhofen area data will be conducted, wherein the
classification accuracies will be analyzed.

B. Validity Analysis

SR and MRF optimization (MO) are two subproblems in
the proposed method. Comparisons will be made between the
initialized class labels (in Section II-D), class labels after one
round of SR, and class labels after one round of SR + MO.

Fig. 5(a), (d), and (g) shows initialized class labels of
Flevoland area data, Oberpfaffenhofen area data, and San
Francisco area data, respectively. Fig. 5(b), (e), and (h) shows
the estimated class labels after one round of SR on three
PolSAR data. Fig. 5(c), (f), and (i) shows class labels after
one round of SR + MO. In Fig. 5(c), (f), and (i), αs defining
the weight of label smoothness term takes value of 1.

Comparing with the initialized class labels shown in the
first column of Fig. 5, it can be seen from the second column
that after performing the SR learning and prediction, many
misclassified pixels are assigned with correct class labels,
which exactly illustrates the discriminative character of the
proposed method. Compared with the class labels of the first
two columns, the class labels in the third column after MO
are continuous with clearer edges and less isolate pixels, which
shows the smoothing effect of MO.
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TABLE II

CA VALUES (%) OF FLEVOLAND AREA DATA FOR THE PROPOSED METHOD

TABLE III

CA VALUES (%) OF OBERPFAFFENHOFEN AREA DATA FOR THE PROPOSED METHOD

Fig. 5. Class labels on three real PolSAR images for the proposed method.
(a) Initialized class labels of Flevoland area data. (b) Class labels of Flevoland
area data after one round of SR. (c) Class labels of Flevoland area data after
one round of SR + MO. (d) Initialized class labels of Oberpfaffenhofen area
data. (e) Class labels of Oberpfaffenhofen area data after one round of SR.
(f) Class labels of Oberpfaffenhofen area data after one round of SR + MO.
(g) Initialized class labels of San Francisco area data. (h) Class labels of San
Francisco area data after one round of SR. (i) Class labels of San Francisco
area data after one round of SR + MO.

We define the CA of a class as the ratio of the number of
pixels correctly classified for the class to the total number of
pixels in this class. The overall CA is defined as the ratio of the
number of correctly classified pixels in the whole image to the
total number of pixels in the image. Tables II and III list the
CA values of the initialized class labels, the class labels after
one round of SR, and class labels after one round of SR + MO
for Flevoland area data and Oberpfaffenhofen area data,
respectively. For Flevoland area data, the overall CA

values of SR and SR + MO increase by 2.91% and 6.45%
compared with the initialized class labels, while the increases
of overall CA values for Oberpfaffenhofen area data are
14.16% and 24.32%, respectively, which demonstrates the
validity of discriminative clustering using SR and label
smoothing using MO.

C. Parameter Analysis

For the proposed algorithm, two parameters: αs and the iter-
ation number significantly influences the final result. αs deter-
mines the strength of label smoothness constraint. A larger
αs implies that the label smoothness term plays more impor-
tance in the optimization and therefore tends to produce
smoother class labels. The discriminative clustering algorithm
can improve the CA; however, the number of iterations for the
optimization influences the estimation accuracy. Also, para-
meters αs and the iteration number are mutually influenced.
Therefore, we next comprehensively analyze the effects of
these parameters.

In the following, five typical values of αs (0.1, 0.2, 0.5,
1, and 2) are selected for analysis. The classification results
taking the five selected values after performing SR + MO for
one to five iterations will be analyzed. Appropriate ranges of
αs and iteration number will be suggested after the analysis.

Fig. 6 shows the overall CA values under different αss
and iteration numbers for Oberpfaffenhofen area data and
Flevoland area data, respectively. The overall CA values of
iteration number 0 correspond to the initialized label maps.

It can be obviously observed from the two plots in Fig. 6
that the overall CA values increase significantly in the first
iteration. Stable and high overall CA values can be obtained
when αs takes larger values (e.g., 1) and the iteration number
takes value of 2 or 3, which demonstrates the effectiveness of
the proposed method. However, with the increase in iteration
number, the overall CA values improve slightly or even
marginally decreased. This is because for small αs values
(e.g., 0.1), the relatively weak label smoothness effect is unable
to rectify wrong classified pixels due to speckle effect, while
for big αs values (e.g., 2), too many rounds of strong MO will
make the classes with small and thin areas gradually disappear
due to successive label smoothing. To demonstrate this point,
we take Oberpfaffenhofen area data and San Francisco area
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Fig. 6. Influence of αs and iteration number on overall CA value. (a) Overall
CA values of Oberpfaffenhofen area data under different αs and iterations.
(b) Overall CA values of Flevoland area data under different αs and iterations.

data for illustration. Fig. 7 shows the class labels when αs

takes value of 2 under different iteration numbers. It can be
seen from Fig. 7(a)–(c) that when αs takes value of 2, with
the increase in iteration number, the road class pixels are
gradually eroded by the neighboring pixels and many narrow
roads and edges (marked in black rectangles) even disappear in
the fifth iteration. This also happens in San Francisco area data.
With the increase of iteration number, many tiny details (e.g.,
marked in blue rectangle) are eroded by neighboring pixels.
Table IV gives the CA values of Oberpfaffenhofen area data
under different αss and iteration numbers. It can be observed
from Table IV that when αs takes value of 2, the CA value
of road category evidently gets lower with the increase in
iteration number. The CA value of road category of the fifth
iteration decreases 39.76% compared with the first iteration.

Summarized from the above analysis, taking both CA val-
ues and stability between iterations into account, αs ranging

Fig. 7. Class labels under different αs and iterations for Oberpfaffenhofen
area data and San Francisco area data. (a)–(c) Class labels of Oberpfaffenhofen
area data. αs = 2 and the numbers of iterations are 1, 3, and 5, respectively.
(d)–(f) Class labels of San Francisco area data. αs = 2 and the numbers of
iterations are 1, 3, and 5, respectively.

between 1 and 2 and the iteration number with a value of
2 or 3 are favorable parameter sets. In this paper, we set αs to 1
and the iteration number to 3 for three real PolSAR images.
However, in applications, αs can be set based on personal
preference. If results with stronger spatial connectivity are
preferred, αs should be adjusted to a larger value. However,
if finer terrain details are required, αs can be set to a smaller
value.

D. Comparison With Other State-of-the-Art Algorithms

1) Experimental Results on Flevoland Area Data: Class
labels of the Flevoland area data using the proposed method
and five other algorithms are shown in Fig. 8. Table V gives
the CA values of these six methods.

It can be observed from Fig. 8(a) that for the H/ᾱ-Wishart
classifier, many pixels are misclassified. For example, many
pixels of the Wheat class are assigned with the Lucerne label
[see the region marked by the white rectangle in Fig. 8(a)]
and many pixels of Potatoes are assigned as Barley and Beet
[see the region marked by the black rectangle in Fig. 8(a)].
Also, the boundaries between different classes are indistinct
and unclear. The Wishart MRF algorithm employs MO in
the classification process, which takes spatial relation into
account. Compared with Fig. 8(a), Fig. 8(b) shows less
misclassification pixels and a better pixel connectivity. The
edges are clearer than the result in Fig. 8(a). Classification
confusion is observed for both Freeman Wishart classifier
and power entropy and copolarized ratio classifier. It can be
seen from Fig. 8(c) and (d) that the bottom-right regions of
the two images are severely contaminated. The pixels that
should be classified as Beet are misclassified as Lucerne. Also,
misclassification speckles are scattered in the two images. The
Wishart TMF classification map shown in Fig. 8(e) has a better
visual effect than Fig. 8(a)–(d). However, isolated pixel blocks
still can be observed, especially in the bottom-right part of the
image.
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Fig. 8. Class labels of Flevland area data with different methods.
(a) H/ᾱ-Wishart classifier [14]. (b) Wishart MRF classifer [9].
(c) Freeman Wishart classifier [22]. (d) Power entropy and copolarized
ratio classifier [19]. (e) Wishart TMF classifier [20]. (f) Proposed method.

The proposed method uses supervised SR and numerous
features to carry out unsupervised classification, and many
misclassification artifacts in the initialized label map are recti-
fied during the iterative optimization. The introduced smooth-
ness constraint using the MRF model leads to a smoother
classification map. For the above reasons, compared with
the other five methods, the proposed method shows a better
performance with a lower misclassification ratio and a better
visual effect. The overall CA values of the proposed method
are 13.46%, 7.23%, 8.89%, 10.75%, and 3.19% higher than
those of the compared methods, respectively.

2) Experimental Results on Oberpfaffenhofen Area Data:
Class labels on Oberpfaffenhofen area data employing the
proposed method and three other methods are shown in Fig. 9.

Fig. 9. Class labels of Oberpfaffenhofen area data with different methods.
(a) H/ᾱ-Wishart classifier [14]. (b) Wishart MRF classifer [9]. (c) Freeman
Wishart classifier [22]. (d) Proposed method.

The CA values of these methods are listed in Table VI. The
power entropy and copolarized ratio classifier and the Wishart
TMF classifier are not compared because [19] and [20] did
not apply them on these data in the original papers.

Fig. 9(a) shows the class labels of the H/ᾱ-Wishart algo-
rithm. It can be observed from this image that a great deal
of pixels are misclassified. For example, in the region marked
by a black rectangle, many woodland pixels are misclassified
as suburban areas and road. Inside the region that is marked
by rose red rectangle, a lot of open area pixels are assigned
with road labels. Also, the roads at the bottom of the image
are invisible in Fig. 9(a). Besides, the whole image is full of
speckle points, which leads to a poor visual effect. The Wishart
MRF algorithm improves the speckle problem of Fig. 9(a)
greatly, which could be seen clearly from Fig. 9(b), and the
road at the top-right part of the image gets smoother and
clearer. However, misclassification problem is still severe. The
result of Freeman Wishart algorithm is shown in Fig. 9(c).
Because the scattering mechanism of road and open areas
are similar, these two classes are confused to a great extent,
and the roads are barely visible in the whole image. For
the suburban areas, only the areas that have the strongest
double bounce scattering power are classified as suburban area
category and the others are misclassified as woodland class.

The class labels of the proposed method are given
in Fig. 9(d). Compared with the results of the other three
methods, the proposed method generates less misclassification
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TABLE IV

CA VALUES (%) OF OBERPFAFFENHOFEN AREA DATA UNDER DIFFERENT αs s AND ITERATION NUMBERS

TABLE V

CA VALUES (%) OF FLEVOLAND AREA DATA WITH DIFFERENT METHODS

pixels and a smoother label map, due to the discriminative
clustering and MO. The overall CA values of the proposed
method are 17.82%, 14.99%, and 8.90% higher than those of
other methods, respectively.

3) Experimental Results on San Francisco Area Data: Class
labels of the San Francisco area data using the proposed
method and three other algorithms are shown in Fig. 10.
Though ground-truth class labels are not available, we can
still derive some conclusions by observing the classification
results compared with the original image in Fig. 3(b). The
areas colored with white, light blue, and dark blue are sea
areas. The color variance of the sea area is due to the incident
angle change of PolSAR during the observation. The green
colored regions are covered with vegetation. The suburban
areas are colored as yellow. The dark red areas are composed
of beach (marked inside the red rectangles), and some grounds
such as Bercut Equitation Field, West Sunset Playground, and
Sunset Reservoir, which have been indicated in the image.

It can be observed from Fig. 10(a)–(c) that there are two big
common problems for Wishart, Wishart MRF, and Freeman
Wishart algorithms. The first one is the misclassification of
suburban area as vegetation category, which is apparently
visible in the bottom-right part of the image. The second
one is the confusion of vegetation, suburban area, and ground
for the mountains in the top-left corner of the image. These
two problems also exist in the initialized label map of the

Fig. 10. Class labels of San Francisco area data with different methods.
(a) H/ᾱ-Wishart classifier [14]. (b) Wishart MRF classifer [9]. (c) Freeman
Wishart classifier [22]. (d) Proposed method.

proposed method to some extent; however, after iterations
of discriminative clustering and MO, the misclassification
phenomenon is greatly reduced. Compared with the other
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TABLE VI

CA VALUES (%) OF OBERPFAFFENHOFEN AREA DATA WITH DIFFERENT METHODS

three algorithms, the proposed method yields a better result,
with better agreement with the original image, better pixel
connectivity, and more distinct boundaries.

V. CONCLUSION

A novel unsupervised classification method based on dis-
criminative clustering is presented in this paper. The contri-
bution of our work is that we take advantage of supervised
learning technique to perform unsupervised clustering, and
contextual information is incorporated into the energy model.
Initialized with a classification map based on Cloude–Pottier
decomposition theory and K -Wishart distribution hypothesis,
the classifiers and labels are updated by alternately solving an
SR problem and an MRF combinatorial optimization problem.
The optimization process is iteratively executed until the
termination criterion is met. We apply the proposed method on
three real PolSAR data. Comparing with several other state-
of-the-art algorithms, higher accuracies and better connectivity
are achieved by the proposed method.

Feature extraction and optimization is an important research
topic in PolSAR image classification, because features are
essential to the CA, computational complexity, and memory
cost. We do not focus on feature design in this paper, but
inspired by the excellent feature learning capacity of deep
learning models, we plan to devise or learn more effective
polarimetric features using deep learning techniques in dis-
criminative clustering framework in the future work.
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