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Abstract— Iterative thresholding is a dominating strategy for
sparse optimization problems. The main goal of iterative thresh-
olding methods is to find a so-called k-sparse solution. However,
the setting of regularization parameters or the estimation of the
true sparsity are nontrivial in iterative thresholding methods.
To overcome this shortcoming, we propose a preference-based
multiobjective evolutionary approach to solve sparse optimization
problems in compressive sensing. Our basic strategy is to search
the knee part of weakly Pareto front with preference on the true
k-sparse solution. In the noiseless case, it is easy to locate the
exact position of the k-sparse solution from the distribution of the
solutions found by our proposed method. Therefore, our method
has the ability to detect the true sparsity. Moreover, any iterative
thresholding methods can be used as a local optimizer in our
proposed method, and no prior estimation of sparsity is required.
The proposed method can also be extended to solve sparse
optimization problems with noise. Extensive experiments have
been conducted to study its performance on artificial signals and
magnetic resonance imaging signals. Our experimental results
have shown that our proposed method is very effective for
detecting sparsity and can improve the reconstruction ability of
existing iterative thresholding methods.

Index Terms— Sparse optimization, regularization, iterative
thresholding, multiobjective evolutionary approach.

I. INTRODUCTION

IN VARIOUS computational and engineering areas, such
as data mining [1], variable selection [2], visual cod-

ing [3], signal and image processing [4], [5], and compressive
sensing [6], one needs to consider the following sparse opti-
mization problem:

min ‖x‖0 s.t. y = Ax (1)

where x is a signal vector in RN , y is an observation vector
in RM , and A is a sensing matrix in RM×N . If Problem (1)
involves noise, then the constraint is y = Ax + ε, where
ε ∈ RM is the noise level. Usually, A is a very “flat” matrix,
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i.e., M � N . This means that the linear system y = Ax is
underdetermined. The objective function ‖x‖0, the L0-norm
of x , is defined as the number of nonzero components in x .
It takes discrete integer values from {0, 1, . . . , N}. The goal
of Problem (1) is to find the sparsest solution x∗ of y = Ax ,
which is minimal to ‖x‖0. x∗ is called k-sparse if ‖x∗‖0 = k.
An equivalent formulation of Problem (1) can be stated as

min ‖y − Ax‖22 s.t. ‖x‖0 ≤ k (2)

where x, y, and A are the same as in (1).
Using the penalty method, Problem (1) can be converted

into an unconstrained optimization problem, called L0 regu-
larization, which can be stated as follows:

min
x∈RN

||y − Ax ||22 + λ||x ||0 (3)

where ‖y − Ax‖22, a quadratic function of x , is the loss
term, and ‖x‖0 is the regularization term. λ is a positive
regularization parameter, which balances the feasibility and the
sparsity of x . It was proved that Problem (3) is NP-hard [7].
The greedy strategies (e.g., match pursuit [8], orthogonal
match pursuit (OMP) [9]), and hard iterative thresholding
methods (ITH/L0) [10], [11] are two classes of commonly used
methods for L0 regularization. OMP builds an approximate
solution in an incremental and greedy manner. It is suitable
for low-dimensional sparse optimization problems. In contrast,
ITH/L0 is more effective, and applicable for high-dimensional
problems [12], [13].

To make the L0 regularization problem (3) solvable by
continuous optimization methods, one can consider its relaxed
problem

min
x∈RN

‖y − Ax‖22 + λ||x ||qq (4)

where ||x ||qq = (
∑n

i=1 |xi |q)1/q , q ∈ (0, 1], is called the
Lq-norm of x . The smaller the value of q is, the sparser the
solution of Problem (4) becomes. In practice, only very few
special values of q , such as 0.5 and 1.0, are taken into consid-
eration due to the existence of closed-form optimal solution.
In the case of q = 1, Problem (4) is a well-known convex
optimization problem, called L1 regularization. It can be trans-
formed to a quadratic optimization problem and solved by soft
iterative thresholding methods (ITH/L1) [14]–[16]. In the case
of q = 0.5, Problem (4) is a non-Lipschitz-continuous and
nonsmooth optimization problem called L0.5 regularization.
Recently, a fast and efficient iterative thresholding solver based
on the L0.5-norm (ITH/L0.5) was proposed in [17].

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Distribution of weakly Pareto solutions in the biobjective sparse
optimization problem (5) including all solutions of y = Ax .

Regularization method is a popular technique for dealing
with overfitting problem in statistics and machine learn-
ing [18]–[21]. In fact, the choice of suitable regularization
parameter is a very critical task [22]–[24]. Over the recent few
years, various strategies for choosing regularization parameters
have been studied in the area of machine learning [25]–[29].
In [25], the improved variants of Akaike information cri-
teria [30] and Bayesian information criteria [31] based on
Bayesian arguments and the Kullback–Leibler divergence are
proposed to choose regularization parameters for the image
restoration problem. In [26], the regularization parameters in
regularized negative correlation learning are optimized by an
automatic algorithm based on Bayesian inference. In [27],
the regularization parameters in faulty radial basis function
networks are optimized by means of mean prediction error
results. In [28], the cross validation method based on the rule
of “trial and error” is employed in choosing regularization
parameters for solving the support vector machine regulariza-
tion path. In [29], the homotopy methods are proposed to over-
come the difficulty of the iterative hard thresholding method
on the choice of the regularization parameter. Moreover,
the sparsity regularization also has the difficulties on the choice
of regularization parameters, where the true sparsity value
k or its estimation value should be provided in advance [17].
However, the value of k is often unknown in practice.

So far, many challenging optimization problems in
machine learning have been solved via multiobjective
framework [32]–[35], where the constraints are often con-
verted into an extra objective. Following this idea, Problem (1)
with equality constraints can be naturally transformed into the
following biobjective optimization problem:

min
x∈RN

{
f1(x) = ||x ||0, f2(x) = ||y − Ax ||22

}
(5)

where x , y, and A are the same as in Problem (1). Compared
with the regularization problems in (3) and (4), the advantage
of Problem (5) is that no regularization parameter is needed.
Note that the k-sparse solution of Problem (1) is the Pareto
solution of Problem (5) with f2 = 0 (i.e., y = Ax). This
is visualized in an illustrative example in Fig. 1, where the
k-sparse solution Q is located in the knee part of weakly Pareto
front.

In the area of evolutionary computation, multiobjective evo-
lutionary algorithms (MOEAs) have attracted much attention

for approximating the Pareto front. Recently, two pioneering
MOEAs—MOEA/D(half) [36] and StEMO(soft) [37]—have
been suggested for sparse signal reconstruction. The former
is interested to search the knee region of weakly Pareto
front of Problem (5) with preference, while the latter aims
at approximating the whole Pareto front. In both algorithms,
the existing ITH methods, such as ITH/L0.5 or ITH/L1, are
used for local improvement. It should be pointed out that
their performances in solution precision and computational
efficiency are not competitive to ITH/L0 or ITH/L0.5 although
the setting of regularization parameters is not needed. The
main reason is that the majority of their computational costs
are wasted on approximating the region far from the k-sparse
solution.

Over the past 20 years, the preference-based MOEAs have
been widely studied in the area of evolutionary multiobjective
optimization [38]–[41]. The major goal of preference-based
MOEAs is to approximate a local part of Pareto front. In [42],
a general decomposition-based MOEA called MOEA/D was
proposed. It optimizes multiple subproblems in a collaborative
manner. Unlike other MOEAs, the preference information
can be easily combined with the subproblems of MOEA/D.
To improve the performance of multiobjective methods for
Problem (5), the knee region of weakly Pareto front near the
k-sparse solution must be preferred for the exploitation of
the search. On the basis of MOEA/D framework, this paper
proposed a new preference-based multiobjective evolutionary
approach for sparse optimization, called sparse preference-
based local search (SPLS). Its new features include the
following.

1) Incremental Steady-State Search Mode: In each iteration,
only one solution close to the knee region is preferred
in the selection of starting solution for local search
based on thresholding search. As the search processes,
the number of nonzero components in the solutions of
current population is gradually increased until the knee
region is reached.

2) Multilevel Truncation Strategy: In thresholding search,
each solution obtained by gradient descent method is
truncated at multiple sparsity levels, which belong to
a T -neighborhood of the current sparsity level. This is
very crucial for diversifying the search along weakly
Pareto front.

3) Two-Archived Removal Rule: When the size of popu-
lation exceeds its maximal size, part of solutions with
large values of loss function f2 in one of its sub-
sets or those with large values of sparsity f1 in the other
subset are removed with priority.

The major contribution of SPLS for the community of
machine learning is that it provides a new effective and
efficient preference-based multiobjective framework for
sparse reconstruction without the difficulty on the choice of
regularization parameter.

To study the performance of our proposed method-SPLS,
we have done the following experimental simulations in this
paper.

1) We have conducted extensive experiments to com-
pare the performance of three versions of SPLS with
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three existing ITH methods, OMP, as well as two
MOEAs for sparse reconstruction on both short-length
artificial signals and long-length artificial signals.

2) We have made the sensitivity analysis on the major
parameters in SPLS to study the stability of SPLS. The
performances of SPLS on different values of (N ,M, k)
have also been studied.

3) We have analyzed the sparsity of five magnetic res-
onance imaging (MRI) signals from the benchmark
library and compared SPLS/L0.5 and ITH/L0.5 on
reconstructing the signals in the sparse versions of these
MRI images.

The rest of this paper is organized as follows. Section II
briefly reviews several ITH methods. In Section III, the moti-
vations and the detailed description of SPLS are presented.
The experimental results on the performance of SPLS on
artificial signals are reported and analyzed in Section IV. One
application of SPLS on the sparsity detection of MRI signals
is presented in Section V. Section VI concludes this paper.

II. BRIEF REVIEW ON ITERATIVE

THRESHOLDING METHODS

The main goal of ITH methods is to find the solution of the
regularization optimization problem formulated in (3) or (4).
A typical ITH method involves three major steps—gradient
descent, setting of regularization parameter, and threshold-
ing truncation. In ITH methods, the estimation of the true
sparsity k, let us say k̄, or an empirical value of regularization
parameter should be provided in advance. Three well-known
ITH methods, i.e., ITH/L0, ITH/L0.5, and ITH/L1, mainly
differ in the last two steps. In the following, we introduce
these steps in brief.

1) Gradient Descent: Assume that x (n) is the current solu-
tion, a trial solution x̃ ∈ RN is generated by

x̃ = x (n) + μ× AT (Ax (n) − y)

where AT (Ax (n) − y) is the negative gradient vector of
f2 = ‖y − Ax‖22 at x (n), and μ > 0 is the step size.
As suggested in [17], μ is set to 1 in this paper.

2) Setting of λ: The current regularization parameter
λn can be set to a constant empirical value (e.g.,
ITH/L1) or determined by the prior estimation k̄.
In ITH/L0 and ITH/L0.5, λn is set to |x̃ik̄+1

| and
(
√

96/9)|x̃ik̄+1
|(3/2), respectively, where |x̃ik̄+1

| is the
(k̄ + 1)th largest value in {|x̃ j |

∣
∣ j = 1, . . . , N}.

3) Thresholding Truncation: To make x̃ sparse, some of its
smallest components in absolute values are set to zeros.
The following are three examples.

a) ITH/L0(hard)

x (n+1)
i =

{
x̃i if |x̃i | > λn

0 otherwise.
(6)

b) ITH/L1(soft)

x (n+1)
i =

{
ψ1(x̃i , λn) if |x̃i | > 0.5λn

0 otherwise.
(7)

where ψ1(x̃i , λn) = sgn(x̃i)(x̃i − 0.5λn).

c) ITH/L0.5(half)

x (n+1)
i =

⎧
⎨

⎩
ψ2(x̃i ) if |x̃i | >

3
√

54

4
λ

2
3
n

0 otherwise.
(8)

where ψ2(x̃i ) =
(2/3)x̃i (1 + cos ((2π/3)− (2φ(x̃i )/3))) with
φ(x̃i ) = arccos

(
(λn/8) ((|x̃i |/3))−(3/2)

)
.

According to the experimental results reported in [17],
ITH/L0.5 is clearly superior to ITH/L0 and ITH/L1 in terms
of sparsity recovery ability and solution precision. Over the
past few years, ITH/L0.5 has been successfully used in many
applications [43]–[45].

III. SPARSE PREFERENCE-BASED MULTIOBJECTIVE

EVOLUTIONARY APPROACH

In this section, the motivations on the use of multiobjec-
tive algorithms based on preference for sparse optimization
are first discussed. Then, the description of the proposed
SPLS algorithm is provided.

A. Motivations

Solving constrained optimization problems via MOEAs has
attracted much attention in the area of evolutionary constrained
optimization [46]–[49]. The basic idea is to optimize an
alternative biobjective optimization problem, which involves
an extra objective defined by constraints. To ensure the search
efficiency, only a local part of the weakly Pareto front of the
biobjective optimization problem, which includes the optimal
solution of the original constrained optimization problem,
should be examined. Following this line, few attempts have
been made on the use of MOEAs for sparse optimization.

1) In [36], a decomposition-based multiobjective method
with half iterative thresholding method, i.e., MOEA/D,
was proposed to approximate the knee part of the weakly
Pareto front of Problem (5) in an online mode. In each
generation, multiple subprobelms with different sparsity
levels are optimized by existing ITH methods in a
parallel way. During the search, the subproblems with
boundary sparsity levels are adaptively changed with
the preference to move the population toward k-sparse
solution. Note that the conventional crossover operators
are not used in MOEA/D. Instead, the solution of each
subproblem is disturbed by mutation before local search.

2) In [37], a variant of NSGA-II based on soft iterative
thresholding method, called StEMO, was developed to
find the sparse solution of Problem (1) in an offline
mode. First, StEMO needs to approximate the whole
Pareto front of Problem (5). The BLX-α crossover and
the nonuniform mutation are used for producing off-
spring solutions. Then, the B-spline curve fitting method
and an angle-based method are adopted to locate the
knee solution of the approximation of Pareto front in a
posterior way.

Unlike existing ITH methods, both MOEA/D and StEMO
are free to set appropriate regularization parameter. However,
their performances in solution precision and computational
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efficiency are clearly worse than some existing efficient ITH
methods, such as ITH/L0 and ITH/L0.5. The main reason
lies in the unbalance between the exploration of the whole
Pareto front and the exploitation of the knee part near
k-sparse solution. To overcome this weakness, the knee
part must be exploited with preference. Compared with the
NSGA-II framework used in StEMO, MOEA/D is more advan-
tageous to exploit a local part of weakly Pareto front by
integrating preference due to its decomposition strategy for
fitness assignment.

Assume that the population size is L in MOEA/D, it needs
to optimize L subproblems defined by

min
x∈RN

‖y − Ax‖22, s.t. ‖x‖0 = ki (9)

where K = {k1, . . . , kL} is a set of L initial sparsity levels in
[kmin, kmax]1 including the true sparsity k. In MOEA/D, each
sparsity level ki is associated with one solution x (i). In each
generation, a fixed number of thresholding iterations are used
in the minimization of every subproblem defined in (9) for
local search. According to the proportion of nondominated
solutions in the population, the boundary subproblem with the
sparsity level kl = mins∈K s or kr = maxs∈K s is adaptively
adjusted. Note that the adjustment rules used in MOEA/D
make use of the preferences on the knee part of weakly Pareto
front in selection, which contains some solutions with similar
structures. In the early stage of search, the sparsity levels of
all subproblems are diversely distributed in [kmin, kmax]. Since
each subproblem consumes the same amount of computational
cost, the parallel optimization (i.e., generational search mode)
of multiple subproblems with sparsity levels far from the
knee part will waste lots of computational cost. Moreover,
the performance of MOEA/D highly depends on the setting
of population size L.

B. Description of SPLS

To overcome the weakness in MOEA/D, the knee part
should be approximated with a steady-state mode, where only
one subproblem with the sparsity level closer to the true
sparsity k is selected for optimization in each iteration. In this
paper, we further suggest an improved version of MOEA/D
with preference for sparse optimization with the following
major changes.

1) The number of subproblems is dynamically changed.
Some subproblems with large or small sparsity levels
will be removed with the preference on the knee part.

2) Only one subproblem (solution) is selected with the pref-
erence for thresholding search at a time. The solutions
with small values of loss function f2 are preferred in
the thresholding search.

3) During the thresholding search, multiple neighboring
solutions with similar sparsity levels to the starting
solutions are obtained with a multilevel thresholding
truncation.

4) The population is improved by thresholding search in
an incremental manner like OMP. That is, the sparsity

1In cross validation of the exisiting ITH methods, kmin and kmax are the
prior lower bound and upper bound of the range of sparsity levels.

levels of the solutions in the population are very small
in the beginning of the search and increased gradually
until the knee region is reached.

Since our proposed method aims at finding some weakly
Pareto solutions in the knee part with preference using existing
thresholding method as local search operator, we also called
our proposed algorithm SPLS.

In the SPLS algorithm, we need to maintain the following
data structures.

1) The sensing matrix A and the observation vector
y: They are used to calculate the loss function
f2(x) = ‖y − Ax‖22.

2) The archived population E : It consists of two subsets
E1 and E2 with the following forms:

E1 = {x ∈ E | f2(x) < f min
2 + β} (10)

and

E2 = {x ∈ E | f2(x) ≥ f min
2 + β} (11)

where f min
2 is the minimal value of the loss function

found so far, and β is a positive parameter.
3) For each solution x in E , a T -neighborhood of sparsity

levels, i.e., [‖x‖0 − T × δ, ‖x‖0 + T × δ], might be
considered in thresholding search. Here, δ is the smallest
gap between any two neighboring sparsity levels, T is
the neighborhood size.

Ideally, E should contain some weakly Pareto solutions of
Problem (5) in the knee part including the sparse solution Q.
When β = 0 and f min

2 = 0, E1 consists of some solutions of
y = Ax while E2 includes some Pareto solutions.

The algorithmic framework of our proposed SPLS algorithm
is illustrated in Algorithm 1. In the initialization of the SPLS
algorithm (Step 1), two major parameters T and β are ini-
tialized. β0 is the starting value of β, which is set to 1.0 in
this work. An initial solution x (0) is generated in a determinis-
tic or random way. The commonly used deterministic method
is to set x (0) as a zero vector. In the random way, a solution
with a sparsity level in [kmin, kmax] is randomly generated.
In this paper, we generate x (0) with the sparsity level kmin
randomly.

In the following, the major steps in the main loop of the
SPLS algorithm are explained in detail.

1) SelectFromArchive : The main goal of this step is to
select one solution in E with the smaller value of f2
shown in Fig. 2. In other words, f2 is optimized with
priority. The implementation of this idea is described in
Algorithm 2, including the following two major steps.

a) In Step 1, a subset E1 of E is first deter-
mined. The positive parameter β is used to control
the quality of selected solutions for thresholding
search. In fact, when β takes a relatively small
value, the solutions in E1 are superior to those in
E2 regarding the loss function f2.

b) In Step 2, a starting solution x ′ is selected from
E1 randomly. A T -neighborhood of the central
sparsity level k ′, i.e.,‖x ′‖0, is determined. kl and
kr are the lower bound and the upper bound of
the T -neighborhood, respectively. k ′′ is a random
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Algorithm 1 SPLS
Step 1: Initialization

Initialize T and β = β0. Generate x (0) and let E =
{x (0)}.

Step 2: Main Loop
2.1 Select a starting solution x ′ and a random sparsity
level k ′′ for thresholding search:

(x ′, kl , k ′′)← SelectFromArchive(E, β, T )

2.2 Perform thresholding search on x ′ with the sparsity
level k ′′ :

x ′′ ← ThresholdingSearch(x ′, k ′′)

2.3 Truncate x ′′ at multiple sparsity levels in a T -
neighborhood:

Ẽ ← TruncateByMultiLevel(x ′′, kl , k ′′)

2.4 Update the archived population E with Ẽ and limit
the size of E :

E ← UpdateArchive(E, Ẽ, β, T )

Step 3: Stopping Criteria
If a certain stopping condition is met, then stop and
output E ; otherwise go to Step 2.

sparsity level between k ′ and kr . It will be used as
the new sparsity level in thresholding search.

Algorithm 2 SelectFromArchive(E, β, T )
Step 1: Determine a subset E1 of E including a number of
solutions with high quality regarding f2 by (10);
Step 2: Select x ′ from E1 randomly and determine sparsity
levels in a T -neighborhood:

kl = ‖x ′‖0 − T · δ, kr = ‖x ′‖0 + T · δ,
k ′ = ‖x ′‖0, k ′′ = ‖x ′‖0 + �T × rand� · δ

where rand is a uniform random number in [0, 1], and k ′′
is a random sparsity level between k ′ and kr .
Step 3: Output x ′, kl and k ′′.

2) ThresholdingSearch : The implementation of threshold-
ing search in SPLS is shown in Algorithm 3. x ′ and k ′′
obtained in Algorithm 2 are the input parameters. The
randomness of k ′′ can be viewed as the mutation on the
sparsity level k ′ of x ′. No crossover is used in the SPLS
algorithm. The truncation strategies used in SPLS could
be the same as those in ITH/L0(hard), ITH/L0.5(half),
and ITH/L1(soft) introduced in Section II. The thresh-
olding search in Algorithm 3 is terminated if the
number of iterations reaches the specified number of
iterations ls.

3) TruncateByMultiLevel : The main idea of this step
is to truncate the improved solution x ′′ at different
sparsity levels in a subset of the T -neighborhood
of k ′, i.e., {kl, kl + δ, . . . , k ′′ − δ, k ′′}. As a result,

Fig. 2. Graphical illustration of the archiving set E in SPLS, which consists
of two subsets E1 and E2. Ideally, when β = 0 and f min

2 = 0, all solutions
in E1 satisfy y = Ax , while those in E2 are strictly Pareto solutions of
Problem (5). The circles being crossed stand for the nonpreferred solutions
in selection.

Algorithm 3 ThresholdingSearch(x ′, k ′′)
Step 1: Set n = 0 and x (n) = x ′.
Step 2: Generate a trial solution x̃ using gradient descent
method. That is

x̃ = x (n) + μAT (y − Ax (n)).

Step 3: Sort the absolute values of components of x̄ :
|x̃i1 | ≥ |x̃i2 | ≥ · · · ≥ |x̃ik′′ | ≥ · · · ≥ |x̃iN |

where i1, i2, . . . , iN is a permutation of {1, 2, . . . , N}.
Step 4: Produce x (n+1) by the truncation of x̃ using one of
the thresholding operators in (6), (7), and (8) with k̄ = k ′′.
Step 5: If n ≥ ls, then stop and output x ′′ = x (n+1);
otherwise set n := n + 1 and go to Step 2.

� (k ′′ − kl)/δ� + 1 new solutions are obtained and
added into Ẽ . The details of this step is given in
Algorithm 4. Fig. 3 shows the distribution of multiple
solutions obtained by truncating x ′′ for a number of
times. To locate the exact position of k-sparse solution,
δ is often set to 1.

Algorithm 4 TruncationByMultiLevel(x ′′, kl , k ′′)
Step 1: Set Ẽ = ∅, z = x ′′, and c = 1.
Step 2: Add z into Ẽ . If k ′′ −cδ < kl , then stop and output
Ẽ ;
Step 3: Set δ smallest nonzero components of z in absolute
values as zeroes, c := c + 1 and go to Step 2.

4) UpdateArchive : All solutions in Ẽ obtained by thresh-
olding search and multilevel truncation are used to
update the archived population E . To focus on searching
the knee part around the k-sparse solution Q, the size
of E should be limited. Its members with the smallest
sparsity levels or the largest sparsity levels could be
removed with preference. To this end, the update of
archived population E is implemented in Algorithm 5.
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Fig. 3. Thresholding search method with multilevel truncation in SPLS.
An initial solution x ′ is improved by thresholding search with a random
sparsity level k′′ in the right part of T -neighborhood with the center at k′.
The improved solution x ′′ is truncated at multiple sparsity levels from
kl to k′′. In this example, x(1), . . . , x(8) are generated by thresholding search
on x ′ at the sparsity level k′′.

Steps 1.1 and 1.2 update the solutions in E1 and E2,
respectively. In Steps 2.2 and 2.3, the sizes of E1 and E2
are limited to T . The solutions with the largest sparsity
levels in E1 and those with the smallest sparsity levels
in E2 are not preferred in selection. That is, they should
be removed from E shown in Fig. 2. In this way, the size
of E is not larger than 2×T . Note that the parameter β
is decreased to max{β1, 0.8β} if |E1| > T . β1 is the
minimal value of β, which is much less than β0. The
dynamical change of β is helpful on the diversity of the
starting solution x ′.

Algorithm 5 UpdateArchive (E, Ẽ, β, T)
Step 1: Update the external archive

for each z ∈ Ẽ

1.1 If f2(z) < minx∈E f2(x)+ β, then

If � ∃ z′ in E with ‖z′‖0 = ‖z‖0, then add z into
E ; otherwise, set z′ := z if f2(z) < f2(z′).

1.2 If f2(z) ≥ minx∈E f2(x)+ β, then

Remove all solutions in E dominated by z. If no
solution in E dominates z, then add z into E .

end for
Step 2: Reduce the size of the external archive

2.1 Separate E into E1 and E2 by (10) and (11).
2.2 If |E1| > T , then remove |E1| − T solutions
with the largest sparsity levels in E1, and set β :=
max{β1, 0.8β};
2.3 If |E2| > T , then remove |E2| − T solutions with
the smallest sparsity levels in E2;

Step 3: Set E = E1 ∪ E2 and output it.

C. Computational Complexities of SPLS

In each step of ITH methods and SPLS, the gradient method
is first applied to improve one certain solution regarding f2,
and then, the components of the improved solution are sorted

in terms of their absolute values with computational load
O(N log(N)). Compared with ITH methods, the extra com-
putational complexities of SPLS are caused by Truncation-
ByMultiLevel and UpdateArchive. In TruncationByMultiLevel,
(k ′′ − kl)/δ + 1 (∈ [T, 2T ]) solutions should be generated
and stored in Ẽ . Therefore, O(T ) evaluations of loss function
f2 = ‖y − Ax‖2 should be computed. In Step 1.2 of
UpdateArchive, the update of E needs O(T ) comparisons of
Pareto dominance. To separate E into E1 and E2, 2 × T
comparisons between f2(x) and f min

2 + β in Step 2.1 of
UpdateArchive. To reduce the size of E , O(T × log(T ))
comparisons of sparsity values for the solutions in E1 and E2
are required as shown in Steps 2.2 and 2.3 of UpdateArchive.
According to the above analysis, it is a certain fact that the
computational efficiency of SPLS depends on the settings
of T and N .

D. Superiority of SPLS Against MOEA/D and StEMO

The common feature of MOEA/D, StEMO, and SPLS is the
overall framework, which combines EMO with thresholding
search. However, the differences among them are substantial.

1) Decomposition and Preference: In both MOEA/D and
SPLS, a number of single objective subproblems
obtained by decomposition with a quadratic objective
function ‖y−Ax‖2 are optimized. The local knee region
of Pareto front is examined with the preference of
k-sparse solution in an online way. In StEMO, a Pareto-
based NSGA-II is used to approximate the whole Pareto
front, and the knee solution is obtained by a curve fitting
method in a posterior way.

2) Thresholding: MOEA/D considers either ITH/L0 or
ITH/L0.5 in local search, while StEMO uses ITH/L1
in local search, while StEMO uses iterative soft thresh-
olding method (ITH/L1) in local search. In our proposed
SPLS, any of ITH/L0, ITH/L1, and ITH/L0.5 can serve
as a local search optimizer. An exclusive multiple trun-
cation is used in the thresholding iteration of SPLS.

3) Steady-State or Generational Mode: MOEA/D and
StEMO are two generational EMO algorithms, while
SPLS is a steady-state approach. More precisely, SPLS
only generates one solution by a preference-based local
search at one iteration.

SPLS is superior to MOEA/D and StEMO due to the
following reasons.

1) SPLS spends most of its computational cost on approxi-
mating the knee region close to k-sparse solution, while
the other two could waste a lot of computational cost
on the area far from the k-sparse solution.

2) Compared with the ITH/L1 in StEMO and the ITH/L0 in
MOEA/D, the ITH/L0.5 used in SPLS is more powerful
for local improvement in thresholding search. It should
be mentioned that both ITH/L0 and ITH/L0.5 cannot be
used in StEMO due to its Pareto-based framework.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we compare the performance of three ver-
sions of SPLS with three existing ITH methods, OMP, as well
as two multiobjective evolutionary approaches on artificial
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TABLE I

SETTINGS (N,M, k) OF SIX ARTIFICIAL PROBLEM
SETS USED IN OUR EXPERIMENTS

signals in terms of success ratio (SR) and solution precision.
The parameter analysis of SPLS is also presented.

A. Noise-Free Artificial Sparse Signal

Similar to the method for generating the test problems of
sparse optimization in [17], we artificially constructed six sets
of test problems without noises in Table I. Each of them is
associated with the configuration (N,M, k). Three problem
sets P1–P3 involve 512-length optimal signals with the true
sparsity level—130. The number of measurements M of P1–
P3 (i.e., the row of sensing matrix A) is 330, 300, and 270,
respectively. The other three problem sets P4–P6 have the
same settings of N and k as those of P1–P3. But the M values
of them, i.e., 240, 235, and 230, are smaller. For all problem
sets, the range [kmin, kmax] of the estimation sparsity levels is
set to [0.1× k, 2× k].

For each problem set, 100 random instances are generated
in the following way.

1) The optimal sparse signal x∗ with the given length and
sparsity is generated with Gaussian distribution N (0, 2).

2) The entries in the sensing matrix A are sampled with
the Gaussian distribution N (0, 1). A is orthogonalized
and normalized.

3) The observation vector y equals to the multiplication
of A and x∗, i.e., y = Ax∗.

To compare the performance of the sparse optimization
methods under consideration, two indicators are considered
in our experiments.

1) Mean Square Error: The MSE values between the
true optimal sparse solution x∗ and the approximate
solutions obtained by the methods under consideration
are used. In our SPLS algorithm, the solution in the final
population with the minimal MSE value is considered
in comparison with other ITH methods.

2) Success Ratio: If the final solution found by a certain
method has the MSE value below a given successful
MSE level τ , the corresponding run of this method is
denoted as a successful run. The ratio of the successful
runs on 100 random instances in each problem set is
used to measure the reconstruction ability of sparse
optimization methods. Empirically speaking, the sparse
signal is successfully reconstructed if the MSE value
of the final solution is below 10−6. Therefore, τ is set
to 10−6 in this paper.

1) Comparison Between Three SPLS Variants and four
State-of-the-Art Sparse Optimizers: In this section, the perfor-
mances of three versions of SPLS (i.e., SPLS/L0.5, SPLS/L0,
and SPLS/L1) are compared with those of the three related
ITH algorithms (i.e., ITH/L0.5, ITH/L0, and ITH/L1), as well

Fig. 4. Linear scale (left) and log scale (right) plots of the weakly
Pareto-optimal solutions found by SPLS/L0.5 in a successful run on two small
scale problem sets (i.e., P1 and P6).

Fig. 5. Linear scale (left) and log scale (right) plots of the weakly
Pareto-optimal solutions found by SPLS/L0.5 in a successful run on 20 times
of P2 (10 240, 6000, 2600).

as OMP on P1–P6. All algorithms were implemented in
MATLAB on the PC with the Intel Xeon CPU at 3.20-GHz
and 32-GB memory running Windows 7 operating system.

The major parameters in the SPLS algorithm are T ,
(β0, β1), and ls, which are set to 10, (1.0, 10−6), and 20,
respectively. The total number of thresholding iterations
is 3000 in the first six algorithms. The minimal interval
between two consecutive sparsity levels δ is set to 1 for P1–P6.

Fig. 4 shows the distribution of the weakly Pareto solutions
found by SPLS/L0.5 in one of its successful run on P1 and P6,
which are the easiest instance and the hardest instance among
P1–P6, respectively. It is very clear that the Pareto solution
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Fig. 6. Errors of signals reconstructed by SPLS/L0.5, SPLS/L0, SPLS/L1, ITH/0.5, ITH/L0, and ITH/L1 on a typical instance from P1 (left) and P6 (right).
The original sparse signals of both instances are plotted on the top.

Fig. 7. Errors of signals reconstructed by OMP on P1 (left) and P6 (right).

with true sparsity k = 130 can be visually identified. In the
log scale of this figure, there is a jump at the position of
the true sparse solution. This result shows that SPLS/L0.5 is
effective for detecting the exact position of the true sparsity.
It should be mentioned that SPLS/L0.5 also fails to detect the
sparsity on the instances from P4–P6 with certain probabilities.
The reason is that the ratio of observations in these problems
could be too small to make a successful reconstruction by the
variants of SPLS or ITH methods.

The SPLS algorithm is also applicable to the long-length
sparse signal. To move the population toward the knee part
faster, the parameter δ is set to 10 with the probability
0.9 and 1 with the probability of 0.1. In this way, the inter-
val [kl, kr ] of sparsity values in the multilevel thresholding
search is 200 in most cases. The weakly Pareto solutions found
by SPLS/L0.5 on 20 times of (512, 300, 130) in P2 is shown
in Fig. 5. It is evident that SPLS/L0.5 still has the ability to
detect the large sparsity value 2600 for 10 240-length signals.

Apart from the detection of sparsity, SPLS can also serve as
an optimizer for sparse optimization. The solution at the knee
position can be treated as the recovered solution. To show
the difference between this solution and the original solution,
we plot the error values between them on two instances from
P1 and P6 in Figs. 6 and 7. It can be observed from these
two figures that the small error values are found by all seven
algorithms, including OMP on the easy problem P1. For the

hard problem P6, SPLS/L0.5 is the only optimizer obtaining
an approximate solution with very small error values.

Fig. 8 shows the SRs of seven algorithms for the instances
from P1–P6 at different MSE values in between 10−34

and 1. From the results in this figure, we have the following
observations.

1) For the instances from three problems P1–P3,
SPLS/L0.5, SPLS/L0, and ITH/L0.5 clearly outperform
three other algorithms (ı.e., ITH/L0, SPLS/L1, and
ITH/L1) in terms of the SR at various MSE lev-
els. The successful runs of SPLS/L0.5, SPLS/L0, and
ITH/L0.5 are 100 or close to 100. It can also be observed
from Fig. 8 that each ITH method is evidently outper-
formed by its counterpart version of SPLS algorithm.
For example, the SR of ITH/L0 on the instances from
P3 is only 6%, while that of SPLS/L0 is 96%. This
indicates that the performance of ITH/L0 can be signif-
icantly improved if it is integrated into the framework
of SPLS.

2) Fig. 8 also shows the SRs of three SPLS algorithms
and three ITH methods on P4–P6, which have fewer
number of observations (240 or 235 or 230). These
results indicate that SPLS/L0.5 performs best among
all six algorithms. It is also evident that the SRs of all
algorithms on P4–P6 are clearly worse than those of all
algorithms on P1–P3. This is because P4–P6 are more
challenging for sparse optimization algorithms due to
the smaller value of M .

3) Among three SPLS variants, SPLS/L0.5 is clearly
superior to other two, while SPLS/L1 has the worst
SRs on all problem instances. SPLS/L0 succeeds in
detecting the true sparsity levels of P1–P6 in some
runs with the MSE values below 10−6. In con-
trast, SPLS/L1 is only effective in sparsity detection
for P1. Moreover, although ITH/L0 is outperformed
by ITH/L0.5 on P1–P6, its SPLS counterpart method,
i.e., SPLS/L0, clearly performs better than ITH/L0.5
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Fig. 8. SRs of SPLS/L0.5, SPLS/L0, SPLS/L1, ITH/L0.5, ITH/L0, ITH/L1, and OMP at different MSE levels on P1–P6.

on P4–P6. This result also proves the advantage
of SPLS.

4) As for the solution precision, it is also easy to see from
Fig. 8 that SPLS/L0.5 is competitive to ITH/L0.5 in
terms of the mean MSE values. In the most successful
runs of SPLS, its mean MSE values have the magnitude
of 10−30.

5) The comparison among the SPLS variants and
OMP is also shown in Figs. 7–8. From these results,
we can observe that OMP is clearly outperformed by
SPLS/L0.5 and SPLS/L0 on P1–P6 regarding SRs, and
it only performs better than SPLS/L1. Compared with
three ITH methods, OMP is clearly inferior to ITH/L0.5,
and superior to ITH/L0 and ITH/L1. These results are
consistent to those report in [17].

Fig. 9 shows the SRs of SPLS/L0.5, ITH/L0.5, and OMP
on two large scale problem sets, i.e., 20 times of P2 and P4.
From the experimental results in this figure, we can observe
that: 1) all three algorithms have 100% SRs on the 20 times
of P2, but OMP has the poorest performance in solution
precision and 2) the SR of SPLS/L0.5 is still 100% on
the 20 times of P4, while those of ITH/L0.5 and OMP are
zero. Compared with the results for P4 in Fig. 8, where the
SRs of SPLS/L0.5 and ITH/L0.5 are about 65% and 26%,
respectively, the performance of SPLS/L0.5 has significant
improvement on the large scale version of P4, while that of
ITH/L0.5 gets deteriorated dramatically. The results indicate
that SPLS/L0.5 has very good potential to reconstruct long-
length sparse signals with low ratio (M/N) of observations.

To compare the efficiency of all seven algorithms quantita-
tively, the computational time in 100 runs of nine algorithms
is shown in Table II. The results in this table indicate that
OMP is the fastest method for sparse reconstruction among
all algorithms. The computational time consumed by OMP is
less than 0.05 s for P1–P6. However, the advantage of OMP

Fig. 9. SRs of SPLS/L0.5, ITH/L0.5, and OMP on two large scale problem
sets—20 times of P2 (top) and 20 times of P4 (bottom).

in computational efficiency depends on the scale of sparse
optimization problem. In our experiments, we also compared
OMP with SPLS/L0.5 on two large scale problems, i.e., the
20 times of P2 and P4. To finish one run, OMP spends
about 360 s for P2 and 293 s for P4, while SPLS/L0.5 needs
about 80 s for P2 and 65 s for P4. Therefore, SPLS/L0.5 has
better scalability on the scale of sparse optimization problem
than OMP.
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TABLE II

AVERAGE RUNNING TIME (IN SECONDS) CONSUMED BY NINE ALGORITHMS ON THE PROBLEMS P1–P6

From the results in Table II, it can be found that the com-
putational time of SPLS algorithms is only about 1.5–3 times
of their counterpart ITH algorithms. Compared with three
ITH methods, such computational efficiency of the population-
based SPLS algorithms is quite promising. However, this
comparison is unfair for the SPLS algorithms, since the true
sparsity k is directly used in the ITH algorithms. In practice,
the cross validation is often adopted for the estimation of k
in the ITH methods. This means part of or all sparsity levels
in [kmin, kmax] should be considered one by one. In the case
of k = 130, if ten sparse levels in [0.5 × 130, 2 × 130] are
considered in cross validation, the total computational time
consumed by the ITH methods is at least 3 times of the SPLS
algorithms. In this sense, the efficiency of SPLS is much better
than that of ITH methods.

2) Comparison Between SPLS and MOEAs: In this paper,
we also discussed two other multiobjective methods—StEMO
and MOEA/D in the comparison with our proposed method.
It should be pointed out that StEMO aims at finding the
whole Pareto front, while MOEA/D attempts to approximate
the knee area of the weakly Pareto front. In this paper, we also
consider three different versions of StEMO (i.e., StEMO/L0.5,
StEMO/L0, and StEMO/L1), where the solution with sparsity
level closest to k in the final population is further improved
by ITH/L0.5 or ITH/L0 or ITH/L1. It should be mentioned
that the population size of StEMO is set to 50, since it
aims at approximating the whole Pareto front. In MOEA/D,
the population size is set to 10, and the number of iterations in
thresholding search (i.e., ls) is set to 20. The maximal number
of iterations in StEMO and MOEA/D is 3000, while those of
StEMO/L0.5, StEMO/L0, and StEMO/L1 are 6000.

Fig. 10 shows the SRs of six MOEAs on P2 and P4.
These results show that SPLS/L0.5 and StEMO/L0.5 clearly
perform better than the other four MOEAs on both problem
sets. The main reason is that both algorithms use ITH/L0.5 as
local search for intensifying the search near the true sparse
solution. Between SPLS/L0.5 and StEMO/L0.5, the former
performs much better than the latter on P4. Both of them
have 100% SRs on P2. Together with results in Fig. 8,
we can observe that StEMO/L0.5 performs slightly better
than ITH/L0.5. Although MOEA/D also uses ITH/L0.5 to
optimize its subproblems, its performance is clearly worse
than SPLS/L0.5 and StEMO/L0.5 on both P2 and P4. From
the above results, we can conclude that the combination of
MOEAs with ITH/L0.5 can provide better ability for recon-
structing sparse signals in the case of fewer observations. From
the computational times reported in Table II, StEMO is clearly
less efficient than any other methods.

Fig. 10. SRs of SPLS/L0.5, MOEA/D(L0.5), and StEMO with L0, L1, and
L0.5 on P2 (top) and P4 (bottom).

3) Performances of SPLS on Different Values of (N ,M, k):
From the above experimental results, it is clear that the
overall performance of SPLS is significantly better than that
of three thresholding methods and two MOEAs. Note that
all six problems P1–P6 only differ in the setting of M.
To further show the advantages of SPLS against others,
we also compared SPLS/L0.5 and ITH/L0.5 on 25 problems
with 512 signal length and different combinations of M ∈
{210, 240, 270, 300, 330} and k ∈ {110, 120, 130, 140, 150}.
Each problem was tested by both SPLS/L0.5 and ITH/L0.5 for
100 times. The SRs found by these two algorithms are shown
in Fig. 11. From this figure, the following observations can be
made as follows.

1) Case 1 (M = 300 or M = 330): It can be observed
from this figure that the SRs of SPLS are 100% for
all five values of sparsity k. Note that the SRs of
ITH/L0.5 are also 100%. Therefore, the performances
of two algorithms have no difference when the number
of observations is large enough.

2) Case 2 (M = 270): SPLS/L0.5 has 100% of SRs
on all values of k except its smallest value 110.
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Fig. 11. SRs of SPLS/L0.5 (top) and ITH/L0.5 (bottom)
on 25 problems of N = 512, M ∈ {210, 240, 270, 300, 330}, and
k ∈ {110, 120, 130, 140, 150}.

In contrast, ITH/L0.5 fails to obtain 100% of SRs on
k = 110, 120, 130.

3) Case 3 (M = 210 or M = 240): The SRs of
SPLS/L0.5 are less than 100% on all ten problems
except M = 240 and k = 150. In contrast, the corre-
sponding SRs of ITH/L0.5 are significantly worse than
those of SPLS/L0.5 except three combinations of (M, k),
i.e., (240, 110), (210, 110), and (210, 120), which are
difficult to solve due the small values of (M, k) under
the 512-length signal.

From the above analysis, the performance of SPLS/L0.5 is
more robust than that of ITH/L0.5 when M is not sufficiently
large.

As we have reported, the performance of sparse optimiza-
tions may have different performances on small scale problems
and large scale problems. To study the performance of sparse
optimization methods on the scalability of problem settings,
we tested both SPLS/L0.5 and ITH/L0.5 on the 2, 4, 6, 8,
and 10 times of P4 (512, 240, and 130). The SRs are shown
in Fig. 12. It can be seen from this figure that the performance
of SPLS/L0.5 get worse as the scale of P2 is increased to its
four times. When the scale of P2 is further increased to its
ten times, i.e., 5120-length signal, the SR of SPLS/L0.5 is
changed from around 40%–96%. As reported before, the SR
of SPLS/L0.5 on 20 times of P4, i.e., 10 240-length signal,
is 100%. In contrast, the performance of ITH/L0.5 becomes
worse as the scale of P2 is increased. These results show
that SPLS/L0.5 is more suitable than ITH/L0.5 on large scale
problems.

Fig. 12. SRs of SPLS/L0.5 (top) and ITH/L0.5 (bottom) on 1, 2, 4, 6, 8,
and 10 times of P4 (512, 240, 130).

Fig. 13. Plots of the nondominated solutions found by SPLS/L0.5 on P1 with
noise level σ = 0.01, 0.03, and 0.1.

B. Artificial Sparse Signals With Noises

In many real applications, sparse signals often involve with
noises. In this paper, we assume that the observation is mixed
with Gaussian white noise, i.e., ε ∼ N(0, σ 2). It is easy to
deduce that the true sparse signal x∗ does not satisfy the
constraint y = Ax , i.e., f2(x∗) = ‖y − Ax∗‖22 > 0. In this
case, all optimal solutions of Problem (5) are strictly Pareto
optimal. Therefore, it is nontrivial to detect the exact position
of k. Instead, the approximate value of k can be obtained if β
is properly set. To deal with the instances with noise, we set
(β0, β1) = (1.0, 0.1). All other parameters are the same as
those in the subsection IV-A. The experimental results are
summarized as follows.

1) Fig. 13 shows the solutions found by SPLS/L0.5 on
P1 with σ = 0.01, 0.03, and 0.1. From this figure,
we can observe that all solutions have the sparsity values
close to the true sparsity 130. For each noisy level,
the maximal sparsity level among these solutions can
be treated as a good approximation of the true sparse
level. The related solution is also the approximation of
the true sparse solution.

2) Fig. 14 shows the true sparse signals and the errors of the
approximate solutions found by ITH/L0.5, SPLS/L0.5,
and OMP on one instance of P1 and P4 with noise
level σ = 0.01. It is evident that all three algorithms
can reconstruct the sparse signals with very small errors
on P1. For P4 with σ = 0.01, SPLS/L0.5 performs better
than the other two algorithms.
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Fig. 14. Plots of the original optimal signal (on the top) and the errors
of the approximate solutions found by SPLS/L0.5, ITH/L0.5, and OMP on
P1 (left) and P4 (right) with a noise level of 0.01.

Fig. 15. SRs found by SPLS/L0.5 on P2 (top) and P4 (bottom) at different
values of (β0, β1).

Overall, SPLS/L0.5 can approximate sparse signals with
noise well to some extent when the noise level is not very
big.

C. Analysis of the Parameter Sensitivities in SPLS

The performance of SPLS algorithm mainly relies on
the setting three major parameters β, T , and ls. In this
section, we investigate the sensitivities of these parameters
in SPLS/L0.5. Some experimental results are summarized as
follows.

1) Fig. 15 shows the SRs found by SPLS/L0.5 on P2 and
P4 with different combinations of (β0, β1), where β0
takes the value from {1, 3, 5, 10, 15, 20} and β1 takes
the value from {1, 0.1, 10−2, 10−3, 10−4, 10−5, 10−6}.
It can be seen from these results that SPLS/L0.5 with

Fig. 16. Plots of the distributions of solutions found by SPLS/L0.5 on P1 with
σ = 0.01 at different values of β1.

Fig. 17. SRs of SPLS/L0.5 on 100 instances of P6 with different settings
of T .

β1 = 1.0 fails to reconstruct the sparse signals in any
of its runs on both P2 and P4. The poor performance of
SPLS/L0.5 with a large value of β1 can be explained by
the fact that the solutions stored in E1 may have large
violation on the constraints y = Ax . Moreover, it can
also be observed that the performance of SPLS/L0.5 on
SRs is very stable for any setting of β0 in [1, 20].

2) Fig. 16 shows the nondominated solutions found by
SPLS/L0.5 with different values of β1 on P1 with
noise σ = 0.01. From this figure, we can observe
that the setting of β1 has great influence on the posi-
tion of nondominated solutions. When β1 = 10−1,
SPLS/L0.5 finds the sparsity levels close to the true
sparsity 130. SPLS/L0.5 with either too large value of β1
or too small value of β1 fails to approximate the true
sparsity.

3) Fig. 17 shows the SRs of SPLS/L0.5 on P6 at dif-
ferent values of T . It is clear that SPLS/L0.5 has
the best performance when T = 5. The performance
of SPLS/L0.5 with T = 1 or T = 40 is worst in
terms of SR. In the case of T = 1, the population of
SPLS will lose diversity, and the solutions move toward
the true sparsity 130 very slowly. On the other hand,
the solutions will move toward the right side of the true
sparsity very quickly when T is set to 40. In either case,
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Fig. 18. SRs of SPLS/L0.5 on 100 instances of P6 with different settings
of ls.

SPLS/L0.5 fails to find the sparsity levels close to the
true sparsity.

4) Fig. 18 shows the results of SPLS/L0.5 with different
settings of ls on P6. It is evident from this figure that
SPLS/L0.5 with ls = 20 or ls = 40 has the best
performance in terms of SRs. We can also observe that
SPLS/L0.5 with ls = 40 performs better than the one
with ls = 20 at the MSE levels larger than 10−15,
but worse at the MSE levels less than 10−15. This can
be explained by the fact that the large value of ls for
the thresholding search on each sparsity level k ′′ will
decrease the computational cost on searching the knee
part when the total number of thresholding iterations is
limited.

The setting of the minimal gap δ between two neighboring
sparsity levels is often set to 1 for reconstruct the short-
length sparse signals. To speed up the convergence toward
the knee part, a large value of δ is very helpful. This
has been verified by the experimental results of SPLS for
reconstructing the long-length signals. Moreover, the total
number of iterations can be reduced in a successful run if
the search is terminated when the population is well con-
verged. In fact, if SPLS/L0.5 is terminated when x ′ is not
improved by Algorithm3—ThresholdingSearch in five consec-
utive iterations, the total number of iterations will be decreased
from 3000 to the number in [1000, 1500].

V. APPLICATION OF SPLS IN MRI IMAGE

SIGNAL RECONSTRUCTION

The sparse reconstruction of MRI images is one of the most
important applications of compressive sensing [50]. Most pre-
vious work on sparse optimization for MRI images considered
the use of ITH methods. In this paper, we studied the extension
of SPLS for sparse reconstruction on MRI images, where the
sampling trajectory with radial lines is used. In the following,
we state the formulation of L0 problem for MRI images.
Assume that the following holds.

1) X ∈ Rd×d represents a 2-D image.
2) W ∈ Rd×d is a sparse transformation, and W−1 is its

inverse transformation.

Fig. 19. Plots (‖Z‖0 versus ‖Y − A(Z)‖2) of the nondominated solutions
found by SPLS/L0.5 on the first MRI image.

Fig. 20. Comparison between the images recovered by SPLS/L0.5 and
ITH/L0.5 with 60 radical lines for observations.

3) FT ∈ Rd×d is a Fourier transformation matrix.
4) S ∈ Rd×d is a sampling matrix. The sampling trajectory

with radial lines is used in this paper.
The L0 regularization model for sparse image recovery can be
written as

min
Z∈Rd×d

‖Y − A(Z)‖2F + λ‖Z‖0 (12)

where Z is the representation of X under sparse transformation
W , i.e., Z = W X . The mapping A : Rd×d → Rd×d is
defined by: [A(Z)]i j = Si j × [FT W−1 Z ]i j ; Y ∈ Rd×d is an
observation matrix in frequency domain.

In our experiments, five 128×128 grayscaling images from
the benchmark MRI library shown in the left of Fig. 20 are



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

considered. The sparsity of all MRI images is considered under
the wavelet transformation with Haar basis. The number of
nonzero components in the representation Z of five images
are 5716, 6294, 7059, 7422, and 6885, respectively. Note
the minimum and the maximum of sparsity ratio (k/N) in
all five MRI images ranged from (5716/16 384) = 0.349
to (7422/16 384) = 0.453. This means that all MRI images
are not very sparse. To make them more sparse, we carry
out the following three steps: 1) the sparse transformation W
is applied to convert a given image X into Z ; 2) a sparse
solution Z ′ is obtained by keeping k ′ largest (in absolute value)
components of Z unchanged and setting all others as zeros;
and 3) the inverse transformation W−1 is used to convert Z ′
into a new image X ′ with the sparsity level k ′. In this way,
we obtained the modified versions of five MRI images with
sparsity values—3612, 3397, 3414, 3502, and 3468 by trun-
cating the smallest components of the original MRI images.
Then, the sparsity ratios of the modified MRI images range
from 0.183 to 0.224.

According to our experimental analysis in Section IV,
SPLS/L0.5 and ITH/L0.5 are two best algorithms for recon-
structing artificial sparse signals. Therefore, we only compared
them in our experiments for MRI imaging reconstruction.
Similar to the use of ITH/L0.5 for artificial signals, the version
of ITH/L0.5 for MRI image suggested in [17] is used as
local search in SPLS. The estimation interval of sparsity in
SPLS/L0.5 is set to [0.5 × k, 2 × k], i.e., kmin = 0.5 × k
and kmax = 2 × k. The number of radial lines used
in sparsity sampling is set to 60 in both SPLS/0.5 and
ITH/L0.5. All other parameters of SPLS/L0.5 are the same
as those used for artificial signals. Our experimental results
show that the detected sparsity values by SPLS/L0.5 on five
MRI images are 3330, 3021, 3059, 3180, and 3194, which are
the number of nonzero components with the absolute values
larger than 10−10. In Fig. 19, the distribution of the weakly
Pareto-optimal solutions found by SPLS/L0.5 on the first
MRI image is plotted. This result indicates that SPLS/L0.5 can
detect the majority of large components in the sparse
MRI images.

The recovered MRI images corresponding to the solutions
at the knee position of the weakly Pareto front found by
SPLS/L0.5 and ITH/L0.5 with 60 radical lines are shown
in Fig. 20. From this figure, it is easy to see that all images
recovered by ITH/L0.5 have big errors to the correspond-
ing original MRI images, while SPLS/L0.5 is still able to
reconstruct high-quality MRI images for images 2–5. Unlike
ITH/L0.5, SPLS/L0.5 is free to set the regularization parameter
for MRI imaging reconstruction, which needs to estimate the
true sparsity value of MRI imaging signals.

VI. CONCLUSION

The majority of sparse optimization algorithms reconstruct
sparse signals by means of regularization. The setting of
the regularization parameter and the estimation of the true
sparsity are two difficult tasks in these algorithms. In this
paper, we proposed a sparse preference-based multiobjective
evolutionary approach, i.e., SPLS, for signal reconstruction,
which use the preference information of the k-sparse solution

to guide the search toward the knee part of the weakly Pareto-
optimal front. The existing ITH methods are integrated as
local optimizers. A new truncation strategy based on multiple
sparsity levels was suggested to increase the diversity of the
population. One major advantage of SPLS is that it does not
need to set the regularization parameter. Our experimental
results showed that SPLS is superior to other ITH methods,
OMP, as well as two MOEAs, i.e., MOEA/D and StEMO,
in terms of SRs on the artificial sparse signals with or without
noises. Particularly, SPLS performs much better than other
sparse optimizers when the length of signals is long or the
number of observations is relatively low. Compared with
the ITH methods with cross validation, the SPLS algorithm
consumed less computational time to find the solution in
the knee part. Furthermore, the SPLS algorithm was also
successfully applied to reconstruct MRI images with sparsity
under wavelet basis. The majority of large components in
the signals of five MRI images were detected by the SPLS
algorithm with success. Our future work will focus on the
extension of the SPLS algorithm to solve more challenging
sparse optimization problems in various applications.
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