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Greedy Criterion in Orthogonal Greedy Learning

Lin Xu, Shaobo Lin, Jinshan Zeng, Xia Liu, Yi Fang, and Zongben Xu

Abstract—Orthogonal greedy learning (OGL) is a stepwise
learning scheme that starts with selecting a new atom from a
specified dictionary via the steepest gradient descent (SGD) and
then builds the estimator through orthogonal projection. In this
paper, we found that SGD is not the unique greedy criterion and
introduced a new greedy criterion, called as “§-greedy threshold”
for learning. Based on this new greedy criterion, we derived a
straightforward termination rule for OGL. Our theoretical study
shows that the new learning scheme can achieve the existing
(almost) optimal learning rate of OGL. Numerical experiments
are also provided to support that this new scheme can achieve
almost optimal generalization performance while requiring less
computation than OGL.

Index Terms—Generalization performance, greedy algorithms,
greedy criterion, orthogonal greedy learning (OGL), supervised
learning.

I. INTRODUCTION

UPERVISED learning focuses on synthesizing a function

to approximate an underlying relationship between inputs
and outputs based on finitely many input-output samples.
Commonly, a system tackling supervised learning problems is
called as a learning system. A standard learning system usu-
ally comprises a hypothesis space, an optimization strategy,
and a learning algorithm. The hypothesis space is a family
of parameterized functions providing a candidate set of esti-
mators, the optimization strategy formulates an optimization
problem to define the estimator based on samples, and the
learning algorithm is an inference procedure that numerically
solves the optimization problem.
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Dictionary learning is a special learning system, whose
hypothesis spaces are linear combinations of atoms in some
given dictionaries. Here, the dictionary denotes a family of
base learners [1]. For such type hypothesis spaces, many reg-
ularization schemes such as the bridge estimator [2], ridge
estimator [3], and Lasso estimator [4] are commonly used opti-
mization strategies. When the scale of dictionary is moderate
(i.e., about hundreds of atoms), these optimization strategies
can be effectively realized by various learning algorithms
such as the regularized least squares (RLSs) algorithms [5],
iterative thresholding algorithms [6], and iterative reweighted
algorithms [7]. However, when faced with large input dictio-
nary, a large portion of the aforementioned learning algorithms
are time-consuming and even worse, they may cause the
sluggishness of the corresponding learning systems.

Greedy learning or, more specifically, learning through
greedy type algorithms provides a possible way to cir-
cumvent the drawbacks of the regularization methods [8].
Greedy algorithms are stepwise inference processes that
start from a null model and solve heuristically the prob-
lem of making the locally optimal choice at each step with
the hope of finding a global optimum. Within moderate
number of iterations, greedy algorithms possess charming
computational advantage compared with the regularization
schemes [1]. This property triggers avid research activities of
greedy algorithms in signal processing [9]-[11], inverse prob-
lems [12], [13], sparse approximation [14], [15], and machine
learning [8], [16], [17].

Four most important elements of greedy learning we for-
mulated are dictionary selection, greedy criterion, iterative
strategy, and termination rule. This is essentially different from
greedy approximation which focuses only on dictionary selec-
tion and iterative format issues [1]. Greedy learning concerns
generalization performance more than approximation capa-
bility. In a nutshell, greedy learning can be regarded as a
four-issue learning scheme.

1) Dictionary Selection: This issue devotes to inferring a

dictionary from training data for a given learning task.
As a classical topic of greedy approximation, there are
a great deal of dictionaries available to greedy learn-
ing. Typical examples includes the radial basis func-
tions (RBF) [18], wavelets [19], and decision trees [20].
2) Greedy Criterion: This issue regulates the criterion
to choose a new atom from the dictionary in each
greedy step. Besides the widely used steepest gradi-
ent descent (SGD) method [21], there are also many
methods such as the weak greedy [22], thresholding
greedy [1], and super greedy [23] to quantify the
greedy criterion for approximation purpose. However,
to the best of our knowledge, only the SGD criterion
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Fig. 1. Intuitive description of the greedy criterion. (a) Normalize the current
residual r; and atoms g to the unit ball. (b) Atom g; possessing the smallest
0 is regarded as the greediest one at each iteration.

is employed in greedy learning, since all the results in
greedy approximation [1], [22], [23] imply that SGD is
superior to other criteria.

3) Iterative Format: This issue focuses on how to define
a new estimator based on the selected atoms. Similar
to the dictionary selection, the iterative format issue is
also a classical topic in greedy approximation. There
are several types of iterative schemes [1]. Among these,
three most commonly used iterative schemes are pure
greedy [24], orthogonal greedy [21], and relaxed greedy
formats [25]. Each iterative format possesses its own
pros and cons [1]. For instance, compared with the
orthogonal greedy format, pure greedy, and relaxed
greedy formats have benefits in computation but suf-
fer from either low convergence rate or small applicable
scope.

4) Termination Rule: This issue depicts how to termi-
nate the learning process. The termination rule is
regarded as the main difference between greedy approx-
imation and learning, which has been recently stud-
ied [8], [17], [26], [27]. For example, Barron et al. [8]
proposed an [°-based complexity regularization strategy
as the termination rule, and Chen et al. [26] provided
an ['-based termination rule.

Orthogonal greedy learning (OGL) is a special greedy learn-
ing strategy. It selects a new atom based on SGD in each
iteration and then constructs an estimator through orthogo-
nal projecting to subspaces spanned by the selected atoms. It
is well known that SGD needs to traverse the whole dictio-
nary for selecting the most correlative atom, which leads to
an insufferable computational burden when the scale of the
dictionary is large. Moreover, OGL always searches the most
correlative atom to realize the optimal approximation capabil-
ity. As the samples are noised, the generalization performance
of OGL is sensitive to the number of iterations. In other words,
due to the SGD criterion, a slight turbulence of the number
of atoms may lead to a great change of the generalization
performance.

To overcome the above problems of OGL, a natural idea is
to reregulate the criterion to choose a new atom by taking
the greedy criterion issue into account. Fig. 1 is an intu-
itive description to quantify the greedy criterion, where ry
represents the residual at the kth iteration, g is an arbitrary
atom from the dictionary and 6 is the included angle between
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ry and g. In Fig. 1(a), both r4 and g are normalized to the
unit ball due to the greedy criterion focusing on the orienta-
tion rather than magnitude. The cosine of the angle 6 (cosine
similarity) is used to quantify the greedy criterion. As shown
in Fig. 1(b), the atom g possessing the smallest 6 is regarded
to be the greediest one at each iteration in OGL.

Since the greedy criterion can be quantified by the cosine
similarity, a preferable way to circumvent the aforementioned
problems of OGL is to weaken the correlation by thresh-
olding or regulating the cosine similarity. In particular, other
than traversing the whole dictionary and then choosing the
most correlative atom, we can select an arbitrary atom satisfy-
ing a predesigned thresholding condition. It should essentially
reduce the complexity of OGL and make the learning process
accelerated.

Different from other three issues, the greedy criterion issue,
to the best of our knowledge, has not been noted for the learn-
ing purpose. The aim of this paper is to reveal the importance
and necessity of studying the greedy criterion issue in OGL.
The main contributions can be summarized as follows.

1) We argue that SGD is not the unique criterion for OGL.
There are many other greedy criteria in greedy learning,
which possess similar learning performance as SGD.

2) We use a new greedy criterion called §-greedy thresh-
old to quantify the correlation (or cosine similarity
more precisely) in OGL. Although a similar criterion
has already been used in greedy approximation [25],
the innovation point of this paper is that we translate
it into greedy learning to accelerate the learning pro-
cess. Meanwhile, we also theoretically prove that, if
the number of iterations is appropriately specified, then
OGL with the §-greedy threshold can reach the existing
(almost) optimal learning rate of OGL [8].

3) Based on the §-greedy threshold criterion, we can derive
a straightforward termination rule for OGL and then pro-
vide a complete learning system called §-thresholding
orthogonal greedy learning (§-TOGL). Different from
the conventional termination rules that devote to search-
ing the appropriate number of iterations based on the
bias-variance balance principle [8], [27], this paper
implies that this balance can also be attained through
setting a suitable greedy threshold criterion. This phe-
nomenon reveals the essential importance of the greedy
criterion issue. We also present the theoretical justifica-
tion of §-TOGL.

4) Compared with other popular learning strategies such
as the pure greedy learning (PGL) [1], [8], OGL,
RLS [28], and fast iterative shrinkage-thresholding algo-
rithm (FISTA) [29] through empirical studies, we pro-
vide a comprehensive analysis of §-TOGL. The main
advantage of §-TOGL is that it can reduce the com-
putational cost without sacrificing the generalization
performance.

The rest of this paper is organized as follows. In Section II,
we present a brief introduction of statistical learning theory
and greedy learning. In Section III, we introduce the §-greedy
threshold criterion in OGL and provide its feasibility justifica-
tion. In Section IV, based on the §-greedy threshold criterion,
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we propose a straightforward termination rule and the corre-
sponding §-TOGL system. The theoretical feasibility of the
8-TOGL system is also given in this section. In Section V,
we present numerical simulation experiments to verify our
arguments. In Section VI, §-TOGL is further tested with real-
world data. In Section VII, we close this paper with a brief
conclusion.

II. PRELIMINARIES

In this section, we present some preliminaries to serve as
the basis for the following sections.

A. Statistical Learning Theory

Suppose that the samples z = (x;, y;)72, are drawn inde-
pendently and identically from Z = X x Y according
to an unknown probability distribution p which admits the
decomposition

p(x,y) = px(x)p(y|x). (D

Let f : X — Y be an approximation of the underlying rela-
tion between the input and output spaces. A commonly used
measurement of the quality of f is the generalization error,
defined by

() = fz (F00) — 3)2dp @)

which is minimized by the regression function [30]

frx) = /Y ydp(ylx). 3)

Since the distribution p is unknown, the regression function
fp can not be computed directly. So the goal of learning is to
find a best approximation of f,,.

Let L%X be the Hilbert space of px square integrable func-

2

tions on X, with norm ||-||,. It is known that, for every f € Ly

it holds that
EP —Efo) = If =Ll )

Without loss of generality, we assume y € [—-M, M] almost
surely. Thus, it is reasonable to truncate the estimator to
[—M, M]. That is, if we define

u, if lul <M
Msign(u), otherwise

&)

MU == {

as the truncation operator, where sign(u) represents the sign
function of u, then

lats =12 < 1 = £ ©

B. Greedy Learning

Let H be a Hilbert space endowed with norm |||y and inner
product (-, -)g. Let D = {g}gep be a given dictionary satisfy-

ing Supyep yex 18| < 1. Denote £y = {f : f = >, cp a8}
as a Banach space endowed with the norm

Z‘ad :f=2agg . @)

geD geD

Ifllg, = inf

g geD

There exist several types of greedy algorithms [1]. The
three most commonly used are the pure greedy algo-
rithm (PGA) [24], orthogonal greedy algorithm (OGA) [21],
and relaxed greedy algorithm [25]. These algorithms initialize
with fo := 0. The new approximation f; (k > 1) is defined
based on ry—1 := f — fi—1. In OGA, f is defined by

Je =Py, f (®)

where Py, , is the orthogonal projection onto the space Vz; =
span{gy, ..., gk} and g is defined as

gk = argmax|(rx—1, g)Hl- )
geD

Given z = (x;, y,-)f"= |» the empirical inner product and norm
are defined by

(f, &m = % ;f(xog(xi) (10)
and
1 m
1717 = — D I F ). (11)
i=1

Setting fzo = 0, the four aforementioned issues are attended in
OGL as follows.
1) Dictionary Selection: Select a suitable dictionary

D,, = {g], ...,g,,}
2) Greedy Criterion: Choose an atom satisfying the
inequality
gk = arg max [(re—1, g)ml- (12)
g€Dy
3) Iteration Format: Compute the k-step estimator
fi = PvS (13)

where Py, is the orthogonal projection onto Vg =
span{gi, ..., g} in the metric of (-, -);,.

4) Termination Rule: Terminate the learning process when
k satisfies a certain assumption.

III. GREEDY CRITERION IN OGL

Given a real functional V : H — R, the Fréchet derivative
of V at f, Vjﬁ : H — R is a linear functional such that for
heH

V(f+h = V()= Vi(h) 0

Al
and the gradient of V as a map gradV : H — H is defined by

(gradV(f), hyg = V}i(h), for all h € H. (15)

lim

14
I12llz—0 (1

The greedy criterion adopted in (12) is to find gx € D, such
that

(~eradtn (77") 1) = sup (~eradcan (517" ¢) - 10

where A, (f) = Zf"zl |f(xi) — yi|2. Therefore, the clas-
sical greedy criterion is based on the SGD of r;_; with
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respect to the dictionary D,. By normalizing the residual ry,
k=0,1,2,...,n, greedy criterion in (12) means to search g
satisfying

[(Tk—1, &) ml

7)
k=11l

= arg max
8k g o
Geometrically, the current gy minimizes the angle between
7k—1/llrk=1lm and g, which is depicted in Fig. 1.
Recalling the definition of OGL, it is not difficult to verify
that the angles satisfy

[cosO] < -+ < |cost| < -+ < [cos Oyl (18)
or
|<r05 gl)m‘ - s {rk—1, 8k)ml . ‘(rnflvgn)m‘
70l -1, -1l
(19)
since (|(rk—1, &)ml/Ire—1llm) = [cosOl|. If the algorithm

stops at the kth iteration, then there exists a threshold § €
[| cosbk|, | cos Or+1]] to quantify whether another atom should
be added to construct the final estimator. To be detailed, if
| cos 0| > 8, then gy is regarded as an “active atom” and can be
selected to build the estimator, otherwise, gi is a “dead atom”
which should be discarded. Based on the above observations
and motivated by the Chebshev greedy algorithm with thresh-
olds [25], we are interested in selecting an arbitrary active
atom, g, in D,, that is

[(Tk=1, 8k)ml

> 8. (20)
=1l

If there is no g satisfying (20), then the algorithm terminates.
We call the greedy criterion (20) as the §-greedy threshold
criterion. In practice, the number of active atoms is usually
not unique. We can choose the first active atom satisfied with
5-greedy threshold criterion (20) at each greedy iteration to
accelerate the algorithm. Once the active atom is selected, then
the algorithm goes to the next greedy iteration and the active
atom is redefined.

Through such a greedy-criterion, we can develop a new
OGL scheme, called TOGL. The two corresponding elements
of TOGL can be reformulated as follows:

1) Greedy Definition: Let g; be an arbitrary (or the
first) atom from D, satisfying §-greedy threshold cri-
terion (20).

2) Termination Rule: Terminate the learning process either
there is no atom satisfying §-greedy threshold crite-
rion (20) or k satisfies a certain assumption.

Compare with the greedy criterion in OGL and TOGL, we
find that the classical greedy criterion (12) in OGL always
selects the greediest atom at each greedy iteration. While,
5-greedy threshold criterion (20) in TOGL slows down the
speed of gradient descent and therefore may conduct a more
flexible model selection strategy. According to the bias and
variance balance principle [31], the bias decreases while the
variance increases as a new atom is selected to build the
estimator. If a lower-correlation atom is added, then the bias
decreases slower and the variance also increases slower. Then,
the balance can be achieved in TOGL within a more gradual
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flavor than OGL. Moreover, §-greedy threshold criterion (20)
can also provides a natural termination rule that if no atom, g,
in D, satisfy §-greedy threshold criterion (20) as

max |(rk, &)m| < 8lIrilly 21

8Dy
then the algorithm terminates.

Now we present a theoretical assessment of TOGL. At first,
we give a few notations and concepts, which will be used in
the rest part of this paper. For r > 0, the space E{’Dn is
defined to be the set of all functions f such that, there exists
a h € span{D,} satisfying

Ikl D, < B, and [[f —hll < Bn™" (22)

where || - || denotes the uniform norm for the continuous func-
tion space C(X). The infimum of all B satisfying (22) defines
a norm (for f ) on ,C?Dn. Equation (22) defines an interpo-
lation space and is a natural assumption for the regression
function in greedy learning [8]. This assumption has already
been adopted to analyze the generalization performance of
greedy learning [8], [17], [27]. Theorem 1 illustrates the per-
formance of TOGL and consequently, reveals the feasibility of
the greedy criterion in §-greedy threshold criterion (20). The
proof of Theorem 1 is put in the Appendix.

Theorem 1: Let 0 <t < 1,0 < & < 1/2, and f-*° be the
estimator deduced by TOGL. If f,, € C?,Dn’ then there exits a
k* € N such that

5<”Mfzk*’6) —£(fo)
-1 1 2
< C82<(m82) log mlog 3 log n + 8%+ n2’>

holds with probability at least 1 — ¢, where C is a positive
constant depending only on d and M.

If§ = O(m_l/ 4), and the size of dictionary, n, is selected to
be large enough, i.e., n > OmY/4)), then Theorem 1shows
that the generalization error of J'r;w‘zk*’6 is asymptotic to
Om=1/ 2(log m)?). Up to a logarithmic factor, this bound is
the same as that of Barron et al. [8], which is the best known
bound in existing literature of OGL. This implies that weaken-
ing the correlation in OGL is a feasible way to avoid traversing
the dictionary. It should also be pointed out that different from
OGL [8], there are two parameters, k and §, in TOGL. The ter-
mination rule in TOGL concerning k is necessary and is used
to avoid certain extreme cases in practice. In fact, only using
the termination rule (21) may drive the algorithm to select all
atoms from D,. As Fig. 2 shows, if the target function f is
almost orthogonal to the space spanned by the dictionary and
the atoms in the dictionary are almost linear dependent, then
the selected § should be too small to distinguish which is the
active atom. Consequently, the corresponding learning scheme
selects all atoms of the dictionary, and therefore, degrades the
generalization performance of OGL.

Therefore, Theorem 1 only presents a theoretical verifi-
cation that introducing the §-greedy threshold to measure
the correlation does not essentially degrade the generaliza-
tion performance of OGL. However, taking practical aspects
into account, simultaneously tunning two main parameters in
TOGL should be a tough task.
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Fig. 2.

Necessity of termination rule concerning k in TOGL.

IV. §-THRESHOLDING ORTHOGONAL
GREEDY LEARNING

In the previous section, we developed a new greedy learning
scheme called as TOGL and theoretically verified its feasibil-
ity. However, there are two main parameters (i.e., the value
of threshold & and iteration k) should be simultaneously fine-
tuned. It puts more pressure on parameter selection, which may
dampen the spirits of practitioners. Given this, we further pro-
pose a termination rule only based on the value of threshold §.
Notice that, the value ||rx—1|lm»/ly(:) |l becomes smaller and
smaller along the selection of more and more active atoms,
where y(-) is a function satisfying y(x;) = y;,i = 1,...,m.
Then, an advisable termination rule is to use & to quantify
l7k—1llm/lly(:)|lm- Therefore, we append another termination
rule as

71l < SllyC (23)

to replace the previous termination rule concerning k in TOGL.
Based on it, a new termination rule can be obtained.
1) Termination Rule: Terminate the learning process if
either (23) holds or there is no atom satisfying §-greedy
threshold criterion (20). That is

maDXI(rk,g)ml < M7l or Ikl = 81 fllm- (24)

8€Dy
Then we present a new learning system named §-TOGL as
Algorithm 1.

The implementation of OGL requires traversing the whole
dictionary, which has a complexity of O(mn). Inverting a k x k
matrix in orthogonal projection has a complexity of O(k?).
Thus, the kth iteration of OGL has a complexity of O(mn +
k3). In step 2 of 8-TOGL, g is an arbitrary atom from D,
satisfying the §-greedy threshold condition. It motivates us to
select a random atom from D,, satisfying §-greedy threshold
criterion (20). Suppose we use 7 to denote the number of atoms
8-TOGL traversed, generally n < n. Thus, the complexity
of §-TOGL is smaller than O(mn + k3). In fact, it usually
requires a complexity of O(m+ k%), and gets a complexity of
Omn+k3) only for the worst case [here the worst case means
all atoms in dictionary satisfied (20)]. Furthermore, there are
an additional termination rule (24) in §-TOGL compared with
the conventional OGL. The benefit is a smaller number of
iterations in §-TOGL generally, except the value of threshold
§ is a really small positive number tending to 0. Thus, §~-TOGL
can essentially reduce the complexity of OGL, especially when
n is large. The memory requirements of OGL and §-TOGL are
the same as O(mn) for inner product operation.

Algorithm 1 §-TOGL
Inputs: Training data z = (x;, y;)! ;.
Outputs: Function estimator f.
Step 1 (Initialization):
Given dictionary D,, and a proper greedy threshold §.
Set initial estimator f; = 0 and iteration k := 0.
Step 2 (5-greedy threshold):
Select g be an arbitrary atom from D, satisfying

[(Tk—1. &k)ml
17e—1llm

> 4.

Step 3 (Orthogonal projection):
Let V, x = Span{gy, ..., gk}. Compute ff as:

=Py, .

The residual: ry == y — fz‘s, where P, y,, is the orthogonal
projection onto space V, in the criterion of (-, -),,.

Step 4 (Termination rule):

If termination rule is satisfied as:

max [(rk, & ml < 8lrkllm or rllm < SIS llm;
g€Dy

then algorithm terminates and outputs the final estimator f2.
Otherwise, return to Step 2 and k:= k+ 1.

The following theorem shows that if the value of threshold
8 is appropriately tuned, then the §-TOGL estimator f0 can
also realize the (almost) optimal generalization performance
of OGL and TOGL. Please see the Appendix for the proof of
Theorem 2.

Theorem 2: Let0 <t < 1,0 <6 <1/2, andfz‘s be defined
in Algorithm 1. If f, € E?,D,,’ then the inequality

E(mufy) = E(fp) <
2 2\ 7! l % 2 —2r
CcB ((mS ) 10gm10g5 log ; +8 +n )

holds with probability at least 1 — ¢, where C is a positive
constant depending only on d and M.

If n > Om1/*) and § = O(m~'/%), then the learning
rate in Theorem 2 asymptotically equals to O (m~'/?(logm)?),
which is the same as that of Theorem 1. Therefore, Theorem 2
implies that using (23) only concerning § to fully replace the
termination rule concerning k is theoretically feasible.

The most important trait of Theorem 2 is that it provides a
totally different way to circumvent the overfitting phenomenon
of OGL. As we know that the termination rule is crucial
for OGL, but designing an effective one is a tricky problem.
Almost all the previous studies [8], [26], [27] concerning on
the termination rule in OGL attempted to control the num-
ber of iterations directly. Since the generalization performance
of OGL is sensitive to the iterations, the results are some-
times unsatisfactory. The termination rule (23) employed in
this paper is based on the study of the “greedy-criterion” issue
of greedy learning. Theorem 2 shows that, besides controlling
the number of iterations directly, setting a greedy threshold
to redefine the greedy criterion can also conduct an effective
termination rule. Theorem 2 implies that this new termination
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Fig. 3. Simulated training and test samples. The learning task becomes more difficult with respect to increasing of the noise. (a) Noise level o1 = 0.1.

(b) 05 =0.5. (¢) o3 = 1. (d) 0y = 2.

rule theoretically works as well as others. Furthermore, since
the new criterion slows down the changes of bias and variance,
the generalization performance of §-TOGL is more stable to
8 than that of OGL to k.

V. SIMULATION VERIFICATIONS

In this section, a series of simulations are carried out to ver-
ify our theoretical assertions. First, we introduce the simulation
settings, including the data sets, dictionary, greedy criteria, and
experimental environment. Second, we analyze the greedy cri-
teria in OGL. Third, we study §-greedy threshold criterion in
8-TOLG Finally, we compare §-TOGL with other widely used
dictionary-based learning methods and verify its feasibility.

A. Simulation Settings

Throughout the simulations, let z = {(x;, y,-)}?'g] be the train-
ing samples with independent variable {xi};'gl being drawn
independently and identically according to the uniform distri-
bution on [—m, 7] and the corresponding dependent variable
yi = fo(x;) + N (0, 02), where

sinx

frx) = —~ x €[—m, m]. (25)

In each simulation, we use the RBF [18] to build up the

dictionary
22
{e_”x_”” . z=1,...,n}

where {#;}?_, are drawn according to the uniform distribution
in [—m, w]. The learning performance of different learning
schemes are then tested by using the root mean squared
error (RMSE) criterion

RMSE = \/M

my

(26)

27)

where y; is the resultant estimator and yl@ =/ (x,(-t)) is taken
from the test set Z,gy = {(xl@, yl(t))}:":zl. Since the aim of
each simulation is to compare §-TOGL with other learning
methods under the same dictionary, we just set m; = 1000,
my = 1000, n = 300, and n = 1 throughout the simulations
unless otherwise stated. In order to make the simulated learn-
ing task more “real,” four levels of noise o1 = 0.1, o» = 0.5,

03 = 1, and 04 = 2 has been added to all the training samples
while test data remain noise-free. Fig. 3 shows the the simu-
lated training and test samples, we can find that the learning
problem becomes more difficult with respect to increasing of
the noise.

We use four different criteria to select the new atom in each
greedy iteration

gk = arg max|(rk—1,g)m‘
g€D,

gk = arg second max| (rk—1, g),,|
g€D,

gk = arg third max |(re—1, g) .|
g€D,

and
gk randomly selected from D,,.

Here, argsecond max and argthird max mean the values of

[(rk—1, &)m| reach the second and third largest values, respec-
tively. Randomly selected means to randomly select gx from
the dictionary. We use four abbreviations OGLI1, OGL2,
OGL3, and OGLR to represent the corresponding greedy cri-
teria in OGL, respectively. Accordingly, -TOGL1, §-TOGL2,
8-TOGL3, and 6-TOGLR are used to denote the correspond-
ing greedy criteria in 6-TOGL. Noticing that, selecting gi
in 6-TOGL also should satisfy §-greedy threshold criterion
(1Crk—15 8kdml/Iri=11lm) > 8.

All numerical studies are implemented in MATLAB R2015a
on a Windows personal computer with dual-core i7-3770
(3.40 GHz) CPUs and 16GB of RAM. All the statistics are
averaged based on 50 independent trials.

B. Greedy Criteria in OGL

In this part, we analyze the role of the greedy criterion in
OGL by comparing the performance of OGL1, OGL2, OGL3,
and OGLR.

Fig. 4 shows the performance of OGL with four different
greedy criteria. Since all the values of the optimal iteration k
(i.e., kj,) are small (less than 15), so we only plot the figures
with k € [0; 15] to present more details around the optimal
value. First, we can see that the performance of OGL is very
sensitive to iteration and its performance will be sharply deterio-
rated when the number of iterations becomes larger. Afterward,
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TABLE I
COMPARISONS OF OGL WITH FOUR GREEDY CRITERIA

Method ‘ TestRMSE ‘ koL Method ‘ TestRMSE ‘ koL
c=0.1 =05
OGL1 | 0.0545(0.0219) | 89 (1.3) | OGLI1 | 0.0671 (0.0223) | 8.8 (1.4)
OGL2 | 0.0539 (0.0223) | 9.1 (1.3) | OGL2 | 0.0658 (0.0215) | 8.7 (1.5)
OGL3 | 0.0548 (0.0224) | 9.0 (1.4) | OGL3 | 0.0639 (0.0188) | 8.9 (1.4)
OGLR | 0.0649 (0.0252) | 9.5 (2.0) | OGLR | 0.0817 (0.0332) | 8.3 (1.6)
Method TestRMSE koo | Method TestRMSE koo
c=1 c=2
OGL1 | 0.0935 (0.0210) | 7.9 (1.1) | OGL1 | 0.1651 (0.0284) | 6.9 (1.2)
OGL2 | 0.0932(0.0214) | 7.9(0.9) | OGL2 | 0.1652 (0.0281) | 6.9 (1.2)
OGL3 | 0.0933(0.0210) | 7.9 (0.9) | OGL3 | 0.1652 (0.0281) | 7.0 (1.2)
OGLR | 0.1029 (0.0268) | 7.8 (1.3) | OGLR | 0.1761 (0.0241) | 6.7 (1.5)

we also find that OGL1, OGL2, and OGL3 have similar perfor-
mance, while OGLR performs worse. This phenomenon shows
that SGD (or OGL1) is not the unique greedy criterion for
learning, meanwhile, random selecting atom in OGL is not
a wise choice. It implies the necessity to study the greedy
criterion issue for learning purpose. Detailed comparisons are
listed in the Table 1. Here TestRMSE denotes the optimal gen-
eralization performance (in RMSE), where the parameter k7, ;;
is selected according to the test data (or TestRMSE) directly.
The standard deviation of optimal TestRMSE and parameter
are also listed in the corresponding brackets.

102 10" 10 10° 102 10

10 10° 107 10! 10* 10° 102 10!
Value of Thresholds Value of Thresholds

(© (d)

Generalization performance of §-TOGL with four different greedy criteria. (a) Noise level oy = 0.1. (b) 05 = 0.5. (¢) 03 = 1. (d) o4 = 2.

C. §-Greedy Threshold Criterion in 5-TOGL

Now, we begin to examine the performance of §-TOGL.
From OGL to §-TOGL, the main parameter changes from
the number of iteration k to the value of greedy threshold §.
Similar to Fig. 4, we also consider the relationship between the
performance and parameter of -TOGL in Fig. 5. We plot the
range of § in [10™*, 10~!]. Notice that the plot range of test
error (RMSE) in Fig. 5 (i.e., [0, 0.4]) is much smaller than that
in Fig. 4 (i.e., [0, 1]) for distinguishing different performance
curves.

From the figures, we can see that different from previ-
ous Fig. 4, now the performance of §-TOGLR is better and
more robust than §-TOGL1, §-TOGL2, and §-TOGL3 in vari-
ous noise settings. The main reason is that 5-TOGLR random
selecting a new atom satisfied with the §-greedy threshold cri-
terion (20). This constrained randomness can suppress noise
interference to some extent, and thus achieve better and robust
performance.

Detailed comparisons are also listed in Table II. Here
TestRMSE denotes the optimal generalization performance
(in RMSE), where the parameter §* is selected according
to the test data (or TestRMSE) directly. The standard devi-
ation of optimal TestRMSE and parameter are listed in the
corresponding brackets. The numbers in bold represent the
best result compared with others in the same experimen-
tal settings. We also record the number of iteration kj ;o1
corresponding to 8* for comparisons, although §-TOGL has
no part in adjusting this parameter. From the result, we
can clearly find that the performance of 6-TOGLR is better
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TABLE I

Method 5 | TesRMSE | kipoq
oc=0.1
§-TOGLI | 0.0139 (0.0255) | 0.0467 (0.0178) | 114 (4.5)
§-TOGL2 | 0.0128 (0.0192) | 0.0470 (0.0207) | 11.6 (4.6)
§-TOGL3 | 0.0145 (0.0224) | 0.0479 (0.0212) | 10.7 (3.5)
J-TOGLR | 0.0105 (0.0237) | 0.0396 (0.0208) | 9.8 (1.2)
o=0.5
§-TOGL1 | 0.0054 (0.0122) | 0.0569 (0.0141) | 89 (2.8)
§-TOGL2 | 0.0074 (0.0125) | 0.0587 (0.0139) | 10.2 (4.3)
§-TOGL3 | 0.0112 (0.0177) | 0.0597 (0.0150) | 8.9 (2.8)
§-TOGLR | 0.0052 (0.0121) | 0.0562 (0.0147) | 8.2 (0.8)
c=1
§-TOGL1 | 0.0069 (0.0095) | 0.0814 (0.0194) | 10.0 (5.3)
6-TOGL2 | 0.0068 (0.0077) | 0.0832 (0.0180) | 8.7 (4.0)
5-TOGL3 | 0.0068 (0.0072) | 0.0824 (0.0187) | 8.5 (4.3)
§-TOGLR | 0.0052 (0.0065) | 0.0810 (0.0185) | 7.9 (1.5)
c=2
6-TOGLI | 0.0025 (0.0039) | 0.1355 (0.0431) | 110 (6.2)
5-TOGL2 | 0.0039 (0.0060) | 0.1329 (0.0443) | 8.9 (4.9)
§-TOGL3 | 0.0019 (0.0019) | 0.1334 (0.0451) | 10.5(5.7)
§-TOGLR | 0.0037 (0.0017) | 0.1301 (0.0349) | 7.2 (1.2)

and more robust in parameter compared with other §-TOGL
variants.

D. Compare With Other Learning Schemes

We than compare 6-TOGLR with other dictionary-based
learning schemes such as the PGL [20], OGL [8], ridge
regression [3], and Lasso [4]. We use L, regularized least-
square (RLS) solution for ridge regression and FISTA algo-
rithm for Lasso [29].

Firstly, we introduce the parameter settings of the corre-
sponding learning schemes. For OGL, the maximum number
of iterations equals to the size of dictionary. And for the
greedy threshold parameters 6-TOGLR, we also use 20 equally
spaced values of 8 in logarithmic space within [107%, 1071,
Due to the convergence rate of PGL is more slower than
OGL [8], [21], the maximum number of iterations of PGL
is set as 10000 for better generalization performance. The
regularization parameter A in RLS and FISTA is also chosen
from a 50 points set whose elements are uniformly localized
in [10’4, 1]. All the parameters, i.e., the number of iterations
k in PGL or OGL, the regularization parameter A in RLS
or FISTA, and the greedy threshold § in §-TOGLR are all
selected according to test dataset (or test RMSE) directly, since
we mainly focus on the impact of the theoretically optimal
parameter rather than validation techniques.

The compared results are listed in Table III, where the
standard errors of testRMSE are also reported (numbers in
parentheses). The sparsity means the number of atoms the
corresponding algorithm employed and running time (in s)

IEEE TRANSACTIONS ON CYBERNETICS

TABLE III
COMPARING 8-TOGLR WITH OTHER SCHEMES

Method

Regression function sinc, dictionary Dy, n = 300, noise level o = 0.1

Parameter TestRMSE ‘ Sparsity ‘ Running time

PGL k=81 0.0434 (0.0172) 81.0 313 (12)
OGL k=10 0.0452 (0.0241) 10.0 132 (0.4)
§-TOGLR | §=0.0113 | 0.0421 (0.0121) 9.2 3.5 (0.1)
Lo(RLS) | A=0.0012 | 0.0412 (0.0198) 300.0 0.6 (0.1)
L1(FISTA) | A =0.0007 | 0.0418 (0.0192) 292.5 61.8 (2.1)

Regression function sinc, dictionary Dy, n = 1000, noise level ¢ = 0.1

PGL k=217 0.0422 (0.0142) 217.0 126.7 (3.1)
OGL k=9 0.0415 (0.0151) 9.0 71.1 (1.1)
0-TOGLR | ¢ =0.0201 | 0.0384 (0.0182) 10.1 5.1(0.1)
Lo(RLS) | A=0.0012 | 0.0489 (0.0103) | 1000.0 6.1 (0.1)
L1(FISTA) | A =0.0006 | 0.0481 (0.0179) 821.2 112.7 (2.3)
Regression function sinc, dictionary Dy, n = 2000, noise level o = 0.1
PGL k=221 0.0367 (0.0136) 221.0 236.2 (6.2)
OGL k=9 0.0351 (0.0143) 9.0 374.7 (5.9)
0-TOGLR | §=0.0112 | 0.0326 (0.0129) 135 6.7 (0.5
Lo(RLS) | A=0.0051 | 0.0423 (0.0128) | 2000.0 382 (14)
L1(FISTA) | A =0.0012 | 0.0412 (0.0181) | 1151.2 1213 32)

implies the whole cost (training and test cost) the algo-
rithm paid. From Table III, we first observe that the spar-
sities of greedy-type strategies are obviously far smaller than
regularization-based methods, while they enjoy better perfor-
mance. It empirically verifies that greedy-type algorithms are
more suitable for redundant dictionary learning, which is also
empirically consistent with the work of Barron et al. [8].
Furthermore, we also find that, although the performance of
such three greedy-type algorithms (PGL, OGL, and §-TOGLR)
are similar, §~-TOGLR has a big advantage in running time and
sparsity.

VI. REAL DATA EXPERIMENTS

We have verified that §-TOGL is feasible in simulations.
Especially, §~-TOGLR possesses both good generalization per-
formance and the lowest computation complexity. Now, we
begin to verify the performance (also in RMSE) and running
time (in s) of 6-TOGLR and further compare it with other
dictionary-based learning methods including PGL, OGL, RLS,
and FISTA on five real data sets.

The first dataset is the Prostate cancer dataset [32]. The data
set consists of the medical records of 97 patients who have
received a radical prostatectomy. The predictors are eight clin-
ical measures and one response variable. The second dataset is
the Diabetes data set [33]. This data set contains 442 diabetes
patients that are measured on ten independent variables and
one response variable. The third one is the Boston Housing
data set created from a housing values survey in suburbs of
Boston by Harrison and Rubinfeld [34]. The Boston Housing
dataset contains 506 instances which include 13 attributions
and one response variable. The fourth one is the concrete
compressive strength (CCS) dataset [35], which contains 1030
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TABLE IV
COMPARATIVE RESULTS OF PERFORMANCE AND RUNNING TIME ON FIVE REAL DATA SETS

Dataset Prostate Diabetes Housing CCS Abalone
Method

Dictionary size n = 50 n = 220 n = 255 n = 520 n = 2100
Performance in RMSE (average and standard deviation)

0-TOGLR | 0.4208 (0.0112) | 55.1226 (1.0347) | 4.0450 (0.4256) 7.1279 (0.3294) | 2.2460 (0.0915)

PGL | 0.4280 (0.0081) | 56.3125 (2.0542) | 4.0716 (0.2309) | 11.2803 (0.0341) | 2.5880 (0.0106)

OGL | 0.5170 (0.0119) | 54.6518 (2.8700) | 3.9447 (0.1139) 6.0128 (0.1203) | 2.1725 (0.0088)

RLS | 0.4415 (0.0951) | 57.3886 (1.5854) | 3.9554 (0.3236) 9.8512 (0.2693) | 2.2559 (0.0514)

FISTA | 0.6435 (0.0151) | 61.7636 (2.5811) | 5.1845 (0.1859) | 12.8127 (0.3019) | 3.4161 (0.0774)
Running time in seconds (average and standard deviation)

6-TOGLR 0.58 (0.01) 1.11 (0.02) 0.89 (0.01) 0.82 (0.01) 4.22 (0.04)

PGL 41.93 (1.12) 49.06 (1.09) 52.04 (1.12) 79.93 (1.26) 193.97 (1.87)

OGL 0.16 (0.01) 1.11 (0.03) 1.42 (0.03) 7.46 (0.01) 787.2 (1.22)

RLS 0.15 (0.01) 0.27 (0.01) 0.33 (0.01) 1.20 (0.02) 42.59 (0.24)

FISTA 0.52 (0.06) 1.11 (0.32) 1.40 (0.03) 9.04 (0.12) 257.8 (1.62)

instances including eight quantitative independent variables
and one dependent variable. The fifth one is the Abalone
dataset [36] collected for predicting the age of abalone from
physical measurements. The data set contains 4177 instances
which were measured on eight independent variables and one
response variable.

We randomly divide all the real data sets into two disjoint
equal parts. The first half serves as the training set and the
second half serves as the test set. We use the Z-score stan-
dardization method [37] to normalize the data sets, in order
to avoid the error caused by considerable magnitude differ-
ence among data dimensions. For each real data experiment,
Gaussian RBF is also used to build up the dictionary

)

where {;}7_, are drawn as the training samples themselves,
thus the size of dictionary equals to the training samples. We
set the standard deviation of RBF as 1 = (dmax/ m), where
dmax 1S maximum distance among all centers {t; ?:1’ in order
to avoid the RBF is too sharp or flat.

Table IV documents the performance and running time of
the corresponding algorithms on five real data sets. We find
that, for the small-scale dictionary, i.e., for the Prostate data
set, although §-TOGLR can achieve good performance, its
running time is more than OGL and RLS. This is attributed
to additional parameter-selection cost in 6-TOGLR. In fact,
for each candidate threshold parameter §, a different itera-
tion of the algorithm is needed run from scratch, which seems
to cancel the major computational advantage of -TOGLR in
small size dictionary learning. However, we also notice that,
when the size of dictionary increased (i.e., diabetes, hous-
ing, and CCS), 6-TOGLR begin to gradually surpass the other
methods in computation with maintaining good performance.
Especially in Abalone data set, 5-TOGLR dominates other

{e—l\x—fillz/fl2 i=1,.. (28)

methods with a large margin in computation and still possesses
good performance.

VII. CONCLUSION

In this paper, we study the greedy criteria in OGL. The
main contributions can be concluded in four aspects.

Firstly, we propose that the SGD is not the unique greedy
criterion to select atoms from dictionary in OGL, which paves
a new way for exploring greedy criterion in greedy learning.
To the best of our knowledge, this may be the first work
concerning the greedy criterion issue in the field of super-
vised learning. Secondly, motivated by a series of previous
researches of Temlyakov [1], [22], [23], [25] in greedy approx-
imation, we eventually use the §-greedy threshold criterion to
quantify the correlation for the learning purpose. Our theo-
retical result shows that OGL with such a greedy criterion
yields a learning rate as m~'/?(logm)?, which is almost the
same as that of the classical SGD-based OGL [8]. Thirdly,
based on the §-greedy threshold criterion, we derive a terminal
rule for the corresponding OGL and thus provide a complete
new learning scheme called as §-TOGL. We also present the
theoretical demonstration that -TOGL can reach the existing
(almost) optimal learning rate [8] just as the iteration-based
termination rule dose. Finally, we analyze the generalization
performance of §-TOGL and compare it with other popular
dictionary-based learning methods through plenty of numerical
experiments. The empirical results verify that the §~-TOGL is a
promising learning scheme, which reduces the computational
cost without sacrificing the generalization performance.

Future work is required to enable such a trend. Among the
many possible research directions we mention three: 1) a study
of the heuristic strategy for a suitable threshold value in
5-TOGL,; 2) faster implementation of the algorithm (i.e., paral-
lel processing for atoms in dictionary and matrix factorization
for inverting a huge matrix in orthogonal projection step); and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

3) handing the scalability problem of §-TOGL, when tuning
to work with large-scale dictionary.

APPENDIX
PROOF OF THEOREM 2

Since Theorem 1 can be derived from Theorem 2 directly,
we only prove Theorem 2. The methodology of proof is
somewhat standard in learning theory. In fact, we use the
error decomposition strategy [17] to divide the generalization
error into approximation error, sample error and hypothe-
sis error. The main difficulty of the proof is to bound the
hypothesis error. The main tool to bound it is borrowed
from [25].

In order to give an error decomposition strategy for £( fzk) —
E(fp), we need to construct a function f,j‘ € span(D,,) as fol-
lows. Since f, € EE,D,,’ there exists a h, = Y . a8 €
Span(D,;) such that

lnoll g, , = B. and [ fp —hy| < Bn" (29)
Define
1 i lailllgill
fo=0 f= (1 - ;)ﬁf_l +—Z’ ! k’ “Ler (30)
where
gl = arg max{h, — ]_l g (31)
k * geD;, 14 k k—1° )
and
D, = {gi@/lgill, )}, U {—&@/laill, )}, (32

with g; € Dj,.
Let fz‘3 and f* be defined as in Algorithm 1 and (30),
respectively, then we have
E(mufy) = £(fp) = E(R) = £(fo) + Ealmmfy) — Ea(7)
+ &) = ER) + E(mufy) — Exlmfy)
where &(f) = (1/m) YiL, (vi — ().

Upon making the short hand notations

Dk) = E(f) — (/) (33)
Sk, 8) = E(f) — E(fF) + E(mmfl) — Eulmufy) (B

and
Pz, k, 8) = E(mmf?) — E(F) (35)

respectively for the approximation error, the sample error and
the hypothesis error, we have

E(mfl) — E(f,) = Dk) + Sz, k, 8) + P(z,k, 8).  (36)

At first, we give an upper bound estimate for D(k), which
can be found in [17, Proposition 1].

Lemma 1: Let f be defined in (30). If f,, € L]

.D," then

D(k) < B (k‘l/z + n_r>2. (37)

To bound the sample and hypothesis errors, we need the
following Lemma 2.
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Lemma 2: Let y(x) satisfy y(x;) = y;, and f° be defined in

Algorithm 1. Then, there are at most
5 1

C5™“ log 3 (38)

atoms selected to build up the estimator f2. Furthermore, for
any h € Span{D,}, we have

Iy =222 < 2lly — Al + 2621kl -

Proof: Equation (38) can be found in [25, Th. 4.1]. Now we
turn to prove (39). Our termination rule guarantees that either
maxgep, {7k, &)ml < Sllrellm or [Irell < Sllyllm. In the latter
case the required bound follows from:

(39)

Il < ly = Al + 1Al < 8(Ily = All,, + lI21,,)
<8(If = hll,, + Ikl 2, D,))-

Thus, we assume maxgep, |{rk, &ml < 87kllm holds. By
using

v —Ji- fihm =0 (40)
we have
7l = (i kb = (s ¥ = ) + (s B
< ”y - h”m”rk”m + (rks h>m
< Ny =kl lirell, + M2l 2, (D,) Max(rk, &)
8€Dy

<y = Al lirellm + M2l 2, 0, Sk

This finishes the proof. |

Based on Lemma 2 and the fact |fflz,mp,) =< B

[17, Lemma 1], we obtain a
Pz, k, 8) < 2&,(mufy) — E(fF) < 288> (41)

Now, we turn to bound the sample error S(z, k). Upon using
the short hand notations

S1z. k) = {&(F) = &)} — () - €(H)} @)
and
$2(z,8) = |E(nmfl) — E(fo)} = (Elomf?) — E(fp))  43)
we write
Sz, k) = S (2. k) + S1(z. ). (44)

It can be found in Lin ef al. [17, Proposition 2] that for any
0 <t < 1, with confidence 1 — (/2)

7(3M + Blog %) 1
—~ + D).
3m 2

Using [27, eqgs. (A.10)] with k replaced by C5~21og(1/8),
we have

Si1(z, k) = (45)

2 C82log % logm

1
S)(z,8) < 55(77Mfz5) —&(fp) +1log . .

(46)
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holds

with confidence at least 1 — ¢/2. Therefore,

(36), (37), (41), (45), (46) and (44) yield that

5(77Mfz3) - 5(fp)
-1 1 2
< CBZ((mSZ) log mlog 3 log n + 8%+ n2’>

holds with confidence at least 1 —¢. This finishes the proof of
Theorem 2.

ACKNOWLEDGMENT

Three anonymous reviewers have carefully read this paper
and have provided numerous constructive suggestions. As a
result, the overall quality of this paper has been noticeably
enhanced, to which the authors feel much indebted and are
grateful.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

V. N. Temlyakov, “Greedy approximation,” Acta Numerica, vol. 17,
pp. 235409, May 2008.

A. Armagan, “Variational ridge regression,” in Proc. Int. Conf. Artif.
Intell. Stat., 2009, pp. 17-24.

G. H. Golub, M. T. Heath, and G. Wahba, “Generalized cross-validation
as a method for choosing a good ridge parameter,” Technometrics,
vol. 21, no. 2, pp. 215-223, Apr. 1979.

R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Stat. Soc. B, vol. 58, no. 1, pp. 267-288, Jan. 1996.

Q. Wu, Y. Ying, and D.-X. Zhou, “Learning rates of least-square regu-
larized regression,” Found. Comput. Math., vol. 6, no. 2, pp. 171-192,
Apr. 2006.

I. Daubechies, M. Defrise, and C. De Mol, “An iterative threshold-
ing algorithm for linear inverse problems with a sparsity constraint,”
Commun. Pure Appl. Math., vol. 57, no. 11, pp. 1413-1457, Nov. 2004.
I. Daubechies, R. DeVore, M. Fornasier, and C. S. Glintiirk, “Iteratively
reweighted least squares minimization for sparse recovery,” Commun.
Pure Appl. Math., vol. 63, no. 1, pp. 1-38, Jan. 2010.

A.R. Barron, A. Cohen, W. Dahmen, and R. A. DeVore, “Approximation
and learning by greedy algorithms,” Ann. Stat., vol. 36, no. 1, pp. 64-94,
Feb. 2008.

W. Dai and O. Milenkovic, “Subspace pursuit for compressive sens-
ing signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, no. 5,
pp. 2230-2249, May 2009.

S. Kunis and H. Rauhut, “Random sampling of sparse trigonomet-
ric polynomials, II. Orthogonal matching pursuit versus basis pursuit,”
Found. Comput. Math., vol. 8, no. 6, pp. 737-763, Dec. 2008.

J. A. Tropp, “Greed is good: Algorithmic results for sparse approx-
imation,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231-2242,
Oct. 2004.

D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solu-
tion of underdetermined systems of linear equations by stagewise
orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 58, no. 2,
pp. 1094-1121, Feb. 2012.

J. A. Tropp and S. J. Wright, “Computational methods for sparse solution
of linear inverse problems,” Proc. IEEE, vol. 98, no. 6, pp. 948-958,
Jun. 2010.

D. L. Donoho, M. Elad, and V. N. Temlyakov, “On Lebesgue-type
inequalities for greedy approximation,” J. Approx. Theory, vol. 147,
no. 2, pp. 185-195, Aug. 2007.

V. N. Temlyakov and P. Zheltov, “On performance of greedy algorithms,”
J. Approx. Theory, vol. 163, no. 9, pp. 1134-1145, 2011.

H. Chen, Y. Zhou, Y. T. Tang, L. Li, and Z. Pan, “Convergence rate of
the semi-supervised greedy algorithm,” Neural Netw., vol. 44, pp. 44-50,
Aug. 2013.

S. B. Lin, Y. H. Rong, X. P. Sun, and Z. B. Xu, “Learning capability
of relaxed greedy algorithms,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 24, no. 10, pp. 1598-1608, Oct. 2013.

S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 2, no. 2, pp. 302-309, Mar. 1991.

O. Rioul and M. Vetterli, “Wavelets and signal processing,” IEEE Signal
Process. Mag., vol. 8, no. 4, pp. 14-38, Oct. 1991.

[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

11

J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Stat., vol. 29, no. 5, pp. 1189-1232, Oct. 2001.

R. A. DeVore and V. N. Temlyakov, “Some remarks on greedy
algorithms,” Adv. Comput. Math., vol. 5, no. 1, pp. 173-187, Dec. 1996.
V. Temlyakov, “Weak greedy algorithms,” Adv. Comput. Math., vol. 12,
nos. 2-3, pp. 213-227, Feb. 2000.

E. Liu and V. N. Temlyakov, “The orthogonal super greedy algo-
rithm and applications in compressed sensing,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2040-2047, Apr. 2012.

E. D. Livshits, “Rate of convergence of pure greedy algorithms,” Math.
Notes, vol. 76, nos. 3—4, pp. 497-510, Sep. 2004.

V. N. Temlyakov, “Relaxation in greedy approximation,” Constr.
Approx., vol. 28, no. 1, pp. 1-25, Jun. 2008.

H. Chen, L. Li, and Z. Pan, “Learning rates of multi-kernel regression
by orthogonal greedy algorithm,” J. Stat. Plan. Inference, vol. 143, no. 2,
pp. 276-282, Aug. 2012.

C. Xu, S. Lin, J. Fang, and R. Li, “Prediction-based termination rule
for greedy learning with massive data,” Statistica Sinica, vol. 26, no. 2,
pp. 841-860, Jan. 2016.

A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation
for nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55-67,
Feb. 1970.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183-202, Mar. 2009.

T. Poggio and C. R. Shelton, “On the mathematical foundations of
learning,” Amer. Math. Soc., vol. 39, no. 1, pp. 1-49, Oct. 2001.

F. Cucker and D.-X. Zhou, Learning Theory: An Approximation Theory
Viewpoint, vol. 24. Cambridge, U.K.: Cambridge Univ. Press, Mar. 2007.
T. A. Stamey et al., “Prostate specific antigen in the diagnosis and
treatment of adenocarcinoma of the prostate. II. Radical prostatectomy
treated patients,” J. Urol., vol. 141, no. 5, pp. 10761083, May 1989.
B. Efron, T. Hastie, I. Johnstone, and R. Tibsirani, “Least angle
regression,” Ann. Stat., vol. 32, no. 2, pp. 407451, Apr. 2004.

D. Harrison and D. L. Rubinfeld, “Hedonic prices and the demand
for clean air,” J. Environ. Econ. Manag., vol. 5, no. 1, pp. 81-102,
Mar. 1978.

I.-C. Ye, “Modeling of strength of high-performance concrete using
artificial neural networks,” Cement Concrete Res., vol. 28, no. 12,
pp. 1797-1808, Dec. 1998.

W. J. Nash, T. L. Sellers, S. R. Talbot, A. J. Cawthorn, and W. B. Ford,
“The population biology of abalone (Haliotis species) in Tasmania.
1. Blacklip abalone (H. Rubra) from the north coast and islands of bass
strait,” Div. Sea Fisheries, Dept. Primary Ind., Hobart, TAS, Australia,
Tech. Rep. 48, Jan. 1994.

A. Jain, K. Nandakumar, and A. Ross, “Score normalization in
multimodal biometric systems,” Pattern Recognit., vol. 38, no. 12,
pp. 2270-2285, Dec. 2005.

Lin Xu received the Ph.D. degree from the
Institute for Information and System Sciences,
School of Electronic and Information Engineering,
Xi’an Jiaotong University, Xi’an, China.

He is currently a Post-Doctoral Associate with
the Multimedia and Visual Computing Laboratory,
New York University Abu Dhabi, Abu Dhabi, UAE.
His current research interests include neural net-
works, learning algorithms, and applications in com-
puter vision.

Shaobo Lin received the Ph.D. degree in applied
mathematics from Xi’an Jiaotong University, Xi’an,
China.

He is currently with Wenzhou University,
Wenzhou, China. His current research interests
include the neural networks and learning theory.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Jinshan Zeng received the Ph.D. degree in applied
mathematics from Xi’an Jiaotong University, Xi’an,
China.

He is currently an Assistant Professor with
the College of Computer Information Engineering,
Jiangxi Normal University, Nanchang, China.

Xia Liu received the Ph.D. degree in applied
mathematics from Xi’an Jiaotong University, Xi’an,
China.

She is currently an Assistant Professor with the
School of Sciences, Xi’an University of Technology,
Xi’an.

IEEE TRANSACTIONS ON CYBERNETICS

Yi Fang received the Ph.D. degree in com-
puter graphics and vision from Purdue University,
West Lafayette, IN, USA.

Upon one year industry experience, as a research
intern with Siemens, Princeton, NJ, USA, and a
Senior Research Scientist in Riverain Technologies,
Dayton, OH, USA, and a half-year academic experi-
ence as a Senior Staff Scientist with the Department
of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN, USA. He
joined New York University Abu Dhabi, Abu Dhabi,
UAE, as an Assistant Professor of Electrical and Computer Engineering. He
is currently researching on the development of state-of-the-art techniques in
large-scale visual computing, deep visual learning, deep cross-domain, and
cross-modality model and their applications in engineering, social science,
medicine, and biology.

Zongben Xu received the Ph.D. degree in mathe-
matics from Xi’an Jiaotong University, Xi’an, China,
in 1987.

He currently serves as a Chief Scientist of “The
Basic Theory and Key Technology of Intellisense
for Unstructured Environment,” the National Basic
Research Program of China (973 Project), and the
Director of the Institute for Information and System
Sciences, Xi’an Jiaotong University. His current
research interests include applied mathematics, intel-
ligent information processing, and data science and

technology.

Dr. Xu was a recipient of the National Natural Science Award of China
in 2007 and the CSIAM Su Buchin Applied Mathematics Prize in 2008. He
delivered a 45-min sectional talk at International Congress of Mathematicians
in 2010. He is a member of the Chinese Academy of Sciences.



