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Fig. 4. Generalization performance of OGL with four different greedy criteria. (a) Noise level σ1 = 0.1. (b) σ2 = 0.5. (c) σ3 = 1. (d) σ4 = 2.

Fig. 5. Generalization performance of δ-TOGL with four different greedy criteria. (a) Noise level σ1 = 0.1. (b) σ2 = 0.5. (c) σ3 = 1. (d) σ4 = 2.

TABLE I
COMPARISONS OF OGL WITH FOUR GREEDY CRITERIA

we also find that OGL1, OGL2, and OGL3 have similar perfor-
mance, while OGLR performs worse. This phenomenon shows
that SGD (or OGL1) is not the unique greedy criterion for
learning, meanwhile, random selecting atom in OGL is not
a wise choice. It implies the necessity to study the greedy
criterion issue for learning purpose. Detailed comparisons are
listed in the Table I. Here TestRMSE denotes the optimal gen-
eralization performance (in RMSE), where the parameter k∗

OGL
is selected according to the test data (or TestRMSE) directly.
The standard deviation of optimal TestRMSE and parameter
are also listed in the corresponding brackets.

C. δ-Greedy Threshold Criterion in δ-TOGL

Now, we begin to examine the performance of δ-TOGL.
From OGL to δ-TOGL, the main parameter changes from
the number of iteration k to the value of greedy threshold δ.
Similar to Fig. 4, we also consider the relationship between the
performance and parameter of δ-TOGL in Fig. 5. We plot the
range of δ in [10−4, 10−1]. Notice that the plot range of test
error (RMSE) in Fig. 5 (i.e., [0, 0.4]) is much smaller than that
in Fig. 4 (i.e., [0, 1]) for distinguishing different performance
curves.

From the figures, we can see that different from previ-
ous Fig. 4, now the performance of δ-TOGLR is better and
more robust than δ-TOGL1, δ-TOGL2, and δ-TOGL3 in vari-
ous noise settings. The main reason is that δ-TOGLR random
selecting a new atom satisfied with the δ-greedy threshold cri-
terion (20). This constrained randomness can suppress noise
interference to some extent, and thus achieve better and robust
performance.

Detailed comparisons are also listed in Table II. Here
TestRMSE denotes the optimal generalization performance
(in RMSE), where the parameter δ∗ is selected according
to the test data (or TestRMSE) directly. The standard devi-
ation of optimal TestRMSE and parameter are listed in the
corresponding brackets. The numbers in bold represent the
best result compared with others in the same experimen-
tal settings. We also record the number of iteration k∗

δ-TOGL
corresponding to δ∗ for comparisons, although δ-TOGL has
no part in adjusting this parameter. From the result, we
can clearly find that the performance of δ-TOGLR is better
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TABLE II
COMPARISONS OF δ-TOGL WITH FOUR GREEDY CRITERIA

and more robust in parameter compared with other δ-TOGL
variants.

D. Compare With Other Learning Schemes

We than compare δ-TOGLR with other dictionary-based
learning schemes such as the PGL [20], OGL [8], ridge
regression [3], and Lasso [4]. We use L2 regularized least-
square (RLS) solution for ridge regression and FISTA algo-
rithm for Lasso [29].

Firstly, we introduce the parameter settings of the corre-
sponding learning schemes. For OGL, the maximum number
of iterations equals to the size of dictionary. And for the
greedy threshold parameters δ-TOGLR, we also use 20 equally
spaced values of δ in logarithmic space within [10−4, 10−1].
Due to the convergence rate of PGL is more slower than
OGL [8], [21], the maximum number of iterations of PGL
is set as 10 000 for better generalization performance. The
regularization parameter λ in RLS and FISTA is also chosen
from a 50 points set whose elements are uniformly localized
in [10−4, 1]. All the parameters, i.e., the number of iterations
k in PGL or OGL, the regularization parameter λ in RLS
or FISTA, and the greedy threshold δ in δ-TOGLR are all
selected according to test dataset (or test RMSE) directly, since
we mainly focus on the impact of the theoretically optimal
parameter rather than validation techniques.

The compared results are listed in Table III, where the
standard errors of testRMSE are also reported (numbers in
parentheses). The sparsity means the number of atoms the
corresponding algorithm employed and running time (in s)

TABLE III
COMPARING δ-TOGLR WITH OTHER SCHEMES

implies the whole cost (training and test cost) the algo-
rithm paid. From Table III, we first observe that the spar-
sities of greedy-type strategies are obviously far smaller than
regularization-based methods, while they enjoy better perfor-
mance. It empirically verifies that greedy-type algorithms are
more suitable for redundant dictionary learning, which is also
empirically consistent with the work of Barron et al. [8].
Furthermore, we also find that, although the performance of
such three greedy-type algorithms (PGL, OGL, and δ-TOGLR)
are similar, δ-TOGLR has a big advantage in running time and
sparsity.

VI. REAL DATA EXPERIMENTS

We have verified that δ-TOGL is feasible in simulations.
Especially, δ-TOGLR possesses both good generalization per-
formance and the lowest computation complexity. Now, we
begin to verify the performance (also in RMSE) and running
time (in s) of δ-TOGLR and further compare it with other
dictionary-based learning methods including PGL, OGL, RLS,
and FISTA on five real data sets.

The first dataset is the Prostate cancer dataset [32]. The data
set consists of the medical records of 97 patients who have
received a radical prostatectomy. The predictors are eight clin-
ical measures and one response variable. The second dataset is
the Diabetes data set [33]. This data set contains 442 diabetes
patients that are measured on ten independent variables and
one response variable. The third one is the Boston Housing
data set created from a housing values survey in suburbs of
Boston by Harrison and Rubinfeld [34]. The Boston Housing
dataset contains 506 instances which include 13 attributions
and one response variable. The fourth one is the concrete
compressive strength (CCS) dataset [35], which contains 1030
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TABLE IV
COMPARATIVE RESULTS OF PERFORMANCE AND RUNNING TIME ON FIVE REAL DATA SETS

instances including eight quantitative independent variables
and one dependent variable. The fifth one is the Abalone
dataset [36] collected for predicting the age of abalone from
physical measurements. The data set contains 4177 instances
which were measured on eight independent variables and one
response variable.

We randomly divide all the real data sets into two disjoint
equal parts. The first half serves as the training set and the
second half serves as the test set. We use the Z-score stan-
dardization method [37] to normalize the data sets, in order
to avoid the error caused by considerable magnitude differ-
ence among data dimensions. For each real data experiment,
Gaussian RBF is also used to build up the dictionary

{
e−‖x−ti‖2/η2

: i = 1, . . . , n
}

(28)

where {ti}n
i=1 are drawn as the training samples themselves,

thus the size of dictionary equals to the training samples. We
set the standard deviation of RBF as η = (dmax/

√
2n), where

dmax is maximum distance among all centers {ti}n
i=1, in order

to avoid the RBF is too sharp or flat.
Table IV documents the performance and running time of

the corresponding algorithms on five real data sets. We find
that, for the small-scale dictionary, i.e., for the Prostate data
set, although δ-TOGLR can achieve good performance, its
running time is more than OGL and RLS. This is attributed
to additional parameter-selection cost in δ-TOGLR. In fact,
for each candidate threshold parameter δ, a different itera-
tion of the algorithm is needed run from scratch, which seems
to cancel the major computational advantage of δ-TOGLR in
small size dictionary learning. However, we also notice that,
when the size of dictionary increased (i.e., diabetes, hous-
ing, and CCS), δ-TOGLR begin to gradually surpass the other
methods in computation with maintaining good performance.
Especially in Abalone data set, δ-TOGLR dominates other

methods with a large margin in computation and still possesses
good performance.

VII. CONCLUSION

In this paper, we study the greedy criteria in OGL. The
main contributions can be concluded in four aspects.

Firstly, we propose that the SGD is not the unique greedy
criterion to select atoms from dictionary in OGL, which paves
a new way for exploring greedy criterion in greedy learning.
To the best of our knowledge, this may be the first work
concerning the greedy criterion issue in the field of super-
vised learning. Secondly, motivated by a series of previous
researches of Temlyakov [1], [22], [23], [25] in greedy approx-
imation, we eventually use the δ-greedy threshold criterion to
quantify the correlation for the learning purpose. Our theo-
retical result shows that OGL with such a greedy criterion
yields a learning rate as m−1/2(log m)2, which is almost the
same as that of the classical SGD-based OGL [8]. Thirdly,
based on the δ-greedy threshold criterion, we derive a terminal
rule for the corresponding OGL and thus provide a complete
new learning scheme called as δ-TOGL. We also present the
theoretical demonstration that δ-TOGL can reach the existing
(almost) optimal learning rate [8] just as the iteration-based
termination rule dose. Finally, we analyze the generalization
performance of δ-TOGL and compare it with other popular
dictionary-based learning methods through plenty of numerical
experiments. The empirical results verify that the δ-TOGL is a
promising learning scheme, which reduces the computational
cost without sacrificing the generalization performance.

Future work is required to enable such a trend. Among the
many possible research directions we mention three: 1) a study
of the heuristic strategy for a suitable threshold value in
δ-TOGL; 2) faster implementation of the algorithm (i.e., paral-
lel processing for atoms in dictionary and matrix factorization
for inverting a huge matrix in orthogonal projection step); and
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3) handing the scalability problem of δ-TOGL, when tuning
to work with large-scale dictionary.

APPENDIX

PROOF OF THEOREM 2

Since Theorem 1 can be derived from Theorem 2 directly,
we only prove Theorem 2. The methodology of proof is
somewhat standard in learning theory. In fact, we use the
error decomposition strategy [17] to divide the generalization
error into approximation error, sample error and hypothe-
sis error. The main difficulty of the proof is to bound the
hypothesis error. The main tool to bound it is borrowed
from [25].

In order to give an error decomposition strategy for E( f k
z )−

E( fρ), we need to construct a function f ∗
k ∈ span(Dn) as fol-

lows. Since fρ ∈ Lr
1,Dn

, there exists a hρ := ∑n
i=1 aigi ∈

Span(Dn) such that∥∥hρ

∥∥L1,Dn
≤ B, and

∥∥ fρ − hρ

∥∥ ≤ Bn−r. (29)

Define

f ∗
0 = 0, f ∗

k =
(

1 − 1

k

)
f ∗
k−1 +

∑n
i=1|ai|‖gi‖ρ

k
g∗

k (30)

where

g∗
k := arg max

g∈D′
n

〈
hρ −

(
1 − 1

k

)
f ∗
k−1, g

〉
ρ

(31)

and

D′
n := {

gi(x)/‖gi‖ρ

}n
i=1

⋃ {−gi(x)/‖gi‖ρ

}n
i=1

(32)

with gi ∈ Dn.
Let f δ

z and f ∗
k be defined as in Algorithm 1 and (30),

respectively, then we have

E(
πMf δ

z
) − E(

fρ
) ≤ E(

f ∗
k

) − E(
fρ

) + Ez
(
πMf δ

z
) − Ez

(
f ∗
k

)
+ Ez

(
f ∗
k

) − E(
f ∗
k

) + E(
πMf δ

z
) − Ez

(
πMf δ

z
)

where Ez( f ) = (1/m)
∑m

i=1(yi − f (xi))
2.

Upon making the short hand notations

D(k) := E(
f ∗
k

) − E(
fρ

)
(33)

S(z, k, δ) := Ez
(

f ∗
k

) − E(
f ∗
k

) + E(
πMf δ

z
) − Ez

(
πMf δ

z
)

(34)

and

P(z, k, δ) := Ez
(
πMf δ

z
) − Ez( f ∗

k ) (35)

respectively for the approximation error, the sample error and
the hypothesis error, we have

E(
πMf δ

z
) − E(

fρ
) = D(k) + S(z, k, δ) + P(z, k, δ). (36)

At first, we give an upper bound estimate for D(k), which
can be found in [17, Proposition 1].

Lemma 1: Let f ∗
k be defined in (30). If fρ ∈ Lr

1,Dn
, then

D(k) ≤ B2
(

k−1/2 + n−r
)2

. (37)

To bound the sample and hypothesis errors, we need the
following Lemma 2.

Lemma 2: Let y(x) satisfy y(xi) = yi, and f δ
z be defined in

Algorithm 1. Then, there are at most

Cδ−2 log
1

δ
(38)

atoms selected to build up the estimator f δ
z . Furthermore, for

any h ∈ Span{Dn}, we have
∥∥y − f δ

z

∥∥2
m ≤ 2‖y − h‖2

m + 2δ2‖h‖L1(Dn). (39)

Proof: Equation (38) can be found in [25, Th. 4.1]. Now we
turn to prove (39). Our termination rule guarantees that either
maxg∈Dn |〈rk, g〉m| ≤ δ‖rk‖m or ‖rk‖ ≤ δ‖y‖m. In the latter
case the required bound follows from:

‖y‖m ≤ ‖y − h‖m + ‖h‖m ≤ δ
(‖y − h‖m + ‖h‖m

)
≤ δ

(‖ f − h‖m + ‖h‖L1(Dn)

)
.

Thus, we assume maxg∈Dn |〈rk, g〉m| ≤ δ‖rk‖m holds. By
using

〈y − fk, fk〉m = 0 (40)

we have

‖rk‖2
m = 〈rk, rk〉m = 〈rk, y − h〉m + 〈rk, h〉m

≤ ‖y − h‖m‖rk‖m + 〈rk, h〉m

≤ ‖y − h‖m‖rk‖m + ‖h‖L1(Dn) max
g∈Dn

〈rk, g〉m

≤ ‖y − h‖m‖rk‖m + ‖h‖L1(Dn)δ‖rk‖m.

This finishes the proof.
Based on Lemma 2 and the fact ‖ f ∗

k ‖L1(Dn) ≤ B
[17, Lemma 1], we obtain

P(z, k, δ) ≤ 2Ez
(
πMf δ

z
) − Ez

(
f ∗
k

) ≤ 2Bδ2. (41)

Now, we turn to bound the sample error S(z, k). Upon using
the short hand notations

S1(z, k) := {Ez
(

f ∗
k

) − Ez
(

fρ
)} − {E(

f ∗
k

) − E(
fρ

)}
(42)

and

S2(z, δ) := {E(
πMf δ

z
) − E(

fρ
)} − {Ez

(
πMf δ

z
) − Ez

(
fρ

)}
(43)

we write

S(z, k) = S1(z, k) + S2(z, δ). (44)

It can be found in Lin et al. [17, Proposition 2] that for any
0 < t < 1, with confidence 1 − (t/2)

S1(z, k) ≤
7
(

3M + B log 2
t

)

3m
+ 1

2
D(k). (45)

Using [27, eqs. (A.10)] with k replaced by Cδ−2 log(1/δ),
we have

S2(z, δ) ≤ 1

2
E(

πMf δ
z
) − E(

fρ
) + log

2

t

Cδ−2 log 1
δ

log m

m
(46)
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holds with confidence at least 1 − t/2. Therefore,
(36), (37), (41), (45), (46) and (44) yield that

E(
πMf δ

z
) − E(

fρ
)

≤ CB2
((

mδ2
)−1

log m log
1

δ
log

2

t
+ δ2 + n−2r

)

holds with confidence at least 1 − t. This finishes the proof of
Theorem 2.
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