
IET Signal Processing
Research Article
Block-sparse compressed sensing with
partially known signal support via non-convex
minimisation
IET Signal Process., 2016, Vol. 10, Iss. 7, pp. 717–723
& The Institution of Engineering and Technology 2016
ISSN 1751-9675
Received on 6th October 2015
Revised on 17th March 2016
Accepted on 1st April 2016
doi: 10.1049/iet-spr.2015.0425
www.ietdl.org
Shiying He1,2, Yao Wang1,2 ✉, Jianjun Wang3, Zongben Xu1

1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, People’s Republic of China
2State Key laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, People’s Republic of China
3School of Mathematics and Statistics, Southwest University, Beibei, Chongqing, People’s Republic of China

✉ E-mail: yao.s.wang@gmail.com

Abstract: The mixed l2/lp (0 < p≤ 1) norm minimisation method with partially known support for recovering block-sparse
signals is studied. The authors mainly extend this work on block-sparse compressed sensing by incorporating some
known part of the block support information as a priori and establish sufficient restricted p-isometry property (p-RIP)
conditions for exact and robust recovery. The authors’ theoretical results show it is possible to recover the block-
sparse signals via l2/lp minimisation from reduced number of measurements by applying the partially known support.
The authors also derive a lower bound on necessary random Gaussian measurements for the p-RIP conditions to hold
with high possibility. Finally, a series of numerical experiments are carried out to illustrate that fewer measurements
with smaller p are needed to reconstruct the signal.
1 Introduction

The aim of compressed sensing (CS) is to recover an unknown signal
by exploiting its key property, i.e. the sparsity. Mathematically,
denoting by x an unknown signal which has only a few non-zero
entries, we observe y through a measurement matrix Φ according
to y =Φx + e. Here, Φ is an M ×N matrix with M≪ N and e
indicates noise in the measurement satisfying ‖e‖ , e.
Compressed sensing [1, 2] is concerned with the recovery of an
unknown signal from this undetermined system of linear equations
by using sparsity prior of the desired signal which can restrict the
set of possible solutions. In order to obtain better recovery
performance, recently several new trends in this field are formed to
explore the structures of signals and further incorporate some prior
information from compressive measurements.

Considering the structure of the sparse signal, one of those
techniques is to assume the unknown sparse signal x has the block
structure which means the support elements lie in clusters or some
fixed blocks. In this paper, we consider the block-sparse signal
x [ RN over the index set I = {d1, d2, . . . , dm}, which can be
indicated as the following form

x = [ x1 · · · xd1︸����︷︷����︸
x[1]

xd1+1 · · · xd1+d2︸��������︷︷��������︸
x[2]

· · · xN−dm−1+1 · · · xN︸���������︷︷���������︸
x[m]

]T,

where x[i] denotes the ith block of x and N = ∑m
i=1 di. Accordingly,

the term block K-sparse refers to that there exist at most K blocks of x
with non-zero Euclidean norm. In fact, there are many examples
related to the block-sparse structure in practice, such as the
electrocardiography (ECG) signal, which has a clear block-sparse
structure and the entries in the same block are highly related in
amplitude. Block sparsity also plays an important role in the study
of gene expression [3], multi-band signals [4], colour imagining [5]
and more.

In the conventional CS framework, due to the non-convexity of l0
norm, l1 minimisation is a commonly used strategy for sparse signal
recovery. To exploit the structure information that the non-zero
entries of the original signal lies in consecutive positions, an
approach of mixed l2/l1 norm minimisation has been put forward
based on the basic pursuit (BP) method used in traditional CS.
Specifically, it has been shown in [6] that one can recover the
block-sparse signal x with small observation error by solving the
following convex optimisation problem

min ‖x‖2,1
s.t ‖y−Fx‖2 ≤ e

(1)

Here, ‖x‖2,1 =
∑J

j=1 ‖x[j]‖2 where ‖x[j]‖2 denotes the l2 norm of
signal with all entries assigned to the jth group, the noise
measurements is denoted by y =Φx + e where e is the error and
the measurement matrix is presumed to satisfy some properties
ensuring the successful reconstruction.

An efficient algorithm based on l2/l1 minimisation are studied in
[6, 7] where it is solved by recasting it as a second-order
cone-programming problem. Besides, greedy algorithms have also
been proposed to deal with the problem as presented in [8] where
a block orthogonal matching pursuit algorithm is extended from
the orthogonal matching pursuit algorithm [9] for recovering
block-sparse signals. Non-convex minimisation models, such as lp
minimisation for conventional sparse signals and mixed l2/lp
method for the block-sparse case, are put forward which help to
improve the performance of the recovery methods. In [10], the
authors present a sufficient condition for exact and robust recovery
via l2/lp minimisation and propose an iteratively reweighed least
square algorithm for solving the resulting non-convex problem.

Another variation of the studies on CS is to incorporate the
compressive measurements with some part of the support of the
signal known as a priori. Driven by the real-time dynamic MRI
reconstruction and video compression problem, it is very useful to
consider this pattern of sparse signal recovery. Vaswani and Lu
[11] and Lu and Vaswani [12] have showed that it is possible to
recover sparse signals with reduced number of linear
measurements when the partially known support is given.

Considering the problem of reconstruction of a K-sparse signal x
with partial known support from measurements y, the support of x,
denoted as S, can be represented as S = T < D, where T is the
known part with size |T| and Δ is the unknown part with size |Δ|.
Furthermore, with partially known support T, the candidates for
the K-sparse signal x are restricted in a signal space smaller than
that in traditional CS. Since the signal x is known to be non-zero
717
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at some locations, CS with partially known support allows us to
minimise the number of non-zero elements at other locations, i.e
outside the support T, when solving y =Φx for a sparse solution.
The known support is denoted as T with size —T—, and the
unknown part Tc = support(x)\T . This procedure can be
formulated as the following minimisation problem

min ‖xT c‖0
s.t ‖y−Fx‖2 ≤ e

Taking computational complexity into consideration, one usually
consider the following model instead

min ‖xT c‖1
s.t ‖y−Fx‖2 ≤ e

where xTc denotes the signal outside the known support. Several
works presented in [13–16] have studied this case in detail.
2 Block-sparse recovery with partially known
signal support via non-convex minimisation

Several studies on non-convex CS have shown that compared with l1
minimisation, lp method can lead to successful recovery of the signal
with reduced number of measurements [17–19]. This strategy has
also been extended to the block-sparse case via the l2/lp
minimisation. To investigate the theoretical performance of l2/lp
minimisation, we first present theories on the measurement matrix
Φ satisfying the restricted p-isometry property (block p-RIP)
condition.

Definition 1 ([20]): An M × N measurement matrix Φ is said to have
the block p-RIP over I = {d1, d2, . . . , dn} of order K with positive
constant dK|I if

(1− d′K|I )‖x‖p2 ≤ ‖Fx‖pp ≤ (1+ d′K|I )‖x‖p2, (2)

for all x [ RN that is block K-sparse over block index set I .

As we can see from the definitions described above, block K-sparse
over I is equivalent to k-sparse in the conventional situation where k
is the sum of the K largest entries in I . For the rest of this paper, we
use δK to represent the modified block RIP constant (p-RIC) instead
of d′K|I without specifically mentioning.

In the rest of this section, we will show that it is possible to recover
block-sparse signals using the following constrained mixed l2/lp
minimisation with partially known information incorporated. To be
more clear, assume that we have known some of the exact block
positions from K blocks that have the largest l2 norm and we
derive the following problem

min ‖xT c‖2,p
s.t ‖y−Fx‖2 ≤ e

(3)

where Tc is the complement of the partially known set of the signal,
‖x‖2,p = (

∑k
i=1 ‖x[i]‖p2)1/p (0 < p < 1) and e controls the noise level.

First, we present the sufficient recovery conditions theoretically
based on the p-RIP of the measurement matrix.

Theorem 2: Suppose y =Φx + e is the observed measurements of a
block-sparse signal x, with the noise level ‖e‖2 ≤ e, the block
p-RIP constant δK with respect to the measurement matrix Φ satisfies

bds+(a+1)K + daK , b− 1 (4)

for b > 1, a = b2/(2−p), which is rounded up so that aK is an integer,
718
then the solution x* to (3) obeys

‖x∗ − x‖2 , C
‖r − rK‖2,p
K (1/p)−(1/2)

+ De (5)

where x [ RN is a given nearly block K-sparse signal, T is the
partially known block set with size |T| = s, r = x− xT and rK is the
best K-block term approximation to r. The constants C and D are
determined explicitly as

C = 2(2/p)−1[(1− ds+(a+1)K )
(1/p) + (1+ daK )

(1/p)]

(b− bds+(a+1)K − 1− daK )
(1/p) (6)

D = 2(1/p)M (1/p)−(1/2)(1+ b(1/p))

(b− bds+(a+1)K − 1− daK )
(1/p) . (7)

Proof: Let T be the known block support set, T0 is the locations of K
blocks with K-largest l2 norm of the unknown of x with T > T0 = ∅.
Furthermore, we suppose (T < T0)

c is divided into disjoint sets T1,
T2,…, TJ and each set contains aK blocks except possibly the last TJ.
Considering that x* is the solution to (3) and h = x*− x, our aim is to
bound ‖h‖2 based on the triangle inequality for ‖·‖2.

(i) Since ‖x∗‖p = ‖x+ h‖p where x* is the minimum, we have

‖xT c‖p2,p ≥ ‖xT c + hT c‖p2,p
= ‖xT0 + xT0‖

p
2,p + ‖x�T c

0
+ h�T c

0
‖p2,p

≥ ‖xT0‖
p
2,p − ‖hT0‖

p
2,p − ‖x�T c

0
‖p2,p + ‖h�Tc

0
‖p2,p.

then

‖h�T c
0
‖p2,p ≤ ‖hT0‖

p
2,p + 2‖x�T c

0
‖p2,p (8)

Arrange the elements of �T
c
0 in order of decreasing magnitude of |h|,

which means the block indices are in the form of
‖hTj [1]‖2 ≥ ‖hTj [2]‖2 ≥ . . . ≥ ‖hTj [aK]‖2 ≥ ‖hT j+1

[1]‖2 ≥ . . . for

any j≥ 1. Note that for each i, k, 1≤ i, k≤ aK, we have

‖hTj [i]‖2 ≤ ‖hT j−1
[k]‖2.

Thus, ‖hTj [i]‖
p
2 ≤ (1/aK)‖hT j−1

‖p2,p and ‖hTj [i]‖
2
2 ≤ (1/aK)(2/p)

‖hT j−1
‖22,pholds.

For ‖hTj‖
2
2,2 =

∑
i ‖hTj [i]‖

2
2, we have

‖hTj‖
p
2,2 ≤ (aK)(p/2)−1‖hT j−1

‖p2,p (9)

Then, we obtain the following

‖h�T c
01
‖p2,2 ≤

∑
j≥2

‖hTj‖
p
2,2

≤ (aK)(p/2)−1
∑
j≥1

‖hTj‖
p
2,p = (aK)(p/2)−1‖h�T c

0
‖p2,p

≤ (aK)(p/2)−1(‖hT0‖
p
2,p + 2‖x�T c

0
‖p2,p)

(10)

For convenience, we denote �T0 = T < T0 and �T01 = T < T0 < T1.
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(ii) By the theory and properties of block p-RIP, we decompose Φh

‖Fh‖pp = ‖Fh�T01
+Fh�Tc

01
‖pp

≥ ‖Fh�T01
‖pp − ‖Fh�Tc

01
‖pp

≥ (1− ds+(a+1)K )‖h�T01
‖p2 − (1+ daK )

∑
i≥2

‖hTi‖
p
2

≥ (1− ds+(a+1)K )‖h�T01
‖p2 − (1+ daK )(aK)

(p/2)−1

× (2‖x�Tc
0
‖p2,p + ‖hT0‖

p
2,p)

≥ (1− ds+(a+1)K − (1+ daK )a
(p/2)−1)‖h�T01

‖p2
− 2(1+ daK )(aK)

(p/2)−1‖x�T c
0
‖p2,p (11)

where the last inequality holds from the fact that

‖hT0‖
p
2,p ≤ K1−(p/2)‖hT0‖

p
2 ≤ K1−(p/2)‖h�T01

‖p2

Note the facts that

‖Fh‖2 ≤ ‖Fx∗ − y‖2 + ‖Fx− y‖2 ≤ 2e,

and that

‖Fh‖pp ≤
∑M
i=1

(|(Fh)i|p)(2/p)
( )(p/2) ∑M

i=1

1

( )1−(p/2)

= M1−(p/2)‖Fh‖p2,

according to Hölder’s inequality, then we have

‖Fh‖pp ≤ M1−(p/2)‖Fh‖p2 ≤ M1−(p/2)(2e)p. (12)

Combining (11) and (12), we can obtain the following inequality by
setting a = b2/(2−q) if bδs+(a+1)K + δaK < b− 1 (see (13))

Denoting r as x− xT and rK the best K-block term approximation to
r, we have obtained the conclusion of the theorem. □

Corollary 3: Let x be an exact block-sparse signal and suppose the
partially known set is given, then the solution x* obeys

‖x− x∗‖2 , De

where D is given in (7); Let y =Φx be measurements of a
block-sparse signal x and the p-RIP constant δK with respect to the
‖h‖2 ≤ ‖h�T01
‖2 + ‖h�Tc

01
‖2

≤ 2(1/p)−1
2(1/p)(1+ daK )

(1/p)K (1/2)−(1/p)‖x�T c
0

(b− bds+(a+1)K − 1− daK )
(1/p)

(

+ 2(1/p)−1
2(1/p)(1− ds+(a+1)K )

(1/p)K (1/2)−(1

(b− bds+(a+1)K − 1− daK

(

= 2(2/p)−1[(1− ds+(a+1)K )
(1/p) + (1+ daK )

(1/p)

(b− bds+(a+1)K − 1− daK )
(1/p)

+ 2(1/p)M (1/p)−(1/2)(1+ b(1/p))

(b− bds+(a+1)K − 1− daK )
(1/p) e

= C
‖x�T c

0
‖2,p

k(1/p)−(1/2)
+ De.
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measurement matrix Φ satisfies (4),then the solution x* to (3) obeys

‖x− x∗‖2 , C
‖r − rK‖2,p
k(1/p)−(1/2)

and C is given in (6).

Remark 4: Theorem 2 and the corollary above offer necessary
conditions for recovering block-sparse signals in the method of
l2/lp minimisation with partially known support information. The
constants C and D determine the upper bounds to estimate the
recovery error.

Definition 5: Given a constant c > 0, we define dcK , which leads to a
slightly stronger version as the smallest number such that

(1− dcK )‖x‖p2 ≤
1

c
‖Fx‖pp ≤ (1+ dcK )‖x‖p2 (14)

holds. Then, we have the exact recovery condition as

bdcs+(a+1)K + dcaK , b− 1 (15)

since the isometry constants are not scale invariant, while the
sufficient condition is, which is analysed similarly to [20].
3 p-RIP for random, Gaussian matrices

In this part, we will derive a lower bound on the necessary number
of Gaussian measurements for the p-RIP (14) to hold with
high probability. Here, Φ is an M × N matrix whose elements are
i.i.d. random variables distributed normally with mean zero
and variance σ2, where M < N. For a given p, set
mp := sp2(p/2)G(p+ (1/2))/

��
p

√
as in [21].

To prove Theorem 7 we need the following Lemma 6 [21].

Lemma 6: Let 0 < p≤ 1 and Ψ be an M × L submatrix of Φ. Suppose
δ > 0. Choose η, t > 0 such that (η + tp/1− tp)≤ δ. Then

(1− d)Mmp‖x‖p2 ≤ ‖Cx‖pp ≤ (1+ d)Mmp‖x‖p2 (16)

holds uniformly for x [ RL with probability exceeding

1− 2(1+ (2/t))Le− h2M
( )

/ 2pc2p

( )( )
, where

cp = (31/40)1/4 1.13+ ��
p

√ G((p+ 1/2))��
p

√
( )−(1/p)

[ ]
. (17)
‖2,p + 2b(1/p)M (1/p)−(1/2)e

(b− bds+(a+1)K − 1− daK )
(1/p)

)

/p)‖x�Tc
0
‖2,p

)(1/p)
+ 2M (1/p)−(1/2)e

(b− bds+(a+1)k − 1− dak )
(1/p)

)

] ‖x�T c
0
‖2,q

k(1/p)−(1/2)

(13)
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Theorem 7: Suppose Φ = (fi, j)M×N is an M × N (M <N ) matrix with
i.i.d Gaussian random entries. Specifically, the elements are with
fi,j	 N (0, s2). Then there exist constants C1(p) and C2(p) such
that whenever 0 < p≤ 1 and

M ≥C1(p)(K + [b2/(2−p)](K − s)) · d

+ pC2(p)(K + [b2/(2−p)](K − s)) ln
m

K + [b2/(2−p)](K − s)

( )
(18)

the following is true with probability exceeding 1− 2e−((h2M )/(4pc2p)):
For any block K-sparse signal x [ RN with known support size
|T| = s over I = {d1, d2, . . . , dm} and d = maxi[[1,m] di, x can be
exactly recovered (when the measurements are obtained in the way
of y =Φx).

Proof: The proof is similar to [20, 22]. By (14), we set c =Mμp. We
will determine what M must to be for dcs+(a+1)(K−s) = dcK+(K−s)a ,

(b− 1/b+ 1) to hold with high probability, i.e the failure

probability is at most 2e−(h2M/4pc2p). Leaving b > 1 undetermined,
we set L = (s + (a + 1)(K − s))d = (K + [b2/(2−p)](K− s))d. Choose
η = (r(b− 1)/b + 1) for r∈ (0, 1) and tp = ((1− r)(b− 1)/2b) < 1 to
satisfy

h+ tp

1− tp
≤ dK+(K−s)a

c ≤ b− 1

b+ 1
.

From Lemma 6 and the union bound, we can conclude thatΨ fails to
satisfy (14) with probability lower than

m
k+[b2/(2−p)](k−s)

( )
2 1+ 2

t

( )L

e−h2M/2pc2p ,

where cp is given in (17). Thus, the upper bound of this quantity is

2e−(h2M/4pc2p). Then the following holds,

M ≥ 4pc2p
h2

[
(k+[b2/(2−p)](k− s))d(ln3− lnt)

+ (K+ [b2/(2−p)](K− s)) ln
m

K+ [b2/(2−p)](K− s)
+ 1

( )]

= 4c2p(b+ 1)2

r2(b− 1)2

(
K+ [b2/(2−p)](K− s))d pln3+ ln

2b

(1− r)(b− 1)

( )

+ p
4c2p(b+ 1)2

r2(b− 1)2
(K+ [b2/(2−p)](K− s)

)

× ln
m

K+ [b2/(2−p)](K− s)
+ 1

( )

We can substitute any b > 1 and r∈ (0, 1) since these are free
parameters, which can be chosen independently for each p.
Therefore, the lower bound of the measurement size M can be
expressed in the form

M ≥C1(p)(K + [b2/(2−p)](K − s)) · d

+ pC2(p)(K + [b2/(2−p)](K − s)) ln
m

K + [b2/(2−p)](K − s)

( )
(19)

to yield the p-RIP condition (14) with probability exceeding

1− 2e−(h2M/4pc2p). □
720
Remark 8: Theorem 7 implies when decreasing p and incorporating
known support, that is increasing s, allow fewer measurements to be
sufficient for (3) to successfully recover block-sparse signals.
Thus, in order to satisfy the block p-RIP condition, roughly M≃
(K + [b2/(2−p)](K− s))ln(m/(K + [b2/(2−p)](K− s))) measurements are
needed. To be specific, for a given p∈ (0, 1], there exist C1(p)
and C2(p) which are finite constants, the second term of (18)
predominant and it vanishes when p→ 0. When p = 1, (18) has the
form of

M ≥ C1(1)(K + b2(K − s)) · d + C2(1)(K + b2(K

− s)) ln
m

K + b2(K − s)

( )
.

Note the (K–s) which refers to the information of the known support.
Thus, it leads to fewer measurements than traditional l2/l1
minimisation [7].

Remark 9: The proof is conducted in a general case that the
block-sparse signal has an uneven size blocks. We can easily
adapt the Theorem 7 to a special case in which di = d as what we
do in the following numerical sections.
4 Numerical experiments

In this section, we conduct several numerical experiments to
illustrate the effectiveness of (3) as well as to validate the
theoretical results for both exactly block-sparse and
block-compressible cases. Since problem (3) is concerned with
l2/lp minimisation with partially known support and p∈ (0, 1), it
has several local minimas on the feasible set due to the
non-convexity. Here, we modify the iteratively reweighted least
squared approach for block-sparse signal recovery (block-IRLS)
[20, 23] by incorporating partial knowledge about the support.

The modified block-IRLS is based on the rewritten form of (3)

minx‖x‖2,pe,p,w + 1

2l
‖Fx− y‖22 (20)

where ‖x‖2,pe,p,w = ∑m
i=1 w

(p/2)
i (e2 + ‖x[i]‖22)(p/2),

wi = 1, i [ Tc

w, i [ T

{
,

0 <w < 1 and l is the regularisation parameter and e is a small
enough smooth parameter. We begin with x(0) satisfying Φx(0) = y
and set e0 = 1. Then, we update x(t+1) via the following equation

(l(W (t))2 +FTF)x(t+1) = FTy (21)

where the weighting matrix W (t) is defined as

W (t)
i = diag(p(1/2)(wi(e

2
t + ‖x[i]‖22))(p/4)−(1/2))

for the ith block in the tth iteration. The value of e is decreased in the
pattern of et+1 = 0.99et and the iteration continues until e becomes
very small.

The rest of this section presents the simulation results related to the
former theorems and the performance of the partially known support
algorithm. We create synthetic block-sparse signals with non-zero
entries from Gaussian distribution randomly, setting the length of
the signal to N = 512 and the even block size d = 4. The signals
are sampled using measurement matrix Φ that has i.i.d. entries
drawn from a standard Gaussian distribution with normalised
columns. We average 50 repetitions of each experiment varying
the amplitude of the signals. The influence of the number of
measurements and the support size on the recovery result is
IET Signal Process., 2016, Vol. 10, Iss. 7, pp. 717–723
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Fig. 2 Performance of l2/lp minimisation with partially known support in terms of relative error in negative-log scale for strict block-sparse signal, varying the
number of measurements for

a s = 2
b s = 6
c s = 10

Fig. 1 Theoretical error against p via mixed l2/lp minimisation with partially known support for different cases. Different noise levels are considered in the
observation process for σ= 0.01, 0.05 and 0.1

a s = 4, M = 100
b s = 8, M = 100
c s = 8, M = 120

Fig. 3 Performance of l2/lp minimisation with partially known support in terms of relative error in negative-log scale for strict block-sparse signal, varying the
support size s for

a M = 80
b M = 100
c M = 120

IET Signal Process., 2016, Vol. 10, Iss. 7, pp. 717–723
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Fig. 4 Theoretical error against p via l2/lp minimisation with partially known support for different block-compressible signals. The number of measurements is
fixed to 60

a t = 2.5, d = 4
b t = 3.5, d = 4
illustrated in detail. The simulation results related to the theorems are
also studied. Since the constants C and D in (6) and (7) depend on
the partially known support level, on the degree of the
compressibility of the signal, on p determined by the recovery
algorithm and on the number of the measurements M, we test the
two constants separately by studying the exact block-sparse case
for D and compressible case for C.

4.1 Exactly block-sparse case

In Fig. 1, we generate exact block-sparse signals with 12 non-zero
blocks and then observe the noisy measurement y =Φx + σz by
setting σ = 0.01, 0.05 and 0.1 regarding the noise level while the
term z denotes the Gaussian white noise. In order to discuss the
behaviour of the constant D in (5), we set the error bound of

‖Ax− y‖22, i.e e = s
��������������
M + l

����
2M

√√
and let l = 2 as studied in

[24]. We plot the curves of the theoretical recovery errors
measured by l2 norm versus different values of p. It can be easily
calculated that e = 0.113, 0.566 and 1.133 which further implies
that when incorporating known support, the constant D is roughly
not beyond 2.5. This illustrates that for a wide range of p, (3)
guarantees a stable recovery of block-sparse signals in the
presence of noise.

For the next set of experiments, the signals are generated with 48
non-zero entries of which the locations are selected randomly using
Fig. 5 Performance of l2/lp minimisation with partially known support in terms of

a s = 2
b s = 6
c s = 10
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standard Gaussian distribution. We observe y by y =Φx. The relative
error between the original signal and the reconstructive signal in
negative-log scale, i.e − log (‖x∗ − x‖2/‖x‖2), is used as the
performance measure. In Figs. 2a–c, we compare the performance
of l2/lp for different values of p by plotting the relative error in
negative-log scale versus measurement level M choosing different
known block support size s = 2, 6 and 10, respectively. It is clear
that compared with p = 1, smaller p means one need fewer
measurements for exact recovery. In Figs. 3a–c, we set the
measurement level to M = 80,100 and 120, respectively, for
different values of p varying the number of known block support.
We can see from the curves that more known support information
contributes to the improvement of l2/lp minimisation.
4.2 Compressible case

Fig. 4 is based on the compressible signals with the l2 norm of blocks
decay like j−t where j∈ {1, …, m} and t > 1. The measurements y is
obtained by y =Φx and the parameter is set by t = 2.5 and 3.5 in
purpose of testing the constant C in Theorem 2. Note that the term
‖r − rK‖ in Theorem 2 can be bounded by the best K-block
approximation error of the signal. Thus for nearly nine-block-sparse
signals (t = 2.5) and nearly six-block-sparse signals (t = 3.5), it is
enough for us to check the nine-block and six-block approximation
errors ,respectively, which are 0.239 and 0.039 on average. One can
SNR for block-compressible signal, varying the number of measurements for

IET Signal Process., 2016, Vol. 10, Iss. 7, pp. 717–723
& The Institution of Engineering and Technology 2016



Fig. 6 Performance of l2/lp minimisation with partially known support in terms of SNR for block-compressible signal, varying the number of measurements for

a M = 100
b M = 120
c M = 160
deduce from Fig. 4 that the constant C is <10 and hence the method
proposed in this paper achieves robust recovery.

In the following experiments, we fix t = 2.5 and plot
reconstruction signal-to-noise ratio (SNR) varying the
measurement level for s = 2, 6 and 10. SNR represents the average
reconstruction SNR which is calculated as
SNR = 20 log10 (‖x‖2/‖x− x∗‖2)

( )
. As is shown in Fig. 5, in all

cases, the l2/lp minimisation with partially known support gives
better performance when M, the measurement level, is lower.
Similar to the results in the exactly sparse case, one can improve
the recovery by decreasing p value when meeting low
measurement level. To analyse the effect of partially known
information for different number of the block support size s, SNR
is shown in Figs. 6a–c for M = 100,120 and 160. It is obvious that
SNR increases with larger size of known block support. From a
practical perspective, incorporating more exact known support
information can bring better recovery result.
5 Conclusion

In this paper, we modify the l2/lp minimisation by incorporating
partially known support in the process of recovering block-sparse
signals. Theoretical stability guarantees of this non-convex method
are established and upper bounds of the reconstruction error are
given by combing the p-RIP condition and partially known
information. Particularly, we derive a theorem to determine the
number of Gaussian random measurements to recover the signal
with high probability. Numerical experiments are conducted to
verify the theoretical results and further demonstrate that the
modified l2/lp minimisation could improve its performance,
accordingly needing fewer measurements to yield a good
approximate reconstruction of the original signal.
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