Neural Diffusion Distance for Image Segmentation

Jian Sun and Zongben Xu

School of Mathematics and Statistics
Xi’an Jiaotong University
jiansun@xjtu.edu.cn
http://jiansun.gr.xjtu.edu.cn
Diffusion Distance: pairwise distance of graph nodes considering global structure.

Graph: \(G = (V, E); V = (v_1, \ldots, v_N) \)

Similarity matrix:
\[
 w_{ij} = \exp(-\mu \| f_i - f_j \|_2^2), \text{ for } j \in S_N(i),
\]

Transition matrix:
\[
 P = D^{-1}W, \text{ where } D = \text{diag}(W1).
\]

Diffusion distance:
\[
 D_t(i, j) = \sum (p(k, t|i) - p(k, t|j))^2 \tilde{w}(k),
\]
\[
 = \sum_{m=0}^{N-1} \lambda_m^{2t} (\Phi_m(i) - \Phi_m(j))^2,
\]

\(\{\lambda_m, \Phi_m\}_{m=0}^{N-1} \) are eigenvalues and eigenvectors of \(P \).
1. Introduction

Properties and challenges for diffusion distance

Properties of Diffusion Distance:

- Small if there are a large number of short paths connecting two points
- Decrease when t increases
- Varying t induces multi-scale distance

Applications:

- Spectral clustering
- Dimension reduction
- ….

Challenges:

- How to design feature of each node?
- How to set an optimal t?
- Effectiveness in real applications?

1. Introduction

Properties and challenges for diffusion distance

Properties of Diffusion Distance:

- Small if there are a large number of short paths connecting two points
- Decrease when t increases
- Varying t induces multi-scale distance

Applications:
- Spectral clustering
- Dimension reduction
- ….

Our contributions:

Neural diffusion distance + applications in image segmentation

- Learn features and diffusion distance by end-to-end trainable network
- Produce high quality diffusion distance map on images
- A new image segmentation method using neural diffusion distance
- A new weakly supervised semantic segmentation method
2. Neural Diffusion Distance

Definition of Neural Diffusion Distance

Neural Diffusion Distance (NDD): deep architecture simultaneously learns node features, optimal hyper-parameters for diffusion distance computation.

Approximate spectral decomposition (differentiable):

\[
Z_{n+1} = PU_n, \quad \{U_{n+1}, R_{n+1}\} = QR(Z_{n+1}), \quad n = 0, \ldots, T,
\]

Taken as network block
2. Neural Diffusion Distance

Proposition 1. Assume eigenvalues of P satisfy $\lambda_0 > \lambda_1 > \cdots > \lambda_{N_e - 1} > \lambda_{N_e}$, and all leading principal sub-matrices of $\Gamma^T U_0$ (Γ is a matrix with columns $\Phi_1, \cdots, \Phi_{N_e}$) are non-singular, then columns of U_n converge to top N_e eigenvectors in linear rate of $(\max_{k \in [1, N_e]} \{|\lambda_k|/|\lambda_{k-1}|\})^{2t}$, and diagonal values of R_n converge to corresponding top N_e eigenvalues $\lambda_0^{2t}, \cdots, \lambda_{N_e-1}^{2t}$ in same rate.

How to train the network of **Neural Diffusion Distance (NDD)**?

$$L_{hr}(K_D, \hat{K}_{gt}) = \sum_{i \in S} - \left\langle \hat{K}_D^i/\|\hat{K}_D^i\|, \hat{K}_{gt}^i/\|\hat{K}_{gt}^i\| \right\rangle,$$

$$L_{lr}(K_D, K_{gt}) = - \left\langle K_D/\|K_D\|_F, K_{gt}/\|K_{gt}\|_F \right\rangle.$$
2. Neural Diffusion Distance

Examples of learned neural diffusion distance (shown by similarity)
3. Applications and Experiments

Application 1: Hierarchical image segmentation

Hierarchical image segmentation (kernel k-means with diffusion distance as kernel)

![Image of segmentation results]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX</td>
<td>0.53</td>
<td>0.56</td>
<td>0.70</td>
<td>0.78</td>
<td>0.80</td>
</tr>
<tr>
<td>AVR</td>
<td>0.44</td>
<td>0.48</td>
<td>0.60</td>
<td>0.68</td>
<td>0.69</td>
</tr>
</tbody>
</table>
3. Applications and Experiments

Application 2: Weakly supervised semantic segmentation

Basic idea:
- Joint segmentation and classification, and segmentation probability maps are taken as attention for feature aggregation for classification. Only classification label is provided.
- Diffusion distance is utilized for regional feature aggregation (RFP) in segmentation branch.

Pipeline for weakly supervised semantic segmentation
3. Applications and Experiments

Application 2: Weakly supervised semantic segmentation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Val</td>
<td>42.0</td>
<td>55.7</td>
<td>59.0</td>
<td>59.5</td>
<td>63.6</td>
<td>65.8</td>
</tr>
<tr>
<td>Test</td>
<td>-</td>
<td>56.7</td>
<td>-</td>
<td>-</td>
<td>64.5</td>
<td>66.3</td>
</tr>
</tbody>
</table>
4. Summary and Conclusions

- Neural diffusion distance bridging gap between diffusion distance and deep learning approach
- Neural diffusion distance can help produce promising segmentation results
- The proposed methodology can be potentially applied to spectral clustering, 3D shape analysis, graph-based diffusion, semi-supervised learning, etc.
Thanks for your attention