







# Neural Diffusion Distance for Image Segmentation

# Jian Sun and Zongben Xu

School of Mathematics and Statistics
Xi' an Jiaotong University

jiansun@xjtu.edu.cn

http://jiansun.gr.xjtu.edu.cn



# 1. Introduction

#### What is diffusion distance?

Diffusion Distance: pairwise distance of graph nodes considering global structure.

**Graph:** 
$$G = (V, E); V = (v_1, \dots, v_N)$$

#### Similarity matrix:

$$w_{ij} = \exp(-\mu ||\mathbf{f}_i - \mathbf{f}_j||_2^2), \text{ for } j \in S_N(i),$$

#### **Transition matrix:**

$$P = D^{-1}W$$
, where  $D = \operatorname{diag}(W\vec{1})$ .

#### Diffusion distance:

$$D_t(i,j) = \sum_{m=0}^{N-1} (p(k,t|i) - p(k,t|j))^2 \tilde{w}(k),$$
  
=  $\sum_{m=0}^{N-1} \lambda_m^{2t} (\Phi_m(i) - \Phi_m(j))^2,$ 

 $\{\lambda_m, \Phi_m\}_{m=0}^{N-1}$  are eigenvalues and eigenvectors of P.



A graph G = (V, E)



## 1. Introduction

### Properties and challenges for diffusion distance

#### **Properties of Diffusion Distance:**

- Small if there are a large number of short paths connecting two points
- Decrease when t increases
- Varying t induces multi-scale distance

# Applications: □ Spectral clustering □ Dimension reduction □ ···..

#### **Challenges:**

- How to design feature of each node?
- How to set an optimal t?
- Effectiveness in real applications?



## 1. Introduction

### Properties and challenges for diffusion distance

#### **Properties of Diffusion Distance:**

- Small if there are a large number of short paths connecting two points
- Decrease when t increases
- Varying t induces multi-scale distance

# Applications: □ Spectral clustering □ Dimension reduction □ .....

#### **Our contributions:**

Neural diffusion distance + applications in image segmentation

- Learn features and diffusion distance by end-to-end trainable network
- Produce high quality diffusion distance map on images
- A new image segmentation method using neural diffusion distance
- A new weakly supervised semantic segmentation method



# 2. Neural Diffusion Distance

#### **Definition of Neural Diffusion Distance**

Neural Diffusion Distance (NDD): deep architecture simultaneously learns node features, optimal hyper-parameters for diffusion distance computation.



Approximate spectral decomposition (differentiable):

$$Z_{n+1} = PU_n, \{U_{n+1}, R_{n+1}\} = QR(Z_{n+1}), n = 0, \dots, T,$$





# 2. Neural Diffusion Distance

## **Learning Neural Diffusion Distance**

**Proposition 1.** Assume eigenvalues of P satisfy  $\lambda_0 > \lambda_1 > \cdots > \lambda_{N_e-1} > \lambda_{N_e}$ , and all leading principal sub-matrices of  $\Gamma^T U_0$  ( $\Gamma$  is a matrix with columns  $\Phi_1, \cdots, \Phi_{N_e}$ ) are non-singular, then columns of  $U_n$  converge to top  $N_e$  eigenvectors in linear rate of  $(\max_{k \in [1,N_e]} \{|\lambda_k|/|\lambda_{k-1}|\})^{2t}$ , and diagonal values of  $R_n$  converge to corresponding top  $N_e$  eigenvalues  $\lambda_0^{2t}, \cdots, \lambda_{N_e-1}^{2t}$  in same rate.

#### How to train the network of Neural Diffusion Distance (NDD)?









Original Image

Subject 1

Subject 2

Subject 3

$$L_{hr}(K_D, \hat{K}_{gt}) = \sum_{i \in S} - \left\langle \hat{K}_D^i / || \hat{K}_D^i ||, \hat{K}_{gt}^i / || \hat{K}_{gt}^i ||) \right\rangle,$$



Training set: BSD 500

$$L_{lr}(K_D, K_{gt}) = -\langle K_D/||K_D||_F, K_{gt}/||K_{gt}||_F \rangle.$$



# 2. Neural Diffusion Distance

#### Examples of learned neural diffusion distance (shown by similarity)





# 3. Applications and Experiments

## Application1: Hierarchical image segmentation

Hierarchical image segmentation (kernel k-means with diffusion distance as kernel)





| Methods | NCut [26] | NCut-DF | DeepNCut [13] | Ours-LR | Ours-HR |
|---------|-----------|---------|---------------|---------|---------|
| MAX     | 0.53      | 0.56    | 0.70          | 0.78    | 0.80    |
| AVR     | 0.44      | 0.48    | 0.60          | 0.68    | 0.69    |



# 3. Applications and Experiments

### Application 2: Weakly supervised semantic segmentation



Pipeline for weakly supervised semantic segmentation

#### Basic idea:

- Joint segmentation and classification, and segmentation probability maps are taken as attention for feature aggregation for classification. Only classification label is provided.
- Diffusion distance is utilized for regional feature aggregation (RFP) in segmentation branch.



# 3. Applications and Experiments

# Application 2: Weakly supervised semantic segmentation





| Methods | MIL [24] | Saliency [22] | RegGrow [12] | RandWalk [29] | AISI [7] | Ours |
|---------|----------|---------------|--------------|---------------|----------|------|
| Val     | 42.0     | 55.7          | 59.0         | 59.5          | 63.6     |      |
| Test    | -        | 56.7          | -            | -             | 64.5     | 66.3 |



# 4. Summary and Conclusions

# **Summary & Conclusions**

- Neural diffusion distance bridging gap between diffusion distance and deep learning approach
- Neural diffusion distance can help produce promising segmentation results
- The proposed methodology can be potentially applied to spectral clustering, 3D shape analysis, graph-based diffusion, semisupervised learning, etc.



# Thanks for your attention