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I. PROOF OF PROPERTY 2

Proof. We present the proof of this property by two steps,
i.e., we first prove the spectral transform operation keeps
symmetry, then we prove that the transform keeps positive
definite property.

Denoting the input matrix of spectral transform as H , with
its singular value decomposition as H = UΛV >, denoting the
spectral transform as a function fST (·) which operates on the
singular values of a given symmetric matrix, i.e., fST (H) =
UfST (Λ)V >.
Step 1. In this step, we prove this: if H is symmetric, i.e.,
H = H>, then fST (H) = fST (H)>.

Notice that H = UΛV > is the singular value decomposi-
tion, then

UU> = I, V V > = I, U−1 = U>, V −1 = V >. (1)

By H = H>, we achieve

UΛV > = {UΛV >}>, (2)

Λ = U>V ΛU>V = {U>V }Λ{U>V }, (3)

and {U>V }Λ{U>V } is a singular value decomposition of Λ.
By the definition of fST (·), we have

fST (Λ) = {U>V }fST (Λ){U>V }, (4)

by which
UfST (Λ)V > = V fST (Λ)U>. (5)

Notice that by the definition of fST (·), for the left term in
Equation (5), we have

UfST (Λ)V > = fST (UΛV >) = fST (H), (6)

for the right term in Equation (5),

V fST (Λ)U> = {UfST (Λ)V >}>

= {fST (UΛV >)}>

= {fST (H)}>.
(7)

So, we finally derive

fST (H) = fST (H)>. (8)

That is, fST (H) is a symmetric matrix, so the spectral
transform keeps symmetry.
Step 2. In this step, we prove this: if H is symmetric positive
definite, then fST (H) is also symmetric positive definite.

Notice that H is symmetric positive definite, so H =
UΛU> and fST (H) = UfST (Λ)U> are both singular value
decomposition, then we have

UU> = I, U−1 = U>, (9)

fST (H)U = UfST (Λ), (10)

and Equation (10) is in fact the eigenvalue decomposition of
fST (H). So fST (Λ) is the eigenvalue matrix of fST (H), it is
a diagonal matrix.

Further more, fST (Λ) is an element-wise operation on the
diagonal elements of Λ by first l2-normalization and mixture
of power function, if a diagonal elements of Λ is non-negative,
then its corresponding element in fST (Λ) is also non-negative.
So we achieve this: if the diagonal elements of Λ are all non-
negative, then the diagonal elements of fST (Λ) are all non-
negative.

Finally, recall that a matrix is positive definite if and only if
its eigenvalues are all positive. So if H is positive definite, then
the diagonal elements of Λ are all positive, and by above proof,
the diagonal elements of fST (Λ) are also positive, i.e., the
eigenvalues of fST (H) are all positive, which demonstrates
that fST (H) is positive definite. Combining with step 1, it is
easily to have this: if H is symmetric positive definite, then
fST (H) is also symmetric positive definite.

So far, we have proved property 2 that the transformed
descriptors after spectral transform still lie in SPDM-manifold
/ space of symmetric matrix.

II. COMPUTATION OF GRADIENTS IN THE SPECTRAL
TRANSFORM OPERATION

We now present the computation of gradients (Eqs. (11),
(12), (13)) in the spectral transform operation.

Given the partial derivative of loss L with respect to H ′,
i.e., ∂L

∂H′ , we first compute ∂L
∂Λ′ with inspiration of matrix

gradient computation in [1]. Given H ′ = UΛ′UT , denoting
the variation of H ′ as dH ′, and colon “:” as matrix inner
product operator that X : Y = Trace(X>Y ) for any two
matrices X,Y , we have

∂L

∂Λ′
: dΛ′ =

∂L

∂Λ′
: (U>dH ′U)diag

= (
∂L

∂Λ′
)diag : U>dH ′U

= U(
∂L

∂Λ′
)diagU

> : dH ′,

(11)
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where (·)diag denotes an operator on matrix that sets all non-
diagonal elements as 0. Considering ∂L

∂Λ′ : dΛ′ = ∂L
∂H′ : dH ′,

it is obvious that

∂L

∂H ′
= U(

∂L

∂Λ′
)diagU

>, (12)

by which we derive

∂L

∂Λ′
= (U>

∂L

∂H ′
U)diag. (13)

Then, we compute the partial derivative of loss L with
respect to Γ, i.e., ∂L

∂Γ , where (Γ)i = γi, i = 0, · · · , Nm.
Considering that Λ′jj = fMPF (Λ̃jj) =

∑Nm

i=0 γiΛ̃
αi
jj , j =

1, · · · , NΛ, then for i = 0, 1, ..., Nm we have

∂Λ′jj
∂γi

= Λ̃αi
jj , j = 1, · · · , NΛ, (14)

∂L

∂γi
=

NΛ∑
j=1

∂L

∂Λ′jj

∂Λ′jj
∂γi

=

NΛ∑
j=1

Λ̃αi
jj

∂L

∂Λ′jj

=

NΛ∑
j=1

(Λ̃αi
∂L

∂Λ′
)jj

= (Λ̃αi
∂L

∂Λ′
)>Gdiag1,

(15)

where (·)Gdiag is the operator of vectorizing the diagonal
elements of a matrix. Then we have

(
∂L

∂Γ
)i = (Λ̃αi

∂L

∂Λ′
)>Gdiag1, i = 0, 1, ..., Nm. (16)

Finally, we present the computation of ∂L
∂Ω . Considering that

γi = eωi∑Nm
j=0 e

ωj
, i = 0, 1, ..., Nm, we have

∂γi
∂ωi

= γi(1− γi),
∂γj
∂ωi

= −γiγj , j 6= i, (17)

and it is easy to derive

∂L

∂ωi
=
∂L

∂γi

∂γi
∂ωi

+
∑
j 6=i

∂L

∂γj

∂γj
∂ωi

=
∂L

∂γi
γi(1− γi)−

∑
j 6=i

∂L

∂γj
γiγj

=
∂L

∂γi
γi −

Nm∑
j=1

∂L

∂γj
γiγj

= (
∂L

∂γi
−

Nm∑
j=1

∂L

∂γj
γj)γi, i = 0, 1, ..., Nm,

(18)

which leads to

∂L

∂Ω
= (

∂L

∂Γ
− Γ>

∂L

∂Γ
)� Γ, (19)

where � is the Hadamard product operator.

III. PROOF OF PROPOSITION 1

Proof. We first prove the stability of surface second-order
average-pooling, then prove the stability of surface second-
order max-pooling.

1) For the surface second-order average-pooling, notice that
the descretized forms approximate the continuous form when
the number of points approximates infinity, so we just present
the stability of the continuous form, and the descretized ones
can be proved similarly. We have

||H − H̃||F = || 1

|S|

∫
S
h(s)h(s)>ds− 1

|S|

∫
S
h̃(s)h̃(s)>ds||F

= || 1

|S|

∫
S
{h(s)h(s)> − h̃(s)h̃(s)>}ds||F

≤ 1

|S|

∫
S
||h(s)h(s)> − h̃(s)h̃(s)>||F ds.

(20)

Considering that

||h(s)h(s)> − h̃(s)h̃(s)>||F
= ||h(s){h(s)> − h̃(s)>}+ h̃(s)>{h(s)− h̃(s)}||F
≤ ||h(s)||F ||h(s)− h̃(s)||F + ||h̃(s)||F ||h(s)− h̃(s)||F
≤ 2Mε,

(21)

we achieve

||H − H̃||F ≤
1

|S|

∫
S
||h(s)h(s)> − h̃(s)h̃(s)>||F ds

≤ 2Mε
1

|S|

∫
S
ds

= 2Mε.

(22)

2) For the surface second-order max-pooling, we prove its
stability by two steps.
Step 1. We first prove this: |hi(s)hj(s)− h̃i(s)h̃j(s)| ≤ 2Mε.
This is because

||h(s)− h̃(s)||F = {
d∑
i=1

|hi(s)− h̃i(s)|2}
1
2 ≤ ε, (23)

by which we derive

d∑
i=1

|hi(s)− h̃i(s)|2 ≤ ε2,

|hi(s)− h̃i(s)| ≤ ε,
|hj(s)− h̃j(s)| ≤ ε.

(24)

Recall that M is the upper bound of input descriptors,

||h(s)||F = {
d∑
j=1

hj(s)
2} 1

2 ≤M,

|hj(s)| ≤M,

(25)

Similarly, we have

|h̃i(s)| ≤M. (26)
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|hi(s)hj(s)− h̃i(s)h̃j(s)|
= |hi(s)hj(s)− h̃i(s)hj(s) + h̃i(s)hj(s)− h̃i(s)h̃j(s)|
= |(hi(s)− h̃i(s))hj(s) + h̃i(s)(hj(s)− h̃j(s))|
≤ 2Mε.

(27)

Step 2. Then, we prove this: ||H − H̃||F ≤ 2Mdε. Without
loss of generality, we set s1 = arg max

s∈S
hi(s)hj(s), s2 =

arg max
s∈S

h̃i(s)h̃j(s), then

hi(s2)hj(s2) ≤ hi(s1)hj(s1),

h̃i(s1)h̃j(s1) ≤ h̃i(s2)h̃j(s2).
(28)

hi(s2)hj(s2)− h̃i(s2)h̃j(s2) ≤ hi(s1)hj(s1)− h̃i(s2)h̃j(s2),

hi(s1)hj(s1)− h̃i(s2)h̃j(s2) ≤ hi(s1)hj(s1)− h̃i(s1)h̃j(s1).
(29)

Combining above two inequalities, we derive

hi(s2)hj(s2)− h̃i(s2)h̃j(s2) ≤ hi(s1)hj(s1)− h̃i(s2)h̃j(s2)

≤ hi(s1)hj(s1)− h̃i(s1)h̃j(s1).
(30)

Recall that for an inequality a ≤ b ≤ c, we have |b| ≤
max{|a|, |c|}, and by step 1,

|hi(s2)hj(s2)− h̃i(s2)h̃j(s2)| ≤ 2Mε,

|hi(s1)hj(s1)− h̃i(s1)h̃j(s1)| ≤ 2Mε.
(31)

Combining with Equation (30)

|hi(s1)hj(s1)− h̃i(s2)h̃j(s2)| ≤ 2Mε. (32)

Finally, we have

||H − H̃||F

= {
d∑

i,j=1

|hi(sij1 )hj(s
ij
1 )− h̃i(sij2 )h̃j(s

ij
2 )|2} 1

2

≤ {
d∑
i,j

(2Mε)2} 1
2

= 2Mdε.

(33)

Notice that in above inequality, we use sij1 and sij2 to denote
the maximum points where Hij and H̃ij reach the maximum
values.

IV. PROOF OF PROPOSITION 2

Before the proof of Proposition 2, we first present a lemma:
Lemma 1: Given two matrices X,Y , if ||X − Y ||F ≤ ε,
then || X

||X||F −
Y
||Y ||F ||F ≤ 2

||X||F ε. Moreover, let X̂ =

QxXP
T
x , Ŷ = QyY P

T
y be the singular value decompositions

of symmetric matrices X̂, Ŷ , then if ||X̂ − Ŷ ||F ≤ ε, we have
||Qx X

||Y ||F P
T
x −Qy Y

||Y ||F P
T
y ||F ≤ 2

||X̂||F
ε.

Proof. We first prove the first part of this lemma, i.e., if ||X−
Y ||F ≤ ε, then || X

||X||F −
Y
||Y ||F ||F ≤

2
||X||F ε, in following

Step 1. Then we give the proof of the second part by Step 2.

Step 1. Assuming ||X||F = a, ||Y ||F = b, then

||X
a
− Y

b
||F =

1

a
||X − a

b
Y ||F

=
1

a
||X − a+ b− b

b
Y ||F

=
1

a
||X − Y − a− b

b
Y ||F

≤ 1

a
||X − Y ||F +

1

a

|a− b|
b
||Y ||F

=
1

a
||X − Y ||F +

|a− b|
a

,

(34)

because |a− b| = |||X||F − ||Y ||F | ≤ ||X −Y ||F , and ||X −
Y ||F ≤ ε,

||X
a
− Y

b
||F ≤

1

a
||X − Y ||F +

|a− b|
a

≤ 2

a
ε. (35)

That is, || X
||X||F −

Y
||Y ||F ||F ≤

2
||X||F ε.

Step 2. In this step, we prove the second part, i.e., let X̂ =
QxXP

T
x , Ŷ = QyY P

T
y be the singular value decompositions

of symmetric matrices X̂, Ŷ , then if ||X̂− Ŷ ||F ≤ ε, we have
||Qx X

||X||F P
T
x −Qy Y

||Y ||F P
T
y ||F ≤ 2

||X̂||
ε.

At first, we give a property of the symmetric matrix: for any
symmetric matrix X̂ with the singular values decomposition
as X̂ = QxXP

T
x , ||X̂||F = ||X||F . This is because

||X̂||F = ||QxXPTx ||F = ||Qx||F ||X||F ||PTx ||F , (36)

Qx, Px are singular vector matrix, ||Qx||F = 1, ||PTx ||F = 1,
so we have

||X̂||F = ||X||F . (37)

The same is for Ŷ , i.e., ||Ŷ ||F = ||Y ||F .
Then, we derive

||Qx
X

||X||F
PTx −Qy

Y

||Y ||F
PTy ||F

= ||Qx
X

||X̂||F
PTx −Qy

Y

||Ŷ ||F
PTy ||F

= ||
QxXP

T
y

||X̂||F
−
QyY P

T
y

||Ŷ ||F
||F

= || X̂

||X̂||F
− Ŷ

||Ŷ ||F
||F ,

(38)

by step 1, if ||X̂ − Ŷ ||F ≤ ε,

||Qx
X

||X||F
PTx −Qy

Y

||Y ||F
PTy ||F ≤

2

||X̂||
ε. (39)

Lemma 1 demonstrates the stability of the normalization
operation, either on the matrices themselves or on the singular
values of the symmetric matrices.

For Proposition 2, we prove it by following three steps.
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Proof. Step 1. For the input symmetric matrix H ∈ Rd×d and
output H ′ ∈ Rd×d with their singular value decomposition as
H = UΛV >, H ′ = UΛ′V > as in our paper, we have

||H||F =

√√√√ d∑
i=1

Λ2
i , ||H ′||F =

√√√√ d∑
i=1

Λ′2i . (40)

Note that in the spectral transform operation with H as input,
we first normalize the singular value matrix Λ, achieving
Λ̃ such that

∑d
i=1 Λ̃2

i = 1, with |Λ̃i| ≤ 1. After function
fMPF (·), we get Λ′ with its elements as Λ′i = fMPF (Λ̃i). By
the definition of fMPF (·), it is easy to achieve that: Λ′i ≤ 1,
and combining it with Equation (40), we finally get

||H ′||F =

√√√√ d∑
i=1

Λ′2i ≤
√
d. (41)

For another input symmetric matrix H̃ with its output as
H̃ ′, we have

||H ′ − H̃ ′||F ≤ ||H ′||F + ||H̃ ′||F ≤ 2
√
d. (42)

Step 2. For the input symmetric matrix (with its singular
values are already normalized), denoting the spectral transform
as fST (·), and it is in fact following function that works on
eigenvalues:

fST (x) = sign(x)fMPF (abs(x)), x ∈ [−1,−δ] ∪ {0} ∪ [δ, 1],
(43)

where δ = inf{λ|λ 6= 0}, λ is l2-normalized λ which is
singular value of input matrix. We now prove this:

|fST (x1)− fST (x2)| ≤ δα0−1|x1 − x2|, (44)

where α0 ∈ [0, 1] is the minimum power index utilized in
fMPF (·) and we discuss it as follows.

1) when xi 6= 0, abs(xi) ≥ δ, i = 1, 2, we have following
situations:

a) xi ≥ δ, i = 1, 2, then

|fST (x1)− fST (x2)| = |fMPF (x1)− fMPF (x2)|.
(45)

Considering δ ≥ 0, δ ≤ 1, δα0−1 ≥ 1, and for
function fMPF (·) that being defined on [δ, 1], it is
Lipschitz continuous with Lipschitz constant as L,

L = sup
x∈[δ,1]

f ′MPF (x),

=

Nm∑
i=1

γiαiδ
αi−1

≤
Nm∑
i=1

γiδ
α0−1

= δα0−1.

(46)

So, we derive

|fST (x1)− fST (x2)| ≤ δα0−1|x1 − x2|. (47)

b) xi ≤ −δ, i = 1, 2, then

|fST (x1)− fST (x2)|
=| − fMPF (abs(x1)) + fMPF (abs(x2))|
≤δα0−1|abs(x1)− abs(x2)|
=δα0−1|x1 − x2|,

(48)

which also derives

|fST (x1)− fST (x2)| ≤ δα0−1|x1 − x2|. (49)

c) x1 ≥ δ, x2 ≤ −δ, then

|fST (x1)− fST (x2)|
=|fMPF (x1) + fMPF (abs(x2))|
=|fMPF (x1)|+ |fMPF (abs(x2))|
≤δα0−1|x1|+ δα0−1|x2|
=δα0−1|x1 − x2|,

(50)

which is

|fST (x1)− fST (x2)| ≤ δα0−1|x1 − x2|. (51)

d) x1 ≤ −δ, x2 ≥ δ, it is the same as x1 < −δ, x2 >
δ as above, and we do not repeat it.

2) x1 = 0, x2 6= 0 or x2 = 0, x1 6= 0. Without loss of
generality, we set x1 6= 0, x2 = 0. So we have

|fST (x1)− fST (x2)| = |fMPF (|x1|)|

=

Nm∑
i=0

γi|x1|αi

≤
Nm∑
i=0

γi|x1|α0

= |x1|α0 .

(52)

On the other hand, we have

δα0−1|x1 − x2| = δα0−1|x1|
≥ |x1|α0−1|x1|
= |x1|α0

(53)

Combining with Eqn.(52), we now have

|fST (x1)− fST (x2)| ≤ δα0−1|x1 − x2|. (54)

3) xi = 0, i = 1, 2, then

|fST (x1)− fST (x2)| = |0− 0|
≤ δα0−1|0− 0|
= δα0−1|x1 − x2|.

(55)

Till now, we have proved the property (Eqn. (44)) of fST (·).
Step 3. For two input symmetric matrices H, H̃ , in the spectral
transform operation, we first normalize their singular values,
achieving H∗, H̃∗. By Lemma 1, if ||H − H̃||F ≤ ε, we have

||H∗ − H̃∗||F ≤
2

M
ε (56)

with M as the lower bound of the inputs. Denoting the
SVD and eigenvalue decomposition of H∗, H̃∗ as H∗ =
U1Λ1V

>
1 , H̃∗ = U2Λ2V

>
2 and H∗ = U1D1U

>
1 , H̃

∗ =
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U2D2U
>
2 respectively, where D1 = Λ1 � S1, D2 = Λ1 � S2

with S1, S2 indicating the sign of corresponding eigenvalues,
after the spectral transform, we derive H ′, H̃ ′. Combining with
Step 2, we have

||H ′ − H̃ ′||F = ||U1fST (D1)U>1 − U2fST (D2)U>2 ||F
= ||U>1 U1fST (D1)U>1 U2 − U>1 U2fST (D2)U>2 U2||F
= ||fST (D1)U>1 U2 − U>1 U2fST (D2)||F ,

(57)

denoting U>1 U2 as Z, then

||H ′ − H̃ ′||F =

d∑
i,j=1

|fST (Di
1)− fST (Dj

2)| · |Zij |

≤
d∑

i,j=1

δα0−1|Di
1 −D

j
2| · |Zij |

= δα0−1||H∗ − H̃∗||F

≤ δα0−1 2

M
ε.

(58)

Combining with Step 1, we finally get

||H ′ − H̃ ′||F ≤ min {δα0−1 2

M
ε, 2
√
d}. (59)
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