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Abstract. Speeding up Magnetic Resonance Imaging (MRI) is an in-
evitable task in capturing multi-contrast MR images for medical diagno-
sis. In MRI, some sequences, e.g., in T2 weighted imaging, require long
scanning time, while T1 weighted images are captured by short-time se-
quences. To accelerate MRI, in this paper, we propose a model-driven
deep attention network, dubbed as MD-DAN, to reconstruct highly under-
sampled long-time sequence MR image with the guidance of a certain
short-time sequence MR image. MD-DAN is a novel deep architecture
inspired by the iterative algorithm optimizing a novel MRI reconstruc-
tion model regularized by cross-contrast prior using a guided contrast im-
age. The network is designed to automatically learn cross-contrast prior
by learning corresponding proximal operator. The backbone network to
model the proximal operator is designed as a dual-path convolutional
network with channel and spatial attention modules. Experimental re-
sults on a brain MRI dataset substantiate the superiority of our method
with significantly improved accuracy. For example, MD-DAN achieves
PSNR up to 35.04 dB at the ultra-fast 1/32 sampling rate.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a leading biomedical imaging technology,
which depicts both anatomical and functional information for disease diagnosis.
A typical MRI protocol comprises multi-contrast sequences of same anatomy
which provide complementary information to enhance clinical diagnosis. For in-
stance, T1 Weighted Imaging (T1WI) is useful for delineation of morphologi-
cal information including assessing the gray and white matter and identifying
fatty tissue. T2 Weighted Imaging (T2WI) is useful for delineation of edema
and inflammation. Fluid Attenuated Inversion Recovery (FLAIR) is useful for
suppressing cerebrospinal fluid (CSF) effects on the image to detect the periven-
tricular hyperintense lesions in brain imaging. However, a major challenge in
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MRI is its long data acquisition time, for example, typical scanning time for
T1WI, T2WI and FLAIR is about 20 mins, limiting its clinical applications in
fetal imaging or dynamic imaging. In clinical routines, some contrast sequences
such as T1WI, requiring short repetition time (TR) and echo time (TE), al-
low full sampling, while others, such as T2WI and FLAIR, requiring long TR
and TE, can be accelerated by under-sampling. In this paper, we aim to recon-
struct highly under-sampled long-time sequence MR image (e.g., T2WI) with
the guidance of a certain short-time sequence MR image (e.g., T1WI) [26].

Compressive sensing MRI (CS-MRI) [16] is a predominant approach to ac-
celerate MRI by under-sampling in k-space. Traditional model-based CS-MRI
methods rely on regularization related to image prior to improve reconstruction
quality, e.g., Total Variation (TV) [3, 10], wavelet regularization [10, 15], non-
local regularization [7, 20] and dictionary learning [21, 28]. However, it is chal-
lenging to handcraft an optimal regularizer. Recently, deep learning method has
been applied to CS-MRI. Wang et al. [24] first trained a deep CNN to learn the
mapping to high-quality reconstructed images. [13] proposed a multi-scale resid-
ual learning network (i.e., U-net) for image reconstruction by removing aliasing
artifacts. [6, 9, 17, 23, 27] introduced imaging model or data consistency term to
deep networks to learn the priors of images from training data and greatly im-
prove reconstruction accuracy. All these CS-MRI methods consider reconstruc-
tion of MRI images with a single contrast (e.g., T1WI, T2WI or FLAIR).

An alternative way to accelerate MRI is to synthesize missing contrast MR
image from other contrast with fully-sampled acquisitions. They either learn
a dictionary or sparse representation of source contrast patches for target con-
trast [11, 22], or directly learn a mapping from source to target contrast by a deep
neural network [4, 5, 12, 14]. However, such methods suffer from low-quantity re-
construction without requiring samples in k-space. Recently, Xiang et al. [26]
proposed a Dense-Unet to accelerate MRI by reconstruction using both under-
sampled k-space data and guided MR image. They use a deep network to fuse
under-sampled T2WI image and guided fully-sampled T1WI image, and output
the reconstructed high quality T2WI MR image.

To reconstruct MR image from its under-sampled k-space acquisitions with
guided cross-contrast MR image, we propose a novel interpretable deep attention
network by integrating the k-space data constraint and cross-modality relations
into a single deep architecture. Specifically, we first propose a novel MR image
reconstruction model consisting of a data fidelity term based on k-space data
and a cross-contrast prior term modeling relations between contrasts. Then we
design an iterative algorithm based on half-quadratic splitting to minimize the
model by alternately performing guided image fusion and image reconstruction.
To learn the cross-contrast prior from training data, we substitute its proximal
operator in the iterative algorithm by a novel backbone network, namely DPA-
FusionNet, which is a dual-path convolutional network with channel and spatial
attention. Finally, we unfold the iterative algorithm to be a deep architecture,
dubbed as model-driven deep attentation network (MD-DAN), as shown in Fig. 1.
Experiments on a brain MRI dataset show that our proposed MD-DAN can
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Fig. 1: Illustration of model-driven deep attention network, i.e., MD-DAN. Each
stage consists of a cross-contrast fusion block (i.e., F-B) and an image reconstruc-

tion block (i.e., R-B). Given a reconstructed image by zero-filling (i.e., x
(0)
s ) and

a guided image (i.e., xg), it outputs reconstructed MR image after K stages.

effectively reconstruct MR image with state-of-the-art reconstruction accuracy
even in ultra-fast 1/32 sampling rate.

2 Method

Given under-sampled k-space data {ys ∈ CU} of long-time sequence MR image
(e.g., T2WI), and fully sampled reconstructed MR image {xg ∈ CN} of short-
time sequence (e.g., T1WI) as guidance, we aim to reconstruct the MR image
{xs ∈ CN} from k-space data {ys ∈ CU}, where N and U denote the cardinality
of MR image and sampled k-space data. Based on the MR imaging mechanism,
we design the following MRI reconstruction model:

x∗s = arg min
xs

1

2
||MFxs − ys||22 + λf(xs, xg), (1)

where F ∈ CN×N is the Fourier transform and M ∈ CU×N (U < N) is the
sampling matrix in k-space. The first term is a data term that enforces data
consistency between reconstructed MR image xs and its under-sampled data ys
in k-space. The second term is a cross-contrast prior that models the correlation
between MR image xs and guided image xg. For example, f(xs, xg) can be taken
as joint TV, group wavelet-sparsity [10], weighted similarity of intensity [25] or
similarity of image patches between multi-contrast MR images [20].

In this work, we aim to learn this prior instead of handcrafting it. To this
end, we first design an iterative optimization algorithm for solving Eqn. (1),
where the prior will be transformed to be a proximal operator in the iterative
algorithm. We then design a novel fusion network with two contrasts as inputs
to replace this proximal operator to implicitly learn the cross-contrast prior. The
iterative algorithm can be taken as a deep network and trained end-to-end.
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2.1 Model Optimization

The reconstruction model of Eqn. (1) can be solved efficiently by half-quadratic
splitting (HQS) algorithm [8]. By introducing an auxiliary MR image zs, s.t.,
zs = xs, Eqn. (1) is equivalent to optimizing the following energy model:

arg min
zs,xs

1

2
||MFxs − ys||22 + λf(zs, xg) +

ρ

2
||xs − zs||22, (2)

where penalty coefficient ρ → ∞ during optimization. The energy model of
Eqn. (2) can be minimized by iteratively estimating the unknown variables zs
and xs. At k-th iteration, we solve the following two subproblems.

Estimating zs by proximal operator: Given MR image x
(k−1)
s at iteration

k − 1, auxiliary MR image zs can be updated with guided MR image xg by:

z(k)s = arg min
zs

ρ

2
||x(k−1)

s − zs||22 + λf(zs, xg). (3)

By definition of proximal operator of a regularizer term g(·), i.e., Proxηg(v) =
arg minu

1
2 ||v−u||

2
2 +ηg(u), auxiliary image zs is updated by optimizing Eq. (3):

z(k)s = Proxλ
ρ f(·,xg)

(x(k−1)
s ), (4)

where proximal operator Proxλ
ρ f(·,xg)

is a nonlinear mapping determined by

cross-contrast prior f(zs, xg), and maps input MR image x
(k−1)
s to z

(k)
s with guid-

ance of guided MR image xg. xs is initialized by zero-filling: x
(0)
s = FHMHys.

Estimating xs by image reconstruction: Given updated auxiliary MR

image z
(k)
s at iteration k, reconstructed MR image xs can be updated as:

x(k)s = arg min
xs

1

2
||MFxs − ys||22 +

ρ

2
||xs − z(k)s ||22. (5)

This sub-problem has a closed-form solution:

x(k)s = FHΛ−1(MHys + ρFz(k)s ), (6)

where Λ = MHM + diag(ρ) is a diagonal matrix.
By iteratively updating auxiliary and reconstructed MR images using Eqns. (4)

and (6), cross-contrast prior is imposed on xs by proximal operator in Eqn. (4)
with guidance of MR image xg.

2.2 Unfolded Network for Cross-contrast Prior Learning

We unfold the iterative algorithm (Eqns. (4), (6)) to be a deep architecture,
dubbed MD-DAN. As illustrated in Fig. 1, the whole network contains K stages,
each of which corresponds to one iteration with two blocks, i.e., cross-contrast
fusion block (F-B) and image reconstruction block (R-B), implementing
updates of variable zs and xs in Eqn. (4) and Eqn. (6) respectively.
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Fig. 2: The network structure of cross-contrast fusion network (DPA-FusionNet).

Cross-contrast fusion block. Instead of handcrafting cross-contrast prior
f(·, ·), we substitute its proximal operator in Eqn. (4) by a learnable network:

z(k)s = Proxλ
ρ f(·,xg)

(x(k−1)
s )

M
= Fusion-net(x(k−1)

s , xg). (7)

The Fusion-net is to fuse two contrast images as inputs and output updated
auxiliary MR image. As shown in Fig. 2, it is designed as a dual-path net in-
cluding encoding, feature fusion and decoding blocks. Encoding block extracts
features from guided image xg and reconstructed image in (k− 1)-th stage (i.e.,

x
(k−1)
s ) by two sub-encoders, each of which consists of a convolution and four cas-

caded Sub-Block networks. Then features of different layers of encoding networks
from different contrasts are concatenated and further fused by a decoding net-
work consisting of a convolution, five cascaded Sub-Blocks, a multi-scale feature
fusion (i.e., feature concatenation) followed by two convolution and a sigmoid

operation, and the decoder outputs the updated auxiliary MR image z
(k)
s . We

name this cross-contrast fusion network as Dual Path Attention Fusion Network
(DPA-FusionNet). Please see Fig. 2 for detailed network hyper-parameters.

Each Sub-Block network, as shown in Fig. 2, is designed with skip connection,
channel attention (CA) [29] and spatial attention (SA) [19] modules. The two
attention modules are introduced as follows.

Channel attention (CA). Channel attention module is to make network
pay more attention to important channel features from different contrasts. Firstly,
we convert features denoted by F into a channel descriptor denoted by G through
average pooling channel-by-channel: Gc = 1

H×W
∑
i

∑
j Fc(i, j), where Fc is fea-

ture in c-th channel, and H and W are the height and width of the features. Then
the channel descriptor G goes through the cascaded layers: Conv → ReLu →
Conv→Sigmoid, and we get weights of different channels WCA. Finally, weights
are applied to the input features by element-wise product: F outc = WCA

c ⊗ Fc.
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Spatial attention (SA). Spatial attention module is to force network to
pay more attention to important spatial regions of image, such as high-frequency
and heavy artifact areas. For the features F , we get weights of different pixels
WSA by cascaded layers: Conv → ReLu → Conv →Sigmoid. Then weights are
applied to the input features by element-wise product: F outc = WSA ⊗ Fc.

2.3 Network Training

We use mean squared error (MSE) loss to train the net: L(Θ) =
∑
n ||x

(K)
n (Θ)−

xgtn ||2, where x
(K)
n (Θ) is the network output for n-th data, Θ are network param-

eters of MD-DAN with backbone DPA-FusionNets in different stages initialized
by Xavier random initialization. xgtn is targeting MR image reconstructed from
fully-sampled k-space data. ρ is initialized as 1e-5. The backbone network at dif-
ferent stages does not share parameters. We implement and train MD-DAN by
PyTorch using Adam with learning rate of 1e-4, on an Ubuntu 16.04 system with
GTX 1080 Ti GPU. We conduct stage-wise training followed by an end-to-end
fine tuning, and we train the network in each stage for 120 epochs.

3 Experiments

Experimental settings. We evaluate MD-DAN on brain MR images from
BraTS 2019 dataset1 [1, 2, 18], providing clinically-acquired multi-contrast MRI
scans of glioblastoma patients from 19 institutions. We respectively take 190 and
189 subjects as training and test set. We train our MD-DAN to reconstruct T2WI
MR image from its under-sampled k-space data with guidance of T1WI image.
Successive 2D slices are used to train MD-DAN and test accuracy is performed
on whole 3D volume in size of 240×240×115. Preprocessing steps including N4
corrected and peak normalization were applied. We used 1D Cartesian sampling
with sampling rates of 1/8, 1/16 and 1/32 to under-sample T2WI k-space data.

Compared methods. We compare MD-DAN (K = 4) with five single con-
trast CS-MRI methods that reconstruct T2WI MR image from under-sampled
k-space data including Zero-filling (ZF), DC-CNN [23], Dense-Unet-R, ResNet-
R and DPA-FusionNet-R. We also compare with image synthesis methods in-
cluding Dense-Unet-S, ResNet-S and DPA-FusionNet-S which synthesize T2WI
MR image from T1WI MR image. Dense-Unet-R(S), ResNet-R(S) are respec-
tively based on Dense-Unet (2 down and up sampling operations and 5 dense
blocks [26]) and ResNet (9 convolution residual blocks [30]). DPA-FusionNet-
R(S) is variant of our DPA-FusionNet in Fig. 2 without upper (for ‘-R’) or lower
(for ‘-S’) path respectively for single modality reconstruction and cross-contrast
synthesis. We further compare with three reconstruction methods guided by
cross-contrast image including model-based method FCSA-MT [10] and two
state-of-the-art deep learning networks of Dense-Unet [26] and ResNet [30]. The
two deep networks take reconstructed under-sampled T2WI image and fully
sampled T1WI image as input, and output the reconstructed T2WI image.

1 https://ipp.cbica.upenn.edu/
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Table 1: Comparison of average performance on the testing dataset.

1/8 rate 1/16 rate 1/32 rate

Type Method PSNR nRMSE PSNR nRMSE PSNR nRMSE Time

T2→T2

ZF 26.0883 0.3312 25.9763 0.3357 25.0999 0.3719 0.010s
DC-CNN 35.8136 0.1095 32.2087 0.1665 28.0524 0.2667 0.031s

Dense-Unet-R 32.1378 0.1698 30.6749 0.1983 28.0846 0.2661 0.014s
ResNet-R 33.5167 0.1425 31.2695 0.1851 28.4251 0.2565 0.016s

DPA-FusionNet-R 33.5520 0.1420 31.3854 0.1825 28.5896 0.2516 0.026s

T1→T2
Dense-Unet-S 29.6061 0.2235 29.6061 0.2235 29.6061 0.2235 0.014s

ResNet-S 30.2969 0.2079 30.2969 0.2079 30.2969 0.2079 0.015s
DPA-FusionNet-S 30.3193 0.2077 30.3193 0.2077 30.3193 0.2077 0.027s

T1+T2
FCSA-MT 35.8089 0.1118 32.5788 0.1626 27.6125 0.2844 4.001s
Dense-Unet 35.4403 0.1147 34.2353 0.1314 32.9811 0.1520 0.015s

→T2
ResNet 36.1856 0.1047 35.0296 0.1264 33.8310 0.1378 0.016s

MD-DAN 40.6069 0.0639 37.9372 0.0868 35.0364 0.1206 0.108s

(a) Original image (T2)  (b) Guide image (T1)                (c) ZF                        (d) DC-CNN               (e) Dense-Unet-R             (f) ResNet-R           (g) DPA-FusionNet-R
(23.43 dB)                       (26.04 dB)                      (26.34 dB)                      (26.53 dB)                  (26.81 dB) 

(h) Dense-Unet-S                (i) ResNet-S            (j) DPA-FusionNet-S            (k) FCSA-MT              (l) Dense-Unet (m) ResNet (n) MD-DAN
(29.39 dB)                     (30.64 dB)                       (30.82 dB)                       (25.54 dB)                  (32.56 dB )                      (33.13 dB)                       (34.79 dB) 

Fig. 3: Results for a brain MR image using 1/32 1D Cartesian sampling.

Results. Table 1 shows the quantitative results on test dataset with 1/8, 1/16
and 1/32 sampling rates. Our MD-DAN significantly outperforms all synthesis-
based methods and single contrast reconstruction methods, especially at higher
sampling rates 1/16 and 1/32, which verify the effectiveness of joint reconstruc-
tion using k-space data and guided image. For example, in 1/16 sampling rate,
MD-DAN outperforms DPA-FusionNet-S by 7.62 dB and DC-CNN by 5.73 dB.
Compared with Dense-Unet and ResNet in the same setting as ours, our MD-
DAN achieves better reconstruction accuracy in PSNR and nRMSE using 50%
less sampled data. Examples of reconstructed images by different methods in
1/32 sampling rate are shown in Fig. 3. More examples are in supplementary
material. Our method yields higher-quality MR images without obvious artifacts.

Comparisons of different backbone networks. We use a dual-path DPA-
FusionNet in Fig. 2 as backbone to replace proximal operator in our model-driven
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Table 2: Comparison of average performance with sampling rate of 1/8.

MD-Dense-Unet MD-ResNet MD-DAN

PSNR 39.6798 40.2295 40.6069

nRMSE 0.0708 0.0666 0.0639

Training time 5.5 days 6 days 7 days

22

27

32

37

42

ZF K=1 K=2 K=3 K=4

1/8 1/16 1/32

40.6069

40.277

40.5

40.2

40.3

40.4

40.5

40.6

40.7

Our net Net-w/o-D Net-w/o-A

P
SN

R
 (

d
B

)

P
SN

R
 (

d
B

)
(a) Reconstruction results by different nets.              (b) Average accuracy in different stages.

Fig. 4: Performance comparison of different network settings

network. To verify superiority of DPA-FusionNet, we also respectively use Dense-
Unet and ResNet to replace the proximal operator in our framework, denoted
as MD-Dense-Unet and MD-ResNet. Table 2 shows performance with sampling
rate of 1/8 in 4 stages. Our MD-DAN with DPA-FusionNet as proximal operator
works best and improves the PSNR at least 0.37 dB than others.

Effectiveness of backbone network design. To explore effectiveness of
dual-path structure and attention modules in backbone network DPA-FusionNet,
we respectively discard either of them in MD-DAN, and the corresponding net-
works are denoted as Net-w/o-D and Net-w/o-A. The average PSNR values of
trained Net-w/o-D and Net-w/o-A with K=4 and 1/8 sampling rate are shown
in Fig. 4(a). Dual-path structure and attention modules are both beneficial for
improving performance, e.g., the result of MD-DAN is higher in 0.33 dB and
0.11 dB than Net-w/o-D and Net-w/o-A respectively.

Effect of number of stages. To explore influence of the number of stages
(i.e., K) on reconstruction accuracy, we train MD-DAN from stage 1 to stage 4
in a greedy way, and the average accuracies on test dataset at different sampling
rates and stages are shown in Fig. 4(b). With the increase of stages, the accuracy
of reconstruction is improved gradually at all three sampling rates.

4 Conclusion

We proposed a novel model-driven deep attention network to reconstruct highly
under-sampled long-time sequence MR image with guidance of a short-time se-
quence MR image. We design a new reconstruction model with cross-contrast
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prior, inspiring us to design a novel deep architecture, in which cross-contrast
prior is learned by replacing its proximal operator with a deep DPA-FusionNet.
Our method can be extended to other contrast MR image (e.g., FLAIR). We also
plan to extend it to simultaneously reconstruct multiple contrast MRI images.
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