
End-to-end Interpretable Learning of
Non-blind Image Deblurring

Thomas Eboli1, Jian Sun2, and Jean Ponce1

1 INRIA, Département d’informatique de l’ENS, ENS, CNRS, PSL University
{thomas.eboli,jean.ponce}@inria.fr

2 Xi’an Jiaotong University
jiansun@xjtu.edu.cn

https://github.com/teboli/CPCR

Abstract. Non-blind image deblurring is typically formulated as a linear least-
squares problem regularized by natural priors on the corresponding sharp pic-
ture’s gradients, which can be solved, for example, using a half-quadratic split-
ting method with Richardson fixed-point iterations for its least-squares updates
and a proximal operator for the auxiliary variable updates. We propose to pre-
condition the Richardson solver using approximate inverse filters of the (known)
blur and natural image prior kernels. Using convolutions instead of a generic lin-
ear preconditioner allows extremely efficient parameter sharing across the image,
and leads to significant gains in accuracy and/or speed compared to classical FFT
and conjugate-gradient methods. More importantly, the proposed architecture is
easily adapted to learning both the preconditioner and the proximal operator us-
ing CNN embeddings. This yields a simple and efficient algorithm for non-blind
image deblurring which is fully interpretable, can be learned end to end, and
whose accuracy matches or exceeds the state of the art, quite significantly, in the
non-uniform case.

Keywords: Non-blind deblurring, preconditioned fixed-point method, end-to-
end learning.

1 Introduction

This presentation addresses the problem of non-blind image deblurring–that is, the re-
covery of a sharp image given its blurry version and the corresponding uniform or
non-uniform motion blur kernel. Applications range from photography [17] to astron-
omy [34] and microscopy [15]. Classical approaches to this problem include least-
squares and Bayesian models, leading to Wiener [40] and Lucy-Richardson [28] decon-
volution techniques for example. Since many sharp images can lead to the same blurry
one, blur removal is an ill-posed problem. To tackle this issue, variational methods [30]
inject a priori knowledge over the set of solutions using penalized least-squares. Ge-
man and Yang [12] introduce an auxiliary variable to solve this problem by iteratively
evaluating a proximal operator [27] and solving a least-squares problem. The rest of
this presentation builds on this half-quadratic splitting approach. Its proximal part has
received a lot of attention through the design of complex model-based [21,36,43,46] or

https://github.com/teboli/CPCR


2 T. Eboli et al.

learning-based priors [29]. Far less attention had been paid to the solution of the com-
panion least-squares problem, typically relying on techniques such as conjugate gradi-
ent (CG) descent [2] or fast Fourier transform (FFT) [16, 42]. CG is relatively slow in
this context, and it does not exploit the fact that the linear operator corresponds to a
convolution. FFT exploits this property but is only truly valid under periodic conditions
at the boundaries, which are never respected by real images.

We propose instead to use Richardson fixed-point iterations [18] to solve the least-
squares problem, using approximate inverse filters of the (known) blur and natural im-
age prior kernels as preconditioners. Using convolutions instead of a traditional linear
preconditioner allows efficient parameter sharing across the image, which leads to sig-
nificant gains in accuracy and/or speed over FFT and conjugate-gradient methods. To
further improve performance and leverage recent progress in deep learning, several re-
cent approaches to denoising and deblurring unroll a finite number of proximal updates
and least-squares minimization steps [1,6,20,22,31]. Compared to traditional convolu-
tional neural networks (CNNs), these algorithms use interpretable components and pro-
duce intermediate feature maps that can be directly supervised during training [22, 31].

We propose a solver for non-blind deblurring, also based on the splitting scheme
of [12] but, in addition to learning the proximal operator as in [44], we also learn param-
eters in the fixed-point algorithm by embedding the preconditioner into a CNN whose
bottom layer’s kernels are the approximate filters discussed above. Unlike the algorithm
of [44], our algorithm is trainable end to end, and achieves accuracy that matches or ex-
ceeds the state of the art. Furthermore, in contrast to other state-of-the-art CNN-based
methods [22,44] relying on FFT, it operates in the pixel domain and thus easily extends
to non-uniform blurs scenarios. Our contributions can be summarized as follows.

– We introduce a convolutional preconditioner for fixed-point iterations that effi-
ciently solves the least-squares problem arising in splitting algorithms to minimize
penalized energies. It is faster and/or more accurate than FFT and CG for this task,
with theoretical convergence guarantees.

– We propose a new end-to-end trainable algorithm that implements a finite num-
ber of stages of half-quadratic splitting [12] and is fully interpretable. It alternates
between proximal updates and preconditioned fixed-point iterations. The proximal
operator and linear preconditioner are parameterized by CNNs in order to learn
these functions from a training set of clean and blurry images.

– We evaluate our approach on several benchmarks with both uniform and non-
uniform blur kernels. We demonstrate its robustness to significant levels of noise,
and obtain results that are competitive with the state of the art for uniform blur and
significantly outperforms it in the non-uniform case.

Non-blind deblurring techniques traditionally address uniform and/or non-uniform blurs.
Uniform image deblurring. Classical priors for natural images minimize the mag-

nitude of gradients using the `2 [30], `1 [23] and hyper-Laplacian [21] (semi) norms or
parametric potentials [36]. Instead of restoring the whole image at once, some works
focus on patches by learning their probability distribution [46] or exploiting local prop-
erties in blurry images [25]. Handcrafted priors are designed so that the optimization is
feasible and easy to carry out but they may ignore the characteristics of the images avail-
able. Data-driven priors, on the other hand, can be learned from a training dataset (e.g.,



End-to-end Interpretable Learning of Non-blind Image Deblurring 3

new regularizers). Roth and Black [29] introduce a learnable total variation (TV) prior
whose parameters are potential/filter pairs. This idea has been extended in shallow neu-
ral networks in [31, 32] based on the splitting scheme of [12]. Deeper models based on
Roth and Black’s learnable prior had been proposed ever since [6,20,22]. The proximal
operator can also be replaced by a CNN-based denoiser [24, 45] or a CNN specifically
trained to mimic a proximal operator [44] or the gradient of the regularized [13]. More
generally, CNNs are now used in various image restoration tasks, including non-blind
deblurring by refining a low-rank decomposition of a deconvolution filter kernel [41],
using a FFT-based solver [33], or to improve the accuracy of splitting techniques [1].

Non-uniform image deblurring. Non-uniform deblurring is more challenging than
its uniform counterpart [5, 7]. Hirsch et al. [16] consider large overlapping patches and
suppose uniform motion on their supports before removing the local blur with an FFT-
based uniform deconvolution method. Other works consider pixelwise locally linear
motions [3,8,19,35] as simple elements representing complex global motions and solve
penalized least-squares problems to restore the image. Finally, geometric non-uniform
blur can be used in the case of camera shake to predict motion paths [38, 39].

2 Proposed method

Let y and k respectively denote a blurry image and a known blur kernel. The deconvo-
lution (or non-blind deblurring) problem can be formulated as

min
x

1

2
||y − k ? x||2F + λΩ(

n∑
i=1

ki ? x), (1)

where “?” is the convolution operator, and x is the (unknown) sharp image. The filters
ki (i = 1, . . . , n) are typically partial derivative operators, andΩ acts as a regularizer on
x, enforcing natural image priors. One often takes Ω(z) = ||z||1 (TV-`1 model). We
propose in this section an end-to-end learnable variant of the method of half-quadratic
splitting (or HQS) [12] to solve Eq. (1). As shown later, a key to the effectiveness of our
algorithm is that all linear operations are explicitly represented by convolutions.

Let us first introduce notations that will simplify the presentation. Given some lin-
ear filters ai and bi (i = 0, . . . , n) with finite support (square matrices), we borrow the
Matlab notation for “stacked” linear operators, and denote by A = [a0, . . . , an] and
B = [b0; . . . ; bn] the (convolution) operators respectively obtained by stacking “hori-
zontally” and “vertically” these filters, whose responses are

A ? x = [a0 ? x, . . . , an ? x]; B ? x = [(b0 ? x)
>, . . . , (bn ? x)

>]>; (2)

We also define A ?B =
∑n
i=0 ai ? bi and easily verify that (A ?B) ? x = A ? (B ? x).

2.1 A convolutional HQS algorithm

Equation (1) can be rewritten as

min
x,z

1

2
||y − k ? x||2F + λΩ(z) such that z = F ? x, (3)



4 T. Eboli et al.

where F = [k1; . . . ; kn]. Let us define the energy function

E(x, z, µ) =
1

2
||y − k ? x||2F + λΩ(z) +

µ

2
||z − F ? x||2F . (4)

Given some initial guess x for the sharp image, (e.g. x = y) we can now solve our
original problem using the HQS method [12] with T iterations of the form

z ← argminz E(x, z, µ);
x← argminxE(x, z, µ);
µ← µ+ δt.

(5)

The µ update can vary with iterations but must be positive. We could also use the alter-
nating direction method of multipliers (or ADMM [27]), for example, but this is left to
future work. Note that the update in z has the form

z ← argmin
z

µ

2
||z − F ? x||2F + λΩ(z) = ϕλ/µ(F ? x), (6)

where ϕλ/µ is, by definition, the proximal operator [27] associated with Ω (a soft-
thresholding function in the case of the `1 norm [9]) given λ and µ.

The update in x can be written as the solution of a linear least-squares problem:

x← argmin
x

1

2
||u− L ? x||2F , (7)

where u = [y;
√
µz] and L = [k;

√
µF ].

2.2 Convolutional PCR iterations

Many methods are of course available for solving Eq. (7). We propose to compute x as
the solution of C ? (u−L?x) = 0, where C = [c0, . . . , cn] is composed of n+1 filters
and is used in preconditioned Richardson (or PCR) fixed-point iterations [18].

Briefly, in the generic linear case, PCR is an iterative method for solving a square,
nonsingular system of linear equations Ax = b. Given some initial estimate x = x0 of
the unknown x, it repeatedly applies the iterations

x← x− C(Ax− b), (8)

where C is a preconditioning square matrix. When C is an approximate inverse of
A, that is, when the spectral radius η of Id − CA is smaller than one, preconditioned
Richardson iterations converge to the solution of Ax = b with a linear rate proportional
to η [18]. When A is an m × n matrix with m ≥ n, and x and b are respectively
elements of Rn and Rm, PCR can also be used in Cimmino’s algorithm for linear least-
squares, where the solution of minx ||Ax − b||2 is found using C = ρA>, with ρ > 0
sufficiently small, as the solution ofA>Ax−A>b = 0, with similar guarantees. Finally,
it is also possible to use a different n × m matrix. When the spectral radius η of the
n× n matrix Id−CA is smaller than one, the PCR iterations converge once again at a



End-to-end Interpretable Learning of Non-blind Image Deblurring 5

(a) (b)

0 10 20 30 40 50 60 70 0
1020

3040
5060

70
0.0
0.1
0.2
0.3
0.4
0.5

(c)

Fig. 1: From left ot right: An example of a blur kernel k from the Levin et al. dataset
[23]; its approximate inverse kernel c0; the resulting filter resulting from the convolution
of k and c0 (represented as a surface). It gives an approximate Dirac filter δ.

linear rate proportional to η. However, they converge to the (unique in general) solution
of C(Ax− b) = 0, which may of course be different from the least-squares solution.

This method is easily adapted to our context. SinceL corresponds to a bank of filters
of size wk × wk, it is natural to take C = [c0, . . . , cn] to be another bank of n + 1
linear filters of size wc×wc. Unlike a generic linear preconditioner satisfying CA ≈ Id
in matrix form, whose size depends on the square of the image size, C exploits the
structure of L and is a linear operator with much fewer parameters, i.e. n + 1 times the
size of the ci’s. Thus, C is an approximate inverse filter bank for L, in the sense that

δ ≈ L ? C = C ? L = c0 ? k +
√
µ
∑n
i=1 ci ? ki, (9)

where δ is the Dirac filter. In this setting, C is computed as the solution of

C = argminC ||δ − L ? C||2F + ρ
∑n
i=0 ||ci||2F , (10)

The classical solution using the pseudo inverse of L has cost O
(
(wk + wc − 1)2×3

)
.

ci = F−1
(

K̃∗i
ρJ +

∑n
j=0 |K̃j |2

)
for i = 0 to n, (11)

using the fast Fourier transform (FFT) with costO(w2
c log(wc)) [11].F−1 is the inverse

Fourier transform, J is a matrix full of ones, K̃i is the Fourier transform of ki (with k0 =
k), K̃∗i is its complex conjugate and the division in the Fourier domain is entrywise.
Note that the use of FFT in this context has nothing to do with its use as a deconvolution
tool for solving Eq. (7). Figure 1 shows an example of a blur kernel from [23], its
approximate inverse when n = 0 and the result of their convolution. Let us define [A]?
as the linear operator such that [A]?B = A ? B. Indeed, a true inverse filter bank such
that equality holds in Eq. (9) does not exist in general (e.g., a Gaussian filter cannot be
inverted), but all that matters is that the linear operator associated with δ −C ? L has a
spectral radius smaller than one [18]. We have the following result.

Lemma 1. The spectral radius of the linear operator Id-[L]?[C]?, where C is the opti-
mal solution of (10) given by (11) is always smaller than 1 when [L]? has full rank.



6 T. Eboli et al.

A detailed proof can be found in the supplemental material. We now have our basic non-
blind deblurring algorithm, in the form of the Matlab-style CHQS (for convolutional
HQS, primary) and CPCR (for convolutional PCR, auxiliary) functions below.

function x = CHQS(y, k, F, µ0)
x = y; µ = µ0;
for t = 0 : T − 1 do

u = [y;
√
µϕλ/µ(F ? x)];

L = [k;
√
µF ];

C = argminC ||δ − C ? L||2F + ρ
∑n
i=0 ||ci||

2
F ;

x = CPCR(L, u,C, x);
µ = µ+ δt;

end for
end function

function x = CPCR(A, b, C, x0)
x = x0;
for s = 0 : S − 1 do

x = x− C ? (A ? x− b);
end for
end function

2.3 An end-to-end trainable CHQS algorithm

To improve on this method, we propose to learn the proximal operator ϕ and the pre-
conditioning operator C. The corresponding learnable CHQS (LCHQS) algorithm can
now be written as a function with two additional parameters θ and ν as follows.

function x = LCHQS(y, k, F, µ0, θ, ν)
x = y; µ = µ0;
for t = 0 : T − 1 do

u = [y;
√
µϕθλ/µ(F ? x)];

L = [k;
√
µF ];

C = argminC ||δ − C ? L||2F + ρ
∑n
i=0 ||ci||

2
F ;

x = CPCR(L, u, ψν(C), x);
µ = µ+ δt;

end for
end function

The function LCHQS has the same structure as CHQS but now uses two parame-
terized embedding functions ϕθτ and ψν for the proximal operator and preconditioner.
In practice, these functions are CNNs with learnable parameters θ and ν as detailed
in Sec. 3. Note that θ actually determines the regularizer through its proximal operator.
The function LCHQS is differentiable with respect to both its θ and ν parameters. Given
a set of training triplets (x(i), y(i), k(i)) (in i = 1, . . . , N ), the parameters θ and ν can
thus be learned end-to-end by minimizing

F (θ, ν) =
∑N
i=1 ||x(i) − LCHQS(y(i), k(i), F, θ, ν)||1, (12)

with respect to these two parameters by “unrolling” the HQS iterations and using back-
propagation, as in [6, 44] for example. This can be thought of as the “compilation” of
a fully interpretable iterative optimization algorithm into a CNN architecture. Empiri-
cally, we have found that the `1 norm gives better results than the `2 norm in Eq. (12).



End-to-end Interpretable Learning of Non-blind Image Deblurring 7

Fig. 2: A blurry image from our test set with 2% white noise and the solutions of Eq. (1)
with TV-`1 regularization obtained with different HQS-based methods. From the same
optimization problem, HQS-FFT displays boundary artifacts. HQS-CG and CHQS pro-
duce images with similar visual quality and PSNR values but HQS-CG is much slower.

3 Implementation and results

3.1 Implementation details

We present our experimental setting for running all the experiments.
Network architectures. The global architecture of LCHQS shares the same pattern

than FCNN [44], i.e. n = 2 in Eq. (1) with k1 = [1,−1] and k2 = k>1 , and the
model repeats between 1 and 5 stages alternatively solving the proximal problem (6)
and the linear least-squares problem (7). The proximal operator ϕθ is the same as the
one introduced in [44], and it is composed of 6 convolutional layers with 32 channels
and 3 × 3 kernels, followed by ReLU non-linearities, except for the last one. The first
layer has 1 input channel and the last layer has 1 output channel. The network ψν

featured in LCHQS is composed of 6 convolutional layers with 32 channels and 3 × 3
kernels, followed by ReLU non-linearities, except for the last one. The first layer has
n + 1 input channels (3 in practice with the setting detailed above) corresponding to
the filtered versions of x with the ci’s, and the last layer has 1 output channel. The
filters c1 and c2 are of size 31 × 31. This size is intentionally made relatively large
compared to the sizes of k1 and k2 because inverse filters might have infinite support
in principle. The size of c0 is twice the size of the blur kernel k. This choice will be
explained in Sec. 3.2. In our implementation, each LCHQS stage has its own θ and ν
parameters. The non-learnable CHQS module solves a TV-`1 problem; the proximal
step implements the soft-thresholding operation ϕ with parameter λ/µ and the least-
squares step implements CPCR. The choice of µ will be detailed below.

Datasets. The training set for uniform blur is made of 3000 patches of size 180×180
taken from BSD500 dataset and as many random 41× 41 blur kernels synthesized with
the code of [4]. We compute ahead of time the corresponding inverse filters ci and set



8 T. Eboli et al.

27x27 55x55 121x121
Kernel size

0

20

40

60

80

100
Ti
m
e 
(m

s)

FFT (no pad.)

CPCR (10 iters)

FFT (
edge

tape
r)

500x375 image
800x800 image
1280x720 image

(a)

20 40 60 80 100
CPCR iterations

0

10

20

30

40

PS
NR

Ratio=1.0
Ratio=1.2
Ratio=1.4
Ratio=1.6
Ratio=1.8
Ratio=2.0
Ratio=2.2
Ratio=2.4
Ratio=2.6

(b)

20 40 60 80 100
Iterations

20

21

22

23

24

PS
NR

CG
CPCR
FFT (rep. pad.)
FFT (FDN pad.)

(c)

Fig. 3: From left to right: Computation times for CPCR (including computation of C,
plain) with FFT applied on images padded with “edgetaper” as recommended in [22]
(dot/dashed) and non-padded images (dashed) for three image formats; effect of the
wc0/wk ratio on performance; comparison of CG, FFT and CPCR for solving (7).

the size of c0 to be 83× 83 with Eq. (11) where ρ is set to 0.05, a value we have chosen
after cross-validation on a separate test set. We also create a training set for non-uniform
motion blur removal made of 3000 180× 180 images synthesized with the code of [14]
with a locally linear motion of maximal magnitude of 35 pixels. For both training sets,
the validation sets are made of 600 additional samples. In both cases, we add Gaussian
noise with standard deviation matching that of the test data. We randomly flip and rotate
by 90◦ the training samples and take 170× 170 random crops for data augmentation.

Optimization. Following [22], we train our model in a two-step fashion: First, we
supervise the sharp estimate output by each iteration of LCHQS in the manner of [22]
with Eq. (12). We use an Adam optimizer with learning rate of 10−4 and batch size of
1 for 200 epochs. Second, we further train the network by supervising the final output
of LCHQS with Eq. (12) on the same training dataset with an Adam optimizer and
learning rate set to 10−5 for 100 more epochs without the per-layer supervision. We
have obtained better results with this setting than using either of the two steps separately.

3.2 Experimental validation of CPCR and CHQS

In this section, we present an experimental sanity check of CPCR for solving (7) and
CHQS for solving (1) in the context of a basic TV-`1 problem.

Inverse kernel size. We test different sizes for the wc0 × wc0 approximate inverse
filter c0 associated with awk×wk blur kernel k, in the non-penalized case, with λ = 0.
We use Eq. (11) with ρ set to 0.05. We use 160 images obtained by applying the 8
kernels of [23] to 20 images from the Pascal VOC 2012 dataset. As shown in Fig. 3(b),
the PSNR increases with increasingwc0/wk ratios, but saturates when the ratio is larger
than 2.2. We use a ratio of 2 which is a good compromise between accuracy and speed.

CPCR accuracy. We compare the proposed CPCR method to FFT-based deconvo-
lution (FFT) and conjugate gradient descent (CG), to solve the least-squares problem of
Eq. (7) in the setting of a TV-`1 problem. We follow [22] and, in order to limit bound-
ary artifacts for FFT, we pad the images to be restored by replicating the pixels on the
boundary with a margin of half the size of the blur kernel and then use the “edgetaper”
routine. We also run FFT on images padded with the “replicate” strategy consisting



End-to-end Interpretable Learning of Non-blind Image Deblurring 9

ker-1 ker-2 ker-3 ker-4 ker-5 ker-6 ker-7 ker-8 Aver. Time (s)

HQS-FFT (no pad.) 21.14 20.51 22.31 18.21 23.36 20.01 19.93 19.02 20.69 0.07
HQS-FFT (rep. pad.) 26.45 25.39 26.27 22.75 27.64 27.26 24.84 23.54 25.53 0.07
HQS-FFT (FDN pad.) 26.48 25.89 26.27 23.79 27.66 27.23 25.26 25.02 25.96 0.15
HQS-CG 26.39 25.90 26.24 24.88 27.59 27.31 25.39 25.19 26.12 13
CHQS 26.45 25.96 26.26 25.06 27.67 27.51 25.81 25.48 26.27 0.26

Table 1: Comparison of different methods optimizing the same TV-`1 deconvolution
model (1) on 160 synthetic blurry images with 2% white noise. We run all the methods
on a GPU. The running times are for a 500× 375 RGB image.

in simply replicating the pixels on the boundary. We solve Eq. (7) with µ0 = 0.008,
λ = 0.003 and z computed beforehand with Eq. (6). The 160 images previously syn-
thesized are degraded with 2% additional white noise. Figure 3(c) shows the average
PSNR scores for the three algorithms optimizing Eq. (7). After only 5 iterations, CPCR
produces an average PSNR higher than the other methods and converges after 10 iter-
ations. The “edgetaper” padding is crucial for FFT to compete with CG and CPCR by
reducing the amount of border artifacts in the solution.

CPCR running time. CPCR relies on convolutions and thus greatly benefits from
GPU acceleration. For instance, for small images of size 500 × 375 and a blur kernel
of size 55 × 55, 10 iterations of CPCR are in the ballpark of FFT without padding:
CPCR runs in 20ms, FFT runs in 3ms and FFT with “edgetaper” padding takes 40ms.
For a high-resolution 1280 × 720 image and the same blur kernel, 10 iterations of
CPCR run in 22ms, FFT without padding runs in 10ms and “edgetaper” padded FFT
in 70ms. Figure 3(a) compares the running times of CPCR (run for 10 iterations) with
padded/non-padded FFT for three image (resp. kernel) sizes: 500 × 375, 800 × 800
and 1280 × 720 (27 × 27, 55 × 55 and 121 × 121) pixels. Our method is marginally
slower than FFT without padding in every configuration (within a margin of 20ms) but
becomes much faster than FFT combined to “edgetaper” padding when the size of the
kernel increases. FFT with “replicate” padding runs in about the same time as FFT (no
pad) and thus is not shown in Fig. 3(a). The times have been averaged over 1000 runs.

Running times for computing the inverse kernels with Eq. (11). Computing the
inverse kernels ci, with an ratio wc/wk set to 2, takes 1.0 ± 0.2ms for a blur kernel k
of size 27 × 27 and 5.4 ± 0.5ms (results averaged in 1000 runs) for a large 121 × 121
kernel. Thus, the time for inverting blur kernels is negligible in the overall pipeline.

CHQS validation. We compare several iterations of HQS using unpadded FFT
(HQS-FFT (no pad.)), with “replicate” padding (HQS-FFT (rep. pad)), and the padding
strategy proposed in [22] (HQS-FFT (FDN pad.)), CG (HQS-CG), or CPCR (CHQS)
for solving the least-squares problem penalized with the TV-`1 regularized in Eq. (1)
and use the same 160 blurry and noisy images than in previous paragraph as test set.
We set the number of HQS iterations T to 10, run CPCR for 5 iterations and CG for at
most 100 iterations. We use λ = 0.003 and µt = 0.008×4t (t = 0, . . . , T −1). Table 1
compares the average PSNR scores obtained with the different HQS algorithms over the
test set. As expected, FDN padding greatly improves HQS-FFT results on larger kernels



10 T. Eboli et al.

FCNN [44] EPLL [46] RGCD [13] FDN [22] CHQS LCHQSG LCHQSF

Levin [23] 33.08 34.82 33.73 35.09 32.12 35.11 ± 0.05 35.15 ± 0.04
Sun [37] 32.24 32.46 31.95 32.67 30.36 32.83 ± 0.01 32.93 ± 0.01

Table 2: PSNR scores for Levin [23] and Sun [37] benchmarks, that respectively feature
0.5% and 1% noise. Best results are shown in bold, second-best underlined. The differ-
ence may not always be significant between FDN and LCHQS for the Levin dataset.

Fig. 4: Comparison of state-of-the-art methods and the proposed LCHQS for one sam-
ple of the Levin dataset [23] (better seen on a computer screen). FDN effectively re-
moves the blur but introduces artifacts in flat areas, unlike EPLL and LCHQS.

over naive “replicate” padding, i.e. “ker-4” and “ker-8”, but overall does not perform
as well as CHQS. For kernels 1, 2, 3 and 5, the four methods yield comparable results
(within 0.1 dB of each other). FFT-based methods are significantly worse on the other
four, whereas our method gives better results than HQS-CG in general, but is 100 times
faster. This large speed-up is explained by the convolutional structure of CPCR whereas
CG involves large matrix inversions and multiplications. Figure 2 shows a deblurring
example from the test set. HQS-FFT (with FDN padding strategy), even with the refined
padding technique of [22], produces a solution with boundary artifacts. Both HQS-CG
and CHQS restore the image with a limited amount of artifacts, but CHQS does it much
faster than HQS-CG. This is typical of our experiments in practice.

Discussion. These experiments show that CPCR always gives better results than CG
in terms of PSNR, sometimes by a significant margin, and it is about 50 times faster.
This suggests that CPCR may, more generally, be preferable to CG for linear least-
squares problems when the linear operator is a convolution. CPCR also dramatically
benefits from its convolutional implementation on a GPU with speed similar to FFT
and is even faster than FFT with FDN padding for large kernels. These experiments
also show that CHQS surpasses, in general, HQS-CG and HQS-FFT for deblurring.

The convolutional structure of CHQS motivates us to learn some of its parameters
to further improve its accuracy using supervised learning, as done in previous works
blending within a same model variational methods and learning.

3.3 Uniform deblurring

We compare in this section CHQS and its learnable version LCHQS with the non-blind
deblurring state of the art, including optimization-based and CNN-based algorithms.



End-to-end Interpretable Learning of Non-blind Image Deblurring 11

1 2 3 4 5 6 7 8 9 10
HQS iterations

31.5
32.0
32.5
33.0
33.5
34.0
34.5
35.0

PS
NR FDN (σ= [1.0, 3.0])

FDN (σ=1.5)
Ours (1 CPCR iteration)
Ours (2 CPCR iterations)
Ours (3 CPCR iterations)

1 2 3 4 5 6 7 8 9 10
HQS iterations

29.5
30.0
30.5
31.0
31.5
32.0
32.5

PS
NR FDN (σ= [1.0, 3.0])

FDN (σ=2.55)
Ours (1 CPCR iteration)
Ours (2 CPCR iterations)
Ours (3 CPCR iterations)

Fig. 5: Performance of FDN [22] and LCHQS on the Levin [23] (left) and Sun [37]
(right) datasets.

Comparison on standard benchmarks. LCHQS is first trained by using the loss
of Eq. (12) to supervise the output of each stage of the proposed model and second
trained by only supervising the output of the final layer, in the manner of [22]. The
model trained in the first regime is named LCHQSG and the one further trained with the
second regime is named LCHQSF. The other methods we compare our learnable model
to are HQS algorithms solving a TV-`1 problem: HQS-FFT (with the padding strategy
of [22]), HQS-CG and CHQS, an HQS algorithm with a prior over patches (EPLL) [46]
and the state-of-the-art CNN-based deblurring methods FCNN [44] and FDN [22]. We
use the best model provided by the authors of [22], denoted as FDN10

T in their paper.
Table 2 compares our method with these algorithms on two classical benchmarks. We
use 5 HQS iterations and 2 CPCR iterations for CHQS and LCHQS. Except for EPLL
that takes about 40 seconds to restore an image of the Levin dataset [23], all methods
restore a 255 × 255 black and white image in about 0.2 second. The dataset of Sun et
al. contains high-resolution images of size around 1000 × 700 pixels. EPLL removes
the blur in 20 minutes on a CPU while the other methods, including ours, do it in about
1 second on a GPU. In this case, our learnable method gives comparable results to
FDN [22], outputs globally much sharper results than EPLL [46] and is much faster. As
expected, non-trainable CHQS is well behind its learned competitors (Tab. 2).

Number of iterations for LCHQSG and CPCR. We investigate the influence
of the number of HQS and CPCR iterations on the performance of LCHQSG on the
benchmarks of Levin et al. [23] and Sun et al. [37]. FDN implements 10 HQS itera-
tions parameterized with CNNs but operates in the Fourier domain. Here, we compare
LCHQSG to the FDN model trained in a stage-wise manner (denoted as FDN10

G in [22]).
Figure 5 plots the mean PSNR values for the datasets of Levin et al. and Sun et al. [37]
after each stage. FDN comes in two versions: one trained on a single noise level (green
line) and one trained on noise levels within a given interval (blue line). We use up to
5 iterations of our learnable CHQS scheme, but it essentially converges after only 3
steps. When the number of CPCR iterations is set to 1, FDN and our model achieve
similar results for the same number of HQS iterations. For 2/3 CPCR iterations, we do
better than FDN for the same number of HQS iterations by a margin of +0.4/0.5dB on
both benchmarks. For 3 HQS iterations and more, LCHQS saturates but systematically
achieves better results than 10 FDN iterations: +0.15dB for [23] and +0.26dB for [37].



12 T. Eboli et al.

Fig. 6: Example of image deblurring with an additive noise of 3% (better seen on a
computer screen). In this example, we obtain better PSNR scores than competitors and
better visual results, for example details around the door or the leaves.

Robustness to noise. Table 3 compares our methods for various noise levels on
the 160 RGB images introduced previously, dubbed from “PASCAL benchmark”. FDN
corresponds to the model called FDN10

T in [22]. For this experiment, (L)CHQS uses 5
HQS iterations and 2 inner CPCR iterations. We add 1%, 3% and 5% Gaussian noise to
these images to obtain three different test sets with gradually stronger noise levels. We
train each model to deal with a specific noise level (non-blind setting) but also train a
single model to handle multiple noise levels (blind setting) on images with 0.5 to 5% of
white noise, as done in [22]. For each level in the non-blind setting, we are marginally
above or below FDN results. In terms of average PSNR values, the margins are +0.12dB
for 1%, +0.06dB for 3% and -0.05dB for 5% when comparing our models with FDN,
but we are above the other competitors by margins between 0.3dB and 2dB. Compared
to its noise-dependent version, the network trained in the blind setting yields a loss of
0.2dB for 1% noise, but gains of 0.14 and 0.27dB for 3 and 5% noises, showing its
robustness and adaptability to various noises. Figure 6 compares results obtained on a
blurry image with 3% noise.

3.4 Non-uniform motion blur removal

Typical non-uniform motion blur models assign to each pixel of a blurry image a local
uniform kernel [5]. This is equivalent to replacing the uniform convolution in Eq. (1)
by local convolutions for each overlapping patch in an image, as done by Sun et al. [35]
when they adapt the solver of [46] to the non-uniform case. Note that FDN [22] and
FCNN [44] operate in the Fourier domain and thus cannot be easily adapted to non-
uniform deblurring, unlike (L)CHQS operating in the spatial domain. We handle non-
uniform blur as follows to avoid computing different inverse filters at each pixel. As
in [35], we model a non-uniform motion field with locally linear motions that can



End-to-end Interpretable Learning of Non-blind Image Deblurring 13

1% noise 3% noise 5% noise Time (s)

HQS-FFT 26.48 23.90 22.15 0.2
HQS-CG 26.45 23.91 22.27 13
EPLL [46] 28.83 24.00 22.10 130
FCNN [44] 29.27 25.07 23.53 0.5
FDN [22] 29.42 25.53 23.97 0.6
CHQS 27.08 23.33 22.38 0.3
LCHQSG (non-blind) 29.54 ± 0.02 25.59 ± 0.03 23.87 ± 0.06 0.7
LCHQSF (non-blind) 29.53 ± 0.02 25.56 ± 0.03 23.95 ± 0.05 0.7
LCHQSG (blind) 29.22 ± 0.02 25.55 ± 0.03 24.05 ± 0.02 0.7
LCHQSF (blind) 29.35 ± 0.01 25.71 ± 0.02 24.21 ± 0.01 0.7

Table 3: Uniform deblurring on 160 test images with 1%, 3% and 5% white noise.
Running times are for an 500 × 375 RGB image. The mention “blind” (resp. “non-
blind) indicates that a single model handles the three (resp. a specific) noise level(s).

Fig. 7: Non-uniform motion deblurring example with 1 % additive Gaussian noise (bet-
ter seen on a computer screen). The car and the helmet are sharper with our method
than in the images produced by our competitors.

well approximate complex global motions such as camera rotations. We discretize
the set of the linear motions by considering only those with translations (in pixels)
in {1, 3 . . . , 35} and orientations in {0◦, 6◦, . . . , 174◦}. In this case, we know in ad-
vance all the 511 35 × 35 local blur kernels and compute their approximate inverses
ahead of time. During inference, we simply determine which one best matches the local
blur kernel and use its approximate inverse in CPCR. This is a parallelizable operation
on a GPU. Table 4 compares our approach (in non-blind setting) to existing methods
for locally-linear blur removal on a test set of 100 images from PASCAL dataset non-
uniformly blurred with the code of [14] and with white noise. For instance for 1%
noise, LCHQSG scores +0.99dB higher than CG-based method, and LCHQSF pushes
the margin up to +1.13dB while being 200 times faster. Figure 7 shows one non-uniform
example from the test set.

3.5 Deblurring with approximated blur kernels

In real-world one does not have the ground-truth blur kernel but instead an approximate
version of it, obtained with methods such as [26, 39]. We show that (L)CHQS works
well for approximate and/or large filters, different from the ones used in the training set



14 T. Eboli et al.

HQS-FFT HQS-CG EPLL [46] CHQS LCHQSG LCHQSF

1% noise 23.49 25.84 25.49 25.11 26.83 ± 0.08 26.98 ± 0.08
3% noise 23.17 24.18 23.78 23.74 24.91 ± 0.05 25.06 ± 0.06
5% noise 22.44 23.10 23.34 22.65 23.97 ± 0.05 24.14 ± 0.05
Time (s) 13 212 420 0.8 0.9 0.9

Table 4: Non-uniform deblurring on 100 test images with 1%, 3% and 5% white noise.
Running times are for an 500× 375 RGB image.

Fig. 8: Real-world blurry images with estimated blurred kernel obtained with the code
of [26]. We can restore fine details with approximate and large kernels (here 101× 101
pixels).

and without any training or fine-tuning. We show in Figure 8 a deblurred image with
an approximate kernel obtained with the code of [26] and of support of size 101× 101
pixels. We obtain with LCHQSF (blind) of Table 3 a sharper result than FCNN and do
not introduce artifacts as FDN, showing the robustness of CPCR and its embedding in
HQS to approximate blur kernels. More results are shown in the supplemental material.

4 Conclusion

We have presented a new learnable solver for non-blind deblurring. It is based on the
HQS algorithm for solving penalized least-squares problems but uses preconditioned
iterative fixed-point iterations for the x-update. Without learning, this approach is su-
perior both in terms of speed and accuracy to classical solvers based on the Fourier
transform and conjugate gradient descent. When the preconditioner and the proximal
operator are learned, we obtain results that are competitive with or better than the state
of the art. Our method is easily extended to non-uniform deblurring, and it outperforms
the state of the art by a significant margin in this case. We have also demonstrated its
robustness to important amounts of white noise. Explicitly accounting for more realistic
noise models [10] and other degradations such as downsampling is left for future work.

Acknowledgments. This works was supported in part by the INRIA/NYU collabora-
tion and the Louis Vuitton/ENS chair on artificial intelligence. In addition, this work
was funded in part by the French government under management of Agence Nationale
de la Recherche as part of the “Investissements d’avenir” program, reference ANR19-
P3IA-0001 (PRAIRIE 3IA Institute). Jian Sun was supported by NSFC under grant
numbers 11971373 and U1811461. We thank the reviewers for their helpful comments.



End-to-end Interpretable Learning of Non-blind Image Deblurring 15

References

1. Aljadaany, R., Pal, D.K., Savvides, M.: Douglas-rachford networks: Learning both the image
prior and data fidelity terms for blind image deconvolution. In: Proceedings of the Confer-
ence on Computer Vision and Pattern Recognition. pp. 10235–10244 (2019)

2. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2014)
3. Brooks, T., Barron, J.T.: Learning to synthesize motion blur. In: Proceedings of the Confer-

ence on Computer Vision and Pattern Recognition. pp. 6840–6848 (2019)
4. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Proceedings of the Euro-

pean Conference on Computer Vision. pp. 221–235 (2016)
5. Chakrabarti, A., Zickler, T.E., Freeman, W.T.: Analyzing spatially-varying blur. In: Proceed-

ings of the Conference on Computer Vision and Pattern Recognition. pp. 2512–2519 (2010)
6. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: A flexible framework for fast and

effective image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence
39(6), 1256–1272 (2017)

7. Cho, S., Matsushita, Y., Lee, S.: Removing non-uniform motion blur from images. In: Pro-
ceedings of the International Conference on Computer Vision. pp. 1–8 (2007)

8. Couzinie-Devy, F., Sun, J., Alahari, K., Ponce, J.: Learning to estimate and remove non-
uniform image blur. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition. pp. 1075–1082 (2013)

9. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal
and Image Processing. Springer Publishing Company, Incorporated (2010)

10. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.O.: Practical poissonian-gaussian noise
modeling and fitting for single-image raw-data. IEEE Transactions in Image Processing
17(10), 1737–1754 (2008)

11. Folland, G.B.: Fourier Analysis and its Applications. Wadsworth (1992)
12. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE

Transactions in Image Processing 4(7), 932–946 (1995)
13. Gong, D., Zhang, Z., Shi, Q., van den Hengel, A., Shen, C., Zhang, Y.: Learning deep gra-

dient descent optimization for image deconvolution. IEEE Transactions on Neural Networks
and Learning Systems pp. 1–15 (2020)

14. Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I.D., Shen, C., van den Hengel, A., Shi, Q.: From
motion blur to motion flow: A deep learning solution for removing heterogeneous motion
blur. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. pp.
3806–3815 (2017)

15. Goodman, J.: Introduction to Fourier optics. McGraw-Hill (1996)
16. Hirsch, M., Sra, S., Schölkopf, B., Harmeling, S.: Efficient filter flow for space-variant mul-

tiframe blind deconvolution. In: Proceedings of the Conference on Computer Vision and
Pattern Recognition. pp. 607–614 (2010)

17. Hu, Z., Yuan, L., Lin, S., Yang, M.: Image deblurring using smartphone inertial sensors. In:
Proceedings of the Conference on Computer Vision and Pattern Recognition. pp. 1855–1864
(2016)

18. Kelley, T.: Iterative Methods for Linear and Nonlinear Equations. SIAM (1995)
19. Kim, T.H., Lee, K.M.: Segmentation-free dynamic scene deblurring. In: Proceedings of the

Conference on Computer Vision and Pattern Recognition. pp. 2766–2773 (2014)
20. Kobler, E., Klatzer, T., Hammernik, K., Pock, T.: Variational networks: Connecting varia-

tional methods and deep learning. In: Proceedings of the German Conference on Pattern
Recognition. pp. 281–293 (2017)

21. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Ad-
vances in Neural Information Processing Systems. pp. 1033–1041 (2009)



16 T. Eboli et al.

22. Kruse, J., Rother, C., Schmidt, U.: Learning to push the limits of efficient FFT-based image
deconvolution. In: Proceedings of the International Conference on Computer Vision. pp.
4596–4604 (2017)

23. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind de-
convolution algorithms. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition. pp. 1964–1971 (2009)

24. Meinhardt, T., Möller, M., Hazirbas, C., Cremers, D.: Learning proximal operators: Using
denoising networks for regularizing inverse imaging problems. In: Proceedings of the Inter-
national Conference on Computer Vision. pp. 1799–1808 (2017)

25. Michaeli, T., Irani, M.: Blind deblurring using internal patch recurrence. In: Proceedings of
the European Conference on Computer Vision. pp. 783–798 (2014)

26. Pan, J., Sun, D., Pfister, H., Yang, M.: Deblurring images via dark channel prior. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 40(10), 2315–2328 (2018)

27. Parikh, N., Boyd, S.P.: Proximal algorithms. Foundations and Trends in Optimization 1(3)
(2014)

28. Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal of the Op-
tical Society of America 62(1), 55–59 (1972)

29. Roth, S., Black, M.J.: Fields of experts. International Journal on Computer Vision 82(2)
(2009)

30. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms.
Physica D 60, 259–268 (1992)

31. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceedings of the
Conference on Computer Vision and Pattern Recognition. pp. 2774–2784 (2014)

32. Schmidt, U., Rother, C., Nowozin, S., Jancsary, J., Roth, S.: Discriminative non-blind de-
blurring. In: Proceedings of the Conference on Computer Vision and Pattern Recognition.
pp. 604–611 (2013)

33. Schuler, C.J., Hirsch, M., Harmeling, S., Schölkopf, B.: Learning to deblur. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 38(7), 1439–1451 (2016)

34. Starck, J., Murtagh, F.: Astronomical Image and Data Analysis, Second Edition. Astronomy
and Astrophysics Library, Springer (2006)

35. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform
motion blur removal. In: Proceedings of the Conference on Computer Vision and Pattern
Recognition. pp. 769–777 (2015)

36. Sun, J., Xu, Z., Shum, H.: Image super-resolution using gradient profile prior. In: Proceedings
of the Conference on Computer Vision and Pattern Recognition. pp. 1–8 (2008)

37. Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors.
In: Proceedings of International Conference on Computational Photography. pp. 1–8 (2013)

38. Tai, Y., Tan, P., Brown, M.S.: Richardson-lucy deblurring for scenes under a projective mo-
tion path. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1603–1618
(2011)

39. Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images.
International Journal on Computer Vision 98(2), 168–186 (2012)

40. Wiener, N.: The Extrapolation, Interpolation, and Smoothing of Stationary Time Series. John
Wiley & Sons, Inc. (1949)

41. Xu, L., Ren, J.S.J., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolu-
tion. In: Advances in Neural Information Processing Systems. pp. 1790–1798 (2014)

42. Xu, L., Tao, X., Jia, J.: Inverse kernels for fast spatial deconvolution. In: Proceedings of the
European Conference on Computer Vision. pp. 33–48 (2014)

43. Xu, L., Zheng, S., Jia, J.: Unnatural L0 sparse representation for natural image deblurring. In:
Proceedings of the Conference on Computer Vision and Pattern Recognition. pp. 1107–1114
(2013)



End-to-end Interpretable Learning of Non-blind Image Deblurring 17

44. Zhang, J., Pan, J., Lai, W., Lau, R.W.H., Yang, M.: Learning fully convolutional networks
for iterative non-blind deconvolution. In: Proceedings of the Conference on Computer Vision
and Pattern Recognition. pp. 6969–6977 (2017)

45. Zhang, K., Zuo, W., Gu, S., Zhang, L.: Learning deep CNN denoiser prior for image restora-
tion. In: Proceedings of the Conference on Computer Vision and Pattern Recognition. pp.
2808–2817 (2017)

46. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restora-
tion. In: Proceedings of the International Conference on Computer Vision. pp. 479–486
(2011)


	End-to-end Interpretable Learning of  Non-blind Image Deblurring

