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Abstract. In medical x ray computed tomography (CT) imaging devices,
the x ray tube usually emits a polychromatic spectrum of photons result-
ing in beam-hardening artifacts in the reconstructed images. The bone-
correction method has been widely adopted to compensate for beam-
hardening artifacts. However, its correction performance is highly depen-
dent on the empirical determination of a scaling factor, which is used to
adjust the ratio of the reconstructed value in the bone region to the actual
mass density of bone-tissue. A significant problem with bone-correction
is that a large number of physical experiments are routinely required to
accurately calibrate the scaling factor. In this article, an improved bone-
correction method is proposed, based on the projection data consistency
condition, to automatically determine the scaling factor. Extensive numer-
ical simulations have verified the existence of an optimal scaling factor,
the sensitivity of bone-correction to the scaling factor, and the efficiency
of the proposed method for the beam-hardening correction. C© 2011 Society
of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3599869]
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1 Introduction
Currently, computed tomography (CT) reconstruction is an
important topic in medical imaging research. After several
decades of effort, a large amount of reconstruction algo-
rithms have been developed for sophisticated x ray source
trajectories; however, most of these algorithms were con-
structed based on the assumption of an ideal monochromatic
projection.1–4 Yet, most medical x ray CT (XCT) devices
emit a polychromatic spectrum of photons from their x ray
sources, which result in a beam-hardening effect5–11 and sub-
sequent beam-hardening artifacts (e.g., cupping, streak, spill-
over, and pseudo cortex) in the reconstructed images.5–8 It
is well known that the beam-hardening effect is a domi-
nant error source in medical XCT imaging and difficult
to completely eliminate in practical applications. Clinical
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researchers have revealed that beam-hardening effect re-
mains a critical degradation factor in current medical XCT
imaging.12, 13

Studies on beam-hardening correction have been launched
since the invention of the medical XCT system by
Hounsfield in the 1970’s. Existing correction methods can
be broadly categorized into three classes. At first, there is
the so-called physical method class, which includes: wa-
ter bag correction,14 x ray source filter,5, 15 etc. The major
characteristic of this class is that extra physical compo-
nents are always required in the XCT systems. Second,
there is the so-called pre-processing method class, which in-
cludes: water-correction,5, 6 sole-polynomial linearization,6

bi-modals linearization for the special assembly of x ray
source and detector,16 empirical cupping correction (ECC),17

etc. Most of the correction methods in this class are
performed before the final CT image is reconstructed.
Third, there is the so-called post-processing method class,
which includes: bone-correction for the imaged objects of
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Fig. 1 Schematic of equispatial fan-beam geometry in CT imaging.

two-material components7, 8 or multimaterial components,18

iteration between the projection space and the image space
with a prior knowledge of polychromatic x ray spectrum,19–21

bi-polynomial linearization,22 Helgasson-Ludwig (H-L) con-
sistency condition based corrections,23–25 empirical beam-
hardening correction (EBHC),26 etc. The major characteristic
of this class is that they are performed based on an initial re-
construction or image segmentation. Here, dual-energy XCT
imaging is considered as a special case of the beam-hardening
correction method.27–29

Among all the aforementioned correction methods, both
the water-5, 6 and bone-correction7, 8 are the most classical
techniques, and have been widely adopted in medical XCT
systems. While it is convenient to implement these tech-
niques, several drawbacks still remain. Water-correction can
only correct for the imaged objects of a single-material com-
ponent. Although bone-correction is useful for the imaged
objects of two-material components, it cannot efficiently
adapt to the different imaging conditions. The underlying
reason for this complication is that the scaling factor, which
is used to adjust the ratio of the reconstructed value in the
bone region to the actual mass density of bone-tissue, rou-
tinely requires calibration.7, 8

Meanwhile, the projection data consistency conditions
have been utilized to solve several XCT problems.30–39 Par-
ticularly, it was demonstrated that the beam-hardening cor-
rection based on the physical model of x ray imaging, and the
H-L consistency condition, is feasible.25 Inspired by previous
investigations, in this article we will construct an objective
function by combining the bone-correction formula with the
H-L consistency condition, and optimize the objective func-
tion to automatically and stably determine the scaling factor
and corresponding coefficient vector for beam hardening cor-
rection in polychromatic XCT imaging.

2 Theory
Let f (x, y) ∈ C∞ be an object function with a finite support.
Denote the projection of f (x, y) as g (t, β) in the equispatial
fan-beam geometry as shown in Fig. 1. The definition domain
of g (t, β) is {(t, β) | t ∈ R, β ∈ [0, 2π )}. The distances from
the x ray source Os to the rotational center O and to the
detector center Od are referred to as r and D, respectively.

Let S (ε) and Q (ε) be the emitting energy spectrum
of x ray source and the absorption energy spectrum of

energy-integrating type x ray detector, respectively; and
ε ∈ [εmin, εmax] is the photon energy. The imaging process
of an ideal monochromatic x ray source with a specific pho-
ton energy εmono ∈ [εmin, εmax] can be modeled as

g
�= ln

S (εmono) Q (εmono)

S (εmono) Q (εmono) exp[− ∫
L μ (l, εmono) ρ (l) dl]

=
∫

L
μ (l, εmono) ρ (l) dl, (1)

where μ and ρ represent the mass attenuation coeffi-
cient and mass density of imaged object, respectively, and
L denotes the integral line segment corresponding to an
x ray path. Obviously, the H-L consistency condition in
the appendix is satisfied by the object function f (x, y)
�= μ (x, y, εmono) ρ (x, y) and its monochromatic projection
g. Therefore, a general CT reconstruction algorithm, such as
filtered back-projection (FBP),40, 41 applies to the monochro-
matic projection g.

In diagnostic XCT systems, the x ray source typically
emits a polychromatic spectrum of photons. The imaging
process of a polychromatic x ray source can be modeled as

ĝ
�= ln

{∫ εmax

εmin

S (ε) Q (ε) dε

/ ∫ εmax

εmin

S (ε) Q (ε)

× exp

[
−

∫
L
μ (l, ε) ρ (l) dl

]
dε

}
. (2)

In contrast to the monochromatic case, the H-L consistency

condition is not satisfied by the object function f (x, y)
�=

μ (x, y, εmono) ρ (x, y) and its polychromatic projection ĝ.
Therefore, beam-hardening artifacts5–13 will appear in the
images reconstructed by the FBP algorithm from the poly-
chromatic projection ĝ.

Cupping artifacts will appear in the reconstructed images
if the imaged object is “water-like” in its x ray attenua-
tion characteristics. Water-correction with a specific correc-
tion polynomial can be used to compensate for the cupping
artifacts5, 6 in two separate phases.5, 6 In the first phase, the
water-equivalent material slabs, with diverse thicknesses, are
used as the imaged objects to acquire the polychromatic pro-
jection ĝ. Meanwhile, the monochromatic projection g is
calculated by using the model expressed in Eq. (1). Then,
the correction polynomial is inversely solved to fit the poly-
chromatic projection ĝ. The correction polynomial is used in
the following form:

g ≈ Pw (ĝ)
�=

N∑
n=0

an (ĝ)n. (3)

In the second phase, the polychromatic projection ĝ acquired
in the imaging site is converted as Pw (ĝ) to approximate a
monochromatic projection g, based on {an} determined in the
first phase. After water-correction, the FBP algorithm is used
to process Pw (ĝ). It should be noted that the performance of
water-correction typically correlates with the extent to which
the imaged object is water-like.

When the bone- and soft-tissues simultaneously emerge
in the field of view, streak and cupping artifacts will appear
in the reconstructed images due to the significant difference
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in the x ray attenuation characteristics of bone- and soft-
tissues. In this situation, bone-correction can be adopted to
compensate for the cupping and streak artifacts.7, 8 At first,
the polychromatic projection ĝ is pre-processed by water-
correction. Second, an image fw is reconstructed from the
water-corrected projection Pw (ĝ). Third, the image fw is
segmented into a soft-tissue image

fs (x, y)
�=

{
fw (x, y) , fw (x, y) < T,

0, fw (x, y) ≥ T,
(4)

and a bone-tissue image

fb (x, y)
�=

{
0, fw (x, y) < T,

fw (x, y) , fw (x, y) ≥ T,
(5)

by using a simple threshold T . Fourth, by re-projecting the
images fs , fb and fw , we obtain

gs �
∫ ∫

(x,y)∈L
fs(x, y)dxdy, (6)

gb �
∫ ∫

(x,y)∈L
fb (x, y) dxdy, (7)

and

gw �
∫ ∫

(x,y)∈L
fw (x, y) dxdy, (8)

Finally, the polychromatic projection ĝ is processed accord-
ing to the following bone-correction formula7 to approximate
the monochromatic projection g,

g ≈ Pw (ĝ) + gw − Pw

{
ln

[∫ εmax

εmin

S (ε) Q (ε) dε

/ ∫ εmax

εmin

S (ε) Q (ε) e−μs (ε)gs−μb(ε)gb/λ0 dε

]}
, (9)

where the parameter λ0 represents the scaling factor used
in bone-correction. μs and μb denote the mass attenuation
coefficients of ideal soft- and bone-tissues, respectively.

3 Methods
In order to avoid a physical calibration, a strategy should
be designed to automatically determine the scaling factor.
Obviously, it is hard to achieve this goal by solely utilizing
the bone-correction formula [Eq. (9)] because both g and λ0
are unknown. In this article, we combine the H-L consistency
condition and the bone-correction formula [Eq. (9)] into the
following objective function:

�0 (g, λ0)
�=

∑
d

wd

∑
β

[∫ +∞

−∞
(g − gw )

(
t D√

D2 + t2

)d

× D3

(D2 + t2)1.5
dt − ψd

β (λ0)

]2

, (10)

with

ψd
β (λ0)

�=
∫ +∞

−∞

(
Pw (ĝ) − Pw

{
ln

[∫ εmax

εmin

S (ε) Q (ε) dε

/ ∫ εmax

εmin

S (ε) Q (ε) e−μs (ε)gs−μb(ε)gb/λ0 dε

)]}

×
(

t D√
D2 + t2

)d D3(
D2 + t2

)1.5
dt, (11)

where wd ≥ 0, d ∈ N is the weight coefficient of the d th

order residual error term, and D is the distance from the
x ray source Os to the detector center Od . Note that for
simplicity we have omitted the dependency of projection on
the x ray path [t, β − tan−1(t/D)], and have integrated the
H-L consistency condition into Eq. (10).

3.1 Objective Function �0 (λ0)
Although an infinite number of schemes are available for
the choice of weight coefficient set {wd ≥ 0, d ∈ N}, the 0th

order residual error term is the most essential for the mini-
mization of object function �0. Therefore, we will only dis-
cuss the case of wd �= 0 iff d = 0. In this case, the objective
function �0 in Eq. (10) can be simplified as


0 (g, λ0)
�=

∑
β

[∫ +∞

−∞
(g − gw )

D3

(D2 + t2)1.5
dt

−ψ0
β (λ0)

]2

. (12)

Because the monochromatic projection g naturally satisfies
the H-L consistency condition, we can define

n0,0
�=

∫ +∞

−∞
g

D3

(D2 + t2)1.5
dt, (13)

which is independent of the view-angle β, according to Eq.
(A5) in the appendix. In this way, the unknown g is con-
verted as n0,0, and the number of unknowns is decreased
dramatically. Meanwhile, the H-L consistency condition is
also satisfied by gw , which is the projection acquired by re-
projecting the image fw . So, we can define

nw
0,0

�=
∫ +∞

−∞
gw

D3

(D2 + t2)1.5
dt, (14)

which is also independent of the view-angle β. Note that both
gw and nw

0,0 are known, and the substitution in Eq. (14) is for
the convenience of expression (see below). In this way, the
objective function 
0 can be further simplified as

�0(n0,0, λ0)
�=

∑
β

(n0,0 − nw
0,0 − ψ0

β (λ0))
2
. (15)

Unfortunately, if the imaged object is nearly rotationally sym-
metric around the rotational axis of the XCT system, the
minimization of the objective function �0 will be unstable.
Therefore, the number of unknowns in the objective function
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�0 should be further reduced. To meet this goal, we designed
a novel objective function

�0 (λ0)
�=

∑
β1

∑
β2

(
ψ0

β1
(λ0) − ψ0

β2
(λ0)

)2
, β1, β2 ∈ [0, 2π ),

(16)

by mutually subtracting the residual terms of the different
view-angle β in Eq. (15). In this article, �0 (λ0) is the final
form of the objective function used to automatically deter-
mine the scaling factor λ0.

3.2 Objective Function �1 (c)
If it is not easy to determine the spectrum data S (ε) or Q (ε),
the term ψd

β (λ0) in the objective function �0 can be approx-
imated by an algebraic polynomial of gs and gb as follows,

ψd
β (c)

�=
∫ +∞

−∞

{
Pw (ĝ) − [

gs gb g2
s g2

b gs gb g0.5
b

] · c′}

×
(

t D√
D2 + t2

)d D3

(D2 + t2)1.5
dt, (17)

where c
�= [ c1 c2 c3 c4 c5 c6 ] is the coefficient vector corre-

sponding to the scaling factor λ0. The term g0.5
b is empirically

added into the algebraic polynomial to increase the approx-
imation accuracy. Note that the scaling factor λ0 has been
absorbed by the coefficient vector c, and ψd

β (λ0) is con-
verted into ψd

β (c). Therefore, Eq. (16) will be converted as

�1 (c)
�=

∑
β1

∑
β2

(
ψ0

β1
(c) − ψ0

β2
(c)

)2
, β1, β2 ∈ [0, 2π ).

(18)

In this article, �1 (c) is the final form of the objective function
used to automatically determine the coefficient vector c.

3.3 Numerical Implementations
To numerically implement the minimization of the afore-
mentioned objective functions, we re-express the objective
function �0 (λ0) as

�0 (λ0)
�=

max j∑
j=1

(φ j (λ0))2, (19)

where φ j (λ0)
�= ψ0

β1
(λ0) − ψ0

β2
(λ0), the subscript j is the

index of the combination of view angles β1 and β2, and
max j can be determined by Eq. (16). Because φ j (λ0) is a
nonlinear function of the variable λ0, a nonlinear least-square
method is required to minimize �0 (λ0) as follows:

λk+1
0

�= λk
0 − (A′

k Ak)−1 A′
kφ

k, (20)

where

Ak
�= [∇φ1

(
λk

0

) ∇φ2
(
λk

0

) · · · ∇φmax j
(
λk

0

) ]′
, (21)

φk �= [
φ1

(
λk

0

)
φ2

(
λk

0

) · · · φmax j
(
λk

0

) ]′
, (22)

λk
0 is the k th step of approximation for the minimum value

point of �0 (λ0). The iteration process will be terminated as

soon as certain stopping criteria are satisfied. In this article,
a maximal iteration number max k is used as the stopping
criterion. Finally, the determined λmax k

0 is substituted into
the following bone-correction formula for beam-hardening
correction,

g ≈ Pw (ĝ) + gw − Pw

{
ln

[∫ εmax

εmin

S (ε) Q (ε) dε

/ ∫ εmax

εmin

S (ε) Q (ε) e−μs (ε)gs−μb(ε)gb
/
λmax k

0 dε

]}
. (23)

Similarly, the objective function �1 (c) is re-expressed as

�1 (c)
�=

max j∑
j=1

(φ j (c))2. (24)

where φ j (c)
�= ψ0

β1
(c) − ψ0

β2
(c), and max j can be deter-

mined by Eq. (18). Because φ j (c) is a linear function of the
variable c, a linear least-square method can be adopted to
minimize �1 (c) as follows:

c1 �= c0 − (A′
0 A0)−1 A′

0φ
0, (25)

where

A0
�= [ ∇φ1(c0) ∇φ2(c0) · · · ∇φmax j (c0) ]′, (26)

φ0 �= [ φ1(c0) φ2(c0) · · · φmax j (c0) ]′, (27)

c0 �= 0. (28)

Finally, the determined c1 is adopted for beam-hardening
correction as follows:

g ≈ Pw (ĝ) + gw − [
gs gb g2

s g2
b gs gb g0.5

b

] · (c1)′. (29)

4 Results

4.1 Mechanical Parameters
Previously, we have developed an in-house software to sim-
ulate the generation of projection data acquired in medical
XCT systems.11 In this article, the software is used to demon-
strate the feasibility of our proposed method. We simulate an
x ray circular scanning trajectory with a radius r of 50 cm,
located in the O − xy plane. A linear detector is positioned
opposite to the x ray source Os about the origin O , and the
distance D from the x ray source to the detector center is 100
cm. The linear detector consists of 850×1 cells with an area
of 1×1 mm2 for each cell; 1080 projections are uniformly
acquired for a full scan.

4.2 X ray Spectrum
To simulate the generation of projection data,11 the emit-
ting spectrum of the x ray source S (ε) [see Fig. 2(a)]42 and
the absorption spectrum of CsI x ray detector Q (ε) (see
Fig. 2(b))43 are given. The spectra used for the projection
simulation and beam-hardening correction are completely
the same. In this article, we only assess the performance of
beam-hardening correction itself. We also assume that no
scattered photons reach the surface of the x ray detector, be-
cause the scattering component is negligible in the fan-beam
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Fig. 2 (a) Emitting spectrum of x ray source and (b) absorption spectrum of CsI energy-integrating type x ray detector.

geometry. An energy sampling interval of 1 keV is used for
the numerical computation of the polychromatic projection
data. The tube potential is set as 120 kVp for the polychro-
matic case. Meanwhile, a monochromatic case of 66 keV
is simulated to serve as a benchmark; the photon energy
66 keV is viewed as the effective energy of the polychro-
matic x ray source.

4.3 Image Reconstruction
In numerical simulation, the mathematical FORBILD head
phantom44 is adopted as an assumed imaged object, whose
cross-section at z = 0 is shown in Fig. 3. The FBP algorithm
is employed for the image reconstruction.40, 41 The recon-
structed image is in a matrix of 512×512 pixels, with an area
of 0.5×0.5 mm2 for each pixel. To follow the convention
in clinical XCT research, the reconstructed image is further
converted as:

I (x, y)
�= f (x, y) − fpw

fpw
× 1000, (30)

where f (x, y) is the reconstructed image (i.e., the linear
attenuation coefficient of imaged object) in 1/mm, fpw is the
average linear attenuation coefficient of pure water in 1/mm,
and I (x, y) is in Hounsfield units (HU).

Fig. 3 Cross-section of the FORBILD head phantom at z = 0 and
the labels of main sub-regions.

4.4 Existence Validation of Optimal Scaling Factor
To validate the existence of an optimal scaling factor, the
effect of varying the scaling factor on the performance of
bone-correction is quantitatively analyzed. For this purpose,
an inconsistency error index is first defined as follows:

γ
�=

∑
(x,y)∈RN

| f (x, y) − m|

N fpw
× 1000, (31)

m
�=

∑
(x,y)∈RN

f (x, y)/N , (32)

where γ is the inconsistency error in HU, and RN represents
a region of interest covering N pixels. The curves of the in-
consistency error γ versus scaling factor λ0 are plotted to
demonstrate the existence of an optimal scaling factor for
bone-correction. We select two regions, whose CT numbers
are 800 and 50 HU in the original definition of the FORBILD
head phantom, and name them as the bone- and soft-tissue
regions, respectively. Various imaging conditions are simu-
lated with two noise intensities (i.e., zero noise, and noise
simulated with 3×106 photons per x ray path following a
Poisson distribution) and four cross-sections (i.e., z = 0, z =
5 mm, x = 0, and x = − 67 mm). These four cross-sections
differ remarkably from each other as shown in Fig. 4.

In Figs. 5 and 6, the inconsistency error curves of the bone-
corrected results are plotted with various imaging conditions.
In Fig. 7, the objective function �0 (λ0) is also plotted with
various imaging conditions. From these figures, it can be seen
that an optimal scaling factor does exist, which shows a solid
basis for the feasibility of our proposed method. Three op-
timal scaling factors were determined with various imaging
conditions as listed in Table 1 and shown in Fig. 8. Therein,
λb and λs denote the optimal scaling factors determined from
Figs. 5 and 6 in the bone- and soft-tissue regions, respectively,
while λ

opt
0 denotes the optimal scaling factor determined from

the objective function �0 (λ0) in Fig. 7. From Table 1 and
Fig. 8, it can be noticed that λs is always larger than λb for
the same imaging conditions, and the deviation of λs is larger
than that of λb. In contrast to both λb and λs , the deviation
of λ

opt
0 is the lowest, and λb is very robust to noise effects.

Here, it should be emphasized that these three optimal scal-
ing factors λb, λs , and λ

opt
0 are determined by exhaustively

seeking with a finer interval. Therefore, the seeking scheme

Optical Engineering July 2011/Vol. 50(7)076501-5
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Fig. 4 Images reconstructed from the monochromatic projections of FORBILD head phantom at the positions of (a) z = 0, (b) z = 5 mm, (c) x
= 0, and (d) x = -67 mm.

Fig. 5 Inconsistency error versus scaling factor λ0 in the regions of (a) bone-tissue and (b) soft-tissue with noise-free polychromatic projection
after bone-correction.

Fig. 6 Same as in Fig. 5 but with noisy polychromatic projection.

Fig. 7 Objective function �0 (λ0) versus scaling factor λ0. (b) is magnified from (a).

Optical Engineering July 2011/Vol. 50(7)076501-6
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Table 1 Optimal scaling factors λb in the bone-tissue region and λs

in the soft-tissue region determined from Figs. 5 and 6, and λ
opt
0

determined from Fig. 7.

Position/mm z = 0 z = 5 x = 0 x = − 67

λb Noise-free 1.7006 1.6721 1.6428 1.6318

Noisy 1.7572 1.6857 1.7002 1.6533

λs Noise-free 1.9361 1.7705 1.7689 1.6697

Noisy 2.4127 2.3064 2.7232 1.9236

λ
opt
0 Noise-free 1.6464 1.6506 1.6386 1.6571

Noisy 1.6497 1.6531 1.6414 1.6514

could not be adopted in real-world applications, whereas our
proposed method is more practicable as illustrated later.

4.5 Performance Analysis of Correction Algorithms
For convenience, hereafter we have fixed the cross-section
at z = 0. The convergence speed and solution stability of
our proposed method are studied with various noise intensi-
ties. In polychromatic XCT imaging, varying the number of
photons substantially changes the signal to noise ratio in the
reconstructed images and the dose delivered to the imaged
object. For the minimization of objective function �0 (λ0),
we set the max k as 9, and λ0

0 (the initial value of scaling
factor λ0) as 1. The bone-corrections with λmax k

0 and c1 are
compared to those with λb and λs .

From Fig. 9, it can be observed that the minimization pro-
cess of the objective function �0 (λ0) converges faster for all
imaging conditions. Noise effects have almost no influence
on the convergence stability; especially, the λmax k

0 determined
in Fig. 9(b) is almost the same as the λ

opt
0 at cross-section z

= 0 (see Fig. 8 and Table 1). Figure 10 shows the effect of
varying the number of photons on the scaling factors and the
objective functions. These results indicate that our proposed
method is very robust to noise effects that is a crucial feature,
given that noise effects always occur in real-world imaging
conditions. From Fig. 10(a), we learn that λb approaches
λmax k

0 and is also very robust to noise effects; however, λs is
always much larger than λb and λmax k

0 , and readily degraded
by noise effects. From Fig. 10(b), we notice that �0(λmax k

0 )

approaches �1(c1), while �0 (λb) is near �0 (λs). The results
in Figs. 10(a) and 10(b) seem contradictory; however, it can
be explained by the results in Figs. 5–8 and Table 1. That is,
the objective function �0 (λ0) is much more sensitive to the
scaling factor λ0 than the inconsistency error index γ . At the
same time, the minimum value point of the objective func-
tion �0 (λ0) is much more stable to the influences of both
noise effects and cross-sectional position as compared to the
inconsistency error index γ . Furthermore, it is impossible to
exactly evaluate the optimal scaling factors, λb and λs , in
real-world applications, as in Figs. 5 and 6 and Table 1. All
these facts have demonstrated the superior characteristics of
our proposed method.

As compared �1(c1) to �0(λmax k
0 ) in Fig. 10(b), it seems

to imply that the bone-correction with c1 is slightly superior
to that with λmax k

0 . This point will be further checked by eval-
uating the respective inconsistency errors γ in the Sec. 4.6.

4.6 Performance Analysis of the Corrected Results
In this subsection, the correction performance for the cupping
and streak artifacts are studied with various noise intensities.
The polychromatic images after various beam-hardening cor-
rections are compared with the monochromatic image. Si-
multaneously, the influence of the scaling factor is illustrated
by using the corrected images, and the visibility of subdu-
ral hematoma phenomenon is also discussed by using the
profiles of the reconstructed images.

Figures 11 and 12 show the polychromatic images with
various beam-hardening corrections, along with the differ-
ence images between these polychromatic images and the
monochromatic image. These figures indicate that all correc-
tion methods are efficient for cupping artifacts. To evaluate
the correction performance for streak artifacts, we focus on
the region between the sub-region 14 and the right ear in the
cross-section at z = 0 (as labeled in Fig. 3). In this region,
the performance of water-correction is very limited, as il-
lustrated by the severe dark streaks in the water-corrected
images [Figs. 11(c) and 12(d)], and difference images
[Figs. 11(d) and 12(d)]. The intensities of the dark streaks
are almost the same as those in the uncorrected polychro-
matic images [Figs. 11(a) and 12(a)] and difference images
[Figs. 11(b) and 12(b)]. The bone-correction with λ0 = 1.4
gives an over-correction, which is illustrated by the bright
streak artifacts in the images [Fig. 11(e) and 12(e)] and the
difference images [Figs. 11(f) and 12(f)]. On the contrary,
the 400 bone-correction with λ0 = 2.0 offers an insufficient

Fig. 8 Optimal scaling factors λ
opt
0 , λb, and λs from (a) noise-free and (b) noisy projections.
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Fig. 9 Performance of objective function minimization. (a) Object function �0
(
λk

0

)
and (b) scaling factor λk

0 versus iteration number k.

correction, which is shown by the slightly dark streak arti-
facts in the images [Figs. 11(g) and 12(g)] and difference
images [Figs. 11(h) and 12(h)]. As shown in the images
[Figs. 11(i)–11(l) and 12(i)-12(l)], our proposed method has
a superior correction performance, and there are almost no
residual cupping and streak artifacts remaining. Comparing
the noise-free images in Fig. 11 and the noisy images in Fig.
12, it can be noticed that our proposed method is very robust
to noise effects.

In Figs. 13 and 14 are the profiles of the monochromatic re-
construction, polychromatic reconstruction, water-corrected
reconstruction, and various bone-corrected reconstructions
(with λ0 = 1.4, λ0 = 2.0, λmax k

0 , and c1). For simplicity, these
reconstructions are denoted as Mono, Poly, Water, Bone:1.4,
Bone:2.0, Bone:λmax k

0 and Bone:c1, respectively. As for the
bone-corrections with λb and λs , we will denote them as
Bone:λb and Bone: λs . In Figs. 13(a) and 14(a), the profiles
are taken along the horizontal 215th line, which crosses the
soft-tissue region between the sub-region 14 and the right
ear. In Figs. 13(b) and 14(b), the profiles are taken along the
horizontal 385th line to evaluate the visibility of the subdu-
ral hematoma in the sub-region 13. In Figs. 13(a) and 14(a),
the performance of water-correction is very limited (profiles
are very similar to those of uncorrected polychromatic re-
constructions); the profile values of the bone-correction with
λ0 = 1.4 are slightly higher than the monochromatic re-
construction, and the profile values of the bone-correction
with λ0 = 2.0 are slightly lower than the monochromatic

reconstruction. In Figs. 13(b) and 14(b), the performance
of water-correction is still unsatisfactory; from the 395th to
the 405th pixel, the profile values of the bone-correction
with λ0 = 1.4 are slightly lower than the monochromatic
reconstruction, and the profile values of the bone-correction
with λ0 = 2.0 are significantly closer to the monochromatic
reconstructions. On the contrary, the profile values of the
bone-corrections with λmax k

0 and c1 are much closer to the
monochromatic reconstruction.

From Figs. 13 and 14, it is observed that our proposed
method is very robust to noise effects. In summary, the con-
clusions made from Figs. 13 and 14 are consistent with the
analysis from Figs. 11 and 12. All the results show that the
bone-correction method is sensitive to the choice of scaling
factor, and the proposed method is feasible and can be used to
automatically determine the scaling factor and corresponding
coefficient vector.

In order to quantitatively analyze and compare the cor-
rection performance, we calculate the inconsistency errors in
both the bone- and soft-tissue regions, for the reconstructed
images in Figs. 11 and 12. The calculated inconsistency
errors are listed in Table 2, from which we can see that
the bone-correction with λmax k

0 can get a superior consis-
tency in each region, while the bone-correction with c1 can
also achieve an acceptable consistency, at least in the soft-
tissue region (considering the lack of spectra data). Mean-
while, as we expect, the inconsistency error in the noise-free
reconstruction is always lower than in the noisy one, while

Fig. 10 Performance of objective function minimization. (a) Scaling factors and (b) objective functions versus the number of photons.

Optical Engineering July 2011/Vol. 50(7)076501-8

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 09/13/2013 Terms of Use: http://spiedl.org/terms



Tang et al.: Data consistency condition–based beam-hardening correction

Fig. 11 Reconstructed images at z = 0 from noise-free polychromatic projection. (a) is the uncorrected polychromatic reconstruction, (c) is
water-corrected reconstruction, (e) and (g) are the bone-corrected reconstructions with λ0 = 1.4 and λ0 = 2.0, and (i) and (k) are the bone-
corrected reconstructions with λmax k

0 and c1. (b), (d), (f), (h), (j), (l) are the differences between (a), (c), (e), (g), (i), (k) and monochromatic
reconstruction [Fig. 4(a)], respectively. While the reconstructed images are displayed within a window of [0 167 ] HU, the difference images
[-34 34] HU.

Fig. 12 Same as Fig. 11 but with noise in projection.
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Fig. 13 Profiles of reconstructed images at z = 0 from noise-free projection. (a) and (b) are profiles along the horizontal 215th and 385th lines,
respectively.

the inconsistency error in the soft-tissue region is always
lower than in the bone-tissue region.

Figure 15 shows the effect of varying the number of pho-
tons on the inconsistency error, where the images (a) and (b)
correspond to the bone- and soft-tissue regions, respectively.
Figure 15 shows that the performance of the bone-correction
with λmax k

0 follows closely to the bone-correction with λb. At
the same time, it was not surprising that the bone-corrections
with λb and λs are best in the bone- and soft-tissue regions,
respectively. As for the bone-correction with c1, it was no-
ticed that its inconsistency error in the soft-tissue region is
acceptable, although its inconsistency error in the bone-tissue
region is even larger than the bone-correction with λs . We be-
lieve that, given the comprehensive results in Figs. 11–15 and
Table 2 and the lack of spectra data, the bone-correction with
c1 is still uniquely valuable for a specific beam-hardening
correction task.

5 Discussions
Previously, it has been asserted that, given all the
schemes available for the choice of weight coefficient set
{wd ≥ 0, d ∈ N}, the scheme corresponding to the 0th order
residual error term is the most essential for the minimization
of objective function. Up to this point, the rationale underly-
ing this assertion had still not been verified in a mathematical
sense. However, we have observed from numerical simula-
tions that there is no reasonable minimum value point in

the objective function constructed based on the higher order
residual error term (e.g., wd �= 0 iff d = 1). That is, there is
no similar convergence phenomenon as is shown in Fig. 9.

In this article, we have proposed and implemented an al-
gorithm to automatically determine the scaling factor λmax k

0
and coefficient vector c1 for bone-correction. During the
beam-hardening correction for the polychromatic projection,
we would never enforce the adoption of spectra S (ε) and
Q (ε). If these spectra are not easily determined, the bone-
correction with c1 can be efficiently adopted for a specific
beam-hardening correction task.

In the bone-correction formula,

Pw

{
ln

[∫ εmax

εmin

S (ε) Q (ε) dε

/ ∫ εmax

εmin

S (ε) Q (ε) e−μs (ε)gs−μb(ε)gb/λ0 dε

]}

is essentially the water-corrected result of the estimated poly-
chromatic projection (WEPP) with respect to gs and gb. After
the logarithmic operation and water-correction, the WEPP
is nearly a linear function of variables gs and gb. There-
fore, an algebraic polynomial with respect to gs and gb (i.e.,
[ gs gb g2

s g2
b gs gb g0.5

b ] · c′) is sufficient for the approxima-
tion to the WEPP. Also, other schemes can be used for this
approximation task. For simplicity, in this article we have
adopted the algebraic polynomial approximation, which is

Fig. 14 Same as Fig. 13 but from noisy projection.
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Fig. 15 Inconsistency errors versus the number of photons in the regions of (a) bone-tissue and (b) soft-tissue.

complete from the view-point of approximation theory. That
is, a function can be approximated with an arbitrary accu-
racy, so long as the algebraic polynomial approximation is
of an infinite order. However, the accuracy of an algebraic
polynomial approximation is not sufficient when it is of only
a finite order, which is equal to the dimension of coefficient
vector c. The dimension limitation is required to improve the
stability of the minimization of objective function. In order to
improve the approximation accuracy, the term g0.5

b is added
to the algebraic polynomial. It should be noted that the gain
from this trick arises from the fact that the term g0.5

b is not a
monomial basis of the algebraic polynomial approximation.

From Fig. 10(a), it can be seen that scaling factors λb
and λs are dependent on the number of photons, while the
dependency of λs is much larger than λb; in contrast, there
is almost no dependency for λmax k

0 . The lesser the number of
photons the larger the difference between λb and λs is. From
Fig. 8 and Table 1, we can also notice that scaling factors λb
and λs are dependent on the cross-sectional position. From
the previous two points, we can understand the difficulty
of physical experiments to determine the scaling factor λ0
(regardless of λb or λs) for bone-correction. As for λmax k

0 ,
determined by our proposed method, it is very robust to the
influences of both noise effects and cross-sectional position,
and is nearly the optimal from the perspective of both the
objective function �0 in Fig. 10(b) and the inconsistency
error γ in Fig. 15.

The ECC method has been proposed to correct for cupping
artifacts,17 which arise from a first-order beam-hardening
effect. In ECC, a pre-correction function in polynomial form
is utilized to approximate the beam-hardening effect of a
homogeneous object such as soft-tissue. Recently, the EBHC
method was proposed to correct simultaneously for cupping

and streak artifacts,26 which arise from a higher-order beam-
hardening effect in a mixture of materials; EBHC has shown
a capability for superior correction.

In EBHC, there is an approximation strategy similar to
that used in this article. The relationship between our pro-
posed method and EBHC is illustrated below. In our proposed
method, after the determination of the coefficient vector c, the
corrected projection is calculated according to the following
formula,

g ≈ Pw (ĝ) + gw − [
gs gb g2

s g2
b gs gb g0.5

b

] · c′, (33)

where gw
�= gs + gb ≈ Pw (ĝ). So, we have

g ≈ (2 − c1) Pw (ĝ) + (c1 − c2) gb + (2c3 − c5) Pw (ĝ) gb

+ (c5 − c3 − c4) g2
b − c3 Pw (ĝ)2 − c6g0.5

b . (34)

Compared to the Eq. (4) in EBHC,26 term by term, there
exists the following relationship,

c1 ≈ 1, c2 ≈ 1 − c01, c3 ≈ 0, c4 ≈ −c11 − c02, c5

≈ −c11, c6 ≈ 0, Pw (ĝ) = p0, gb = p2, (35)

or

c01 ≈ 1 − c2, c11 ≈ −c5, c02 ≈ c5 − c4, p0 = Pw (ĝ) ,

p2 = gb. (36)

From Eqs. (35) and (36), it is easy to notice that the extra
degrees of freedom can provide more accurate approxima-
tions in our proposed method. Additionally, in EBHC the
combination weight set {ci j } is determined by minimizing
the inflatness of the corrected volume. In other words, the
determination of weight set in EBHC was performed in an

Table 2 The inconsistency errors γ in both the bone- and soft-tissue regions determined from the reconstructed images in Figs. 11 and 12.

Regions Noise Poly Water Bone:1.4 Bone:2.0 Bone:λmax k
0 Bone:c1

Bone-tissue Noise-free 33.2900 30.0313 20.3786 12.9694 12.1511 18.4233

Noisy 33.4448 30.1666 21.2357 13.3265 12.8939 19.8651

Soft-tissue Noise-free 17.8394 12.7992 10.4410 8.5776 9.0130 9.7519

Noisy 20.0423 15.9094 14.0162 11.2117 12.1244 13.1492
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image domain, whereas our proposed method accomplished
this in projection domain.

It is noteworthy that our proposed method can also be
carried out in spiral cone-beam CT and C-arm CT sys-
tems, once it is generalized into the corresponding ge-
ometries. Several possible alternatives for the H-L consis-
tency condition have been available, such as fan-beam in-
tegral invariant,45 fan-beam data consistency condition,33, 38

John’s equation,46–49 and the consistency condition derived
from John’s equation.50 Another strategy is that the beam-
hardening artifacts in spiral cone-beam CT or C-arm CT
are corrected with the scaling factor λ0 or coefficient vector
c, which is determined by using a specific fan-beam pro-
jection data being sampled from the cone-beam projection
data. Our proposed method can also be improved to adapt
to the dynamic CT reconstruction in cardiac imaging51–53

and the iterative reconstruction based on a statistical mod-
eling for low-dosage XCT imaging.54 As for the scattering
component in the cone-beam geometries, a physical colli-
mator or anti-scattering grid is considered to be beneficial to
the implementation of our proposed method, although some
modifications should be strengthened.

6 Conclusions
In this article, the influence of the scaling factor on the per-
formance of bone-correction is analyzed. The results in the
analysis illustrate that an optimal scaling factor does exist
for bone-correction. Additionally, several critical factors in
medical XCT systems, such as noise in projection data and
cross-sectional position of imaged object, have been inves-
tigated to determine their impacts on the optimal scaling
factor.

An algorithm is proposed to automatically determine the
scaling factor. Differing from the original bone-correction
method, which uses a large number of physical experiments
to pre-determine the scaling factor, our proposed algorithm
determines the scaling factor by combining the projection
data consistency condition into an approximation process.
Regardless of changes to imaging conditions, the approxi-
mation process can effectively solve the scaling factor. Our
algorithm shows a high degree of robustness. Under condi-
tions where no emitting and absorption spectra are available,
an alternative algorithm with an algebraic polynomial ap-
proximation is also applicable. Further researches on prac-
tical medical XCT systems with physical compensators will
be done in the near future.
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Appendix: H-L Consistency Condition
In the equispatial fan-beam geometry, as shown in Fig. 1,
defining a geometrical moment as

u j,k �
∫ ∫

x j yk f (x, y) dxdy, j � 0, k � 0 (A1)

and a projection moment as

Vd (β)
�=

∫ +∞

−∞
g

(
t, β − tan−1 t

D

) (
t D√

D2 + t2

)d

× D3

(D2 + t2)1.5
dt, d ≥ 0. (A2)

From the geometrical moment, we can construct the follow-
ing quantity:

Ud (β)
�=

d∑
r=0

Cr
dur,d−r cosr β sind−r β, q ≥ 0. (A3)

Then, there is an essential equality as follows:

Vd (β) = Ud (β) , (A4)

which is called the H-L consistency condition.32, 34, 37, 40, 55

Particularly, when d = 0, there is

u0,0 =
∫ +∞

−∞
g

(
t, β − tan−1 t

D

)
D3

(D2 + t2)1.5
dt, (A5)

which is independent of the view-angle β.
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