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Abstract—Image quality assessment (IQA) aims to use computational
models to measure the image quality consistently with subjective eval-
uations. The well-known structural similarity index brings IQA from
pixel- to structure-based stage. In this paper, a novel feature similarity
(FSIM) index for full reference IQA is proposed based on the fact that
human visual system (HVS) understands an image mainly according to
its low-level features. Specifically, the phase congruency (PC), which is a
dimensionless measure of the significance of a local structure, is used as the
primary feature in FSIM. Considering that PC is contrast invariant while
the contrast information does affect HVS’ perception of image quality, the
image gradient magnitude (GM) is employed as the secondary feature in
FSIM. PC and GM play complementary roles in characterizing the image
local quality. After obtaining the local quality map, we use PC again as a
weighting function to derive a single quality score. Extensive experiments
performed on six benchmark IQA databases demonstrate that FSIM can
achieve much higher consistency with the subjective evaluations than
state-of-the-art IQA metrics.

Index Terms—Gradient, image quality assessment (IQA), low-level fea-
ture, phase congruency (PC).

I. INTRODUCTION

With the rapid proliferation of digital imaging and communication
technologies, image quality assessment (IQA) has been becoming an
important issue in numerous applications, such as image acquisition,
transmission, compression, restoration, and enhancement. Since the
subjective IQA methods cannot be readily and routinely used for many
scenarios, e.g., real-time and automated systems, it is necessary to de-
velop objective IQA metrics to automatically and robustly measure the
image quality. Meanwhile, it is anticipated that the evaluation results
should be statistically consistent with those of the human observers. To
this end, the scientific community has developed various IQA methods
in the past decades. According to the availability of a reference image,
objective IQA metrics can be classified as full reference (FR), no ref-
erence (NR), and reduced-reference methods [1]. In this paper, the dis-
cussion is confined to FR methods, where the original “distortion-free”
image is known as the reference image.
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The conventional metrics, such as the peak signal-to-noise ratio
(PSNR) and the mean-squared error (MSE) operate directly on the
intensity of the image, and they do not correlate well with the subjec-
tive fidelity ratings. Thus, many efforts have been made on designing
human visual system (HVS) based IQA metrics. Such kinds of models
emphasize the importance of HVS’ sensitivity to different visual
signals, such as the luminance, the contrast, the frequency content,
and the interaction between different signal components [2]–[4]. The
noise quality measure (NQM) [2] and the visual SNR (VSNR) [3] are
two representatives. Methods, such as the structural similarity (SSIM)
index [1], are motivated by the need to capture the loss of structure
in the image. SSIM is based on the hypothesis that HVS is highly
adapted to extract the structural information from the visual scene;
therefore, a measurement of SSIM should provide a good approxima-
tion of perceived image quality. The multiscale extension of SSIM,
called MS-SSIM [5], produces better results than its single-scale
counterpart. In [6], the authors presented a three-component weighted
SSIM (3-SSIM) by assigning different weights to the SSIM scores
according to the local region type: edge, texture, or smooth area. In
[7], Sheikh et al. introduced the information theory into image fidelity
measurement, and proposed the information fidelity criterion (IFC) for
IQA by quantifying the information shared between the distorted and
the reference images. IFC was later extended to the visual information
fidelity (VIF) metric in [4]. In [8], Sampat et al. made use of the
steerable complex wavelet (CW) transform to measure the SSIM of
the two images and proposed the CW-SSIM index.

Recent studies conducted in [9] and [10] have demonstrated that
SSIM, MS-SSIM, and VIF could offer statistically much better per-
formance in predicting images’ fidelity than the other IQA metrics.
However, SSIM and MS-SSIM share a common deficiency that when
pooling a single quality score from the local quality map (or the local
distortion measurement map), all positions are considered to have the
same importance. In VIF, images are decomposed in different subbands
and these subbands can have different weights at the pooling stage [11];
however, within each subband, every position is still given the same im-
portance. Such pooling strategies are not consistent with the intuition
that different locations on an image can have very different contribu-
tions to HVS’ perception of the image. This is corroborated by a recent
study [12], [13], where the authors found that by incorporating appro-
priate spatially varying weights, the performance of some IQA metrics,
e.g., SSIM, VIF, and PSNR, could be improved. But unfortunately, they
did not present an automated method to generate such weights.

The great success of SSIM and its extensions owes to the fact that
HVS is adapted to the structural information in images. The visual in-
formation in an image, however, is often very redundant, while the
HVS understands an image mainly based on its low-level features,
such as edges and zero crossings [14]–[16]. In other words, the salient
low-level features convey crucial information for the HVS to interpret
the scene. Accordingly, perceptible image degradations will lead to per-
ceptible changes in image low-level features, and hence, a good IQA
metric could be devised by comparing the low-level feature sets be-
tween the reference image and the distorted image. Based on the afore-
mentioned analysis, in this paper, we propose a novel low-level feature
similarity (FSIM) induced FR IQA metric, namely, FSIM.

One key issue is then what kinds of features could be used in de-
signing FSIM? Based on the physiological and psychophysical evi-
dences, it is found that visually discernable features coincide with those
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points, where the Fourier waves at different frequencies have congruent
phases [16]–[19], i.e., at points of high phase congruency (PC), we can
extract highly informative features. Such a conclusion has been further
corroborated by some recent studies in neurobiology using functional
magnetic resonance imaging (fMRI) [20]. Therefore, PC is used as the
primary feature in computing FSIM. Meanwhile, considering that PC is
contrast invariant, but image local contrast does affect HVS’ perception
on the image quality, the image gradient magnitude (GM) is computed
as the secondary feature to encode contrast information. PC and GM
are complementary and they reflect different aspects of the HVS in as-
sessing the local quality of the input image. After computing the local
similarity map, PC is utilized again as a weighting function to derive a
single similarity score. Although FSIM is designed for gray-scale im-
ages (or the luminance components of color images), the chrominance
information can be easily incorporated by means of a simple extension
of FSIM, and we call this extension ����� .

Actually, PC has already been used for IQA in the literature. In
[21], Liu and Laganière proposed a PC-based IQA metric. In their
method, PC maps are partitioned into subblocks of size 5� 5. Then,
the cross correlation is used to measure the similarity between two cor-
responding PC subblocks. The overall similarity score is obtained by
averaging the cross-correlation values from all block pairs. In [22], PC
was extended to phase coherence, which can be used to characterize the
image blur. Based on [22], Hassen et al. proposed an NR IQA metric
to assess the sharpness of an input image [23].

The proposed FSIM and ����� are evaluated on six benchmark
IQA databases in comparison with eight state-of-the-art IQA methods.
The extensive experimental results show that FSIM and ����� can
achieve very high consistency with human subjective evaluations, out-
performing all the other competitors. Particularly, FSIM and �����

work consistently well across all the databases, while other methods
may work well only on some specific databases. To facilitate repeat-
able experimental verifications and comparisons, the MATLAB source
code of the proposed���������� indices and our evaluation results
are available online at http://www.comp.polyu.edu.hk/~cslzhang/IQA/
FSIM/FSIM.htm.

The remainder of this paper is organized as follows. Section II dis-
cusses the extraction of PC and GM. Section III presents in detail the
computation of the FSIM and ����� indices. Section IV reports the
experimental results. Finally, Section V concludes the paper.

II. EXTRACTION OF PC AND GM

A. Phase Congruency

Rather than defining features directly at points with sharp changes in
intensity, the PC model postulates that features are perceived at points,
where the Fourier components are maximal in phase. Based on the
physiological and psychophysical evidences, the PC theory provides
a simple but biologically plausible model of how mammalian visual
systems detect and identify features in an image [16]–[20]. PC can be
considered as a dimensionless measure for the significance of a local
structure.

Under the definition of PC in [17], there can be different imple-
mentations to compute the PC map of a given image. In this paper,
we adopt the method developed by Kovesi [19], which is widely used
in literature. We start from the 1-D signal ����. Denote by � �

� and
��

� the even- and odd-symmetric filters on scale �, and they form a
quadrature pair. Responses of each quadrature pair to the signal will
form a response vector at position � on scale � � ������� �����	 

��������

�� ������
�
�	, and the local amplitude on scale � is	���� 


Fig. 1. Example of the log-Gabor filter in the frequency domain, with � �

���, � � �, � � ���, and � � ���. (a) Radial component of the filter. (b)
Angular component of the filter. (c) Log-Gabor filter, which is the product of
the radial component and the angular component.
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The 1-D PC can be computed as follows:
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� ���
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�

	����
(1)

where ���� 
 
 ���� ��� ���, and � is a small positive constant.
With respect to the quadrature pair of filters, i.e.,��

� and��
�, Gabor

filters [24] and log-Gabor filters [25] are two widely used candidates.
We adopt the log-Gabor filters because 1) one cannot construct Gabor
filters of arbitrarily bandwidth and still maintain a reasonably small
DC component in the even-symmetric filter, while log-Gabor filters, by
definition, have no DC component, and 2) the transfer function of the
log-Gabor filter has an extended tail at the high-frequency end, which
makes it more capable to encode natural images than ordinary Gabor
filters [19], [25]. The transfer function of a log-Gabor filter in the fre-
quency domain is ���� 
 ���������������

�������, where �� is
the filter’s center frequency, and �� controls the filter’s bandwidth.

To compute the PC of 2-D grayscale images, we can apply the 1-D
analysis over several orientations and then combine the results using
some rule. The 1-D log-Gabor filters described earlier can be extended
to 2-D ones by simply applying some spreading function across the
filter perpendicular to its orientation. One widely used spreading func-
tion is Gaussian [19], [26]–[28]. According to [19], there are some
good reasons to choose Gaussian. Particularly, the phase of any func-
tion would stay unaffected after being smoothed with Gaussian. Thus,
the PC would be preserved. By using Gaussian as the spreading func-
tion, the 2-D log-Gabor function has the following transfer function:

����� ��� 
 �� �
��� �

�

�

����
� �� �

�� � ���
�

����
(2)

where �� 
 ���� , � 
 ��� �� � � � � � � �� is the orientation angle
of the filter, � is the number of orientations, and �� determines the
filter’s angular bandwidth. An example of the 2-D log-Gabor filter in
the frequency domain, with �� 
 ���, �� 
 �, �� 
 ���, and �� 

���, is shown in Fig. 1.

By modulating �� and �� and convolving �� with the 2-D image,
we get a set of responses at each point � as ��	� ���� ��	� ��� .
The local amplitude on scale � and orientation �� is 	�	� ��� 


��	� ���� � ��	� ����, and the local energy along orientation ��

is �� ��� 
 
� ���� ��� ����, where 
� ��� 

�
��	� ���

and �� ��� 

�
��	� ���. The 2-D PC at � is defined as follows:
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Fig. 2. Illustration for the ��������� index computation. � is the reference image, and � is a distorted version of � .

TABLE I
PARTIAL DERIVATIVES OF ���� USING DIFFERENT GRADIENT OPERATORS

It should be noted that������� is a real number within 0–1. Examples
of the PC maps of 2-D images can be found in Fig. 2.

B. Gradient Magnitude

Image gradient computation is a traditional topic in image pro-
cessing. Gradient operators can be expressed by convolution masks.
Three commonly used gradient operators are the Sobel operator
[29], the Prewitt operator [29], and the Scharr operator [30]. Their
performances will be examined in Section IV. The partial derivatives
����� and ����� of the image ���� along horizontal and vertical
directions using the three gradient operators are listed in Table I. The
GM of ���� is then defined as � � ��

� ���
� .

III. FSIM INDEX

With the extracted PC and GM feature maps, in this section, we
present a novel FSIM index for IQA. Suppose that we are going to cal-
culate the similarity between images �� and ��. Denote by ��� and
��� the PC maps extracted from �� and ��, respectively, and �� and
�� the GM maps extracted from them. It should be noted that for color

TABLE II
BENCHMARK TEST DATABASES FOR IQA

images, PC and GM features are extracted from their luminance chan-
nels. FSIM will be defined and computed based on ���, ���, ��,
and ��. Furthermore, by incorporating the image chrominance infor-
mation into FSIM, an IQA index for color images denoted by �����

will be obtained.

A. FSIM Index

The computation of FSIM index consists of two stages. In the first
stage, the local similarity map is computed, and then in the second
stage, we pool the similarity map into a single similarity score.

We separate the FSIM measurement between ����� and ����� into
two components, each for PC or GM. First, the similarity measure for
������ and ������ is defined as follows:

������ �
	������ � ������ � ��

���

�
��� � ���

�
��� � ��

(4)

where �� is a positive constant to increase the stability of ��� (such
a consideration was also included in SSIM [1]). In practice, the deter-
mination of �� depends on the dynamic range of PC values. Equation
(4) is a commonly used measure to define the similarity of two positive
real numbers [1] and its result ranges within (0, 1]. Similarly, the GM
values ����� and ����� are compared, and the similarity measure is
defined as follows:

����� �
	����� � ����� � ��

��

�
��� ���

�
��� � ��

(5)
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TABLE III
SROCC VALUES USING THREE GRADIENT OPERATORS

TABLE IV
QUALITY EVALUATION OF IMAGES IN FIG. 4

TABLE V
RANKING OF IMAGES ACCORDING TO THEIR QUALITY COMPUTED BY EACH

IQA METRIC

where �� is a positive constant depending on the dynamic range of
GM values. In our experiments, both �� and �� will be fixed to all
databases so that the proposed FSIM can be conveniently used. Then,
������ and ����� are combined to get the similarity ����� of �����
and �����. We define ����� as follows:

����� � ��������
�

� �������
� (6)

where � and � are parameters used to adjust the relative importance of
PC and GM features. In this paper, we set � � � � � for simplicity.
Thus, ����� � ������ � �����.

Having obtained the similarity ����� at each location �, the overall
similarity between �� and �� can be calculated. However, different lo-
cations have different contributions to HVS’ perception of the image.
For example, edge locations convey more crucial visual information
than the locations within a smooth area. Since human visual cortex is
sensitive to phase congruent structures [20], the PC value at a location
can reflect how likely it is a perceptibly significant structure point. In-
tuitively, for a given location �, if anyone of ����� and ����� has a
significant PC value, it implies that this position � will have a high im-
pact on HVS in evaluating the similarity between �� and ��. Therefore,
we use������ � �	
�������� ������� to weight the importance

of ����� in the overall similarity between �� and ��, and accordingly,
the FSIM index between �� and �� is defined as follows:

��� �
�������� � ������

���������
(7)

where � means the whole image spatial domain.

B. Extension to Color IQA

The FSIM index is designed for grayscale images or the luminance
components of color images. Since the chrominance information will
also affect HVS in understanding the images, better performance can
be expected if the chrominance information is incorporated in FSIM for
color IQA. Such a goal can be achieved by applying a straightforward
extension to the FSIM framework.

At first, the original ��� color images are converted into another
color space, where the luminance can be separated from the chromi-
nance. To this end, we adopt the widely used ��� color space [31], in
which 	 represents the luminance information, and 
 and � convey
the chrominance information. The transform from the ��� space to
the ��� space can be accomplished via [31]

	




�

�

����� ����� �����

����� ������ ������

����� ������ �����



�

�

� (8)

Let 
� (
�) and �� (��) be the 
 and � chromatic channels of the
image �� (��), respectively. Similar to the definitions of ������ and
�����, we define the similarity between chromatic features as follows:

����� �
�
���� � 
���� � ��

�
�
��� � 
�

�
��� � ��

�	��� �
������ ������ � ��
��

�
��� ���

�
��� � ��

(9)

where �� and �� are positive constants. Since 
 and � components
have nearly the same dynamic range, in this paper, we set �� � �� for
simplicity. ����� and �	��� can then be combined to get the chromi-
nance similarity measure, denoted by �����, of ����� and �����

����� � ����� � �	���� (10)

Finally, the FSIM index can be extended to ���� by incorporating
the chromatic information in a straightforward manner

���� �
�������� � �������



� ������

���������
(11)

where � � � is the parameter used to adjust the importance of the chro-
matic components. The procedures to calculate the �������� in-
dices are illustrated in Fig. 2. If the chromatic information is ignored
in Fig. 2, the ���� index is reduced to the FSIM index.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Databases and Methods for Comparison

To the best of our knowledge, there are six publicly available image
databases in the IQA community, including TID2008 [10], CSIQ [32],
LIVE [33], IVC [34], MICT [35], and A57 [36]. All of them will be
used here for algorithm validation and comparison. The characteristics
of these six databases are summarized in Table II.

The performance of the proposed FSIM and ���� indices will
be evaluated and compared with eight representative IQA metrics,
including seven state-of-the-arts (SSIM [1], MS-SSIM [5], VIF [4],
VSNR [3], IFC [7], NQM [2], and Liu et al.’s method [21]) and the
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Fig. 3. Eight reference images used for the parameter tuning process. They are extracted from the TID2008 database.

Fig. 4. (a) Reference image; (b)–(f) are the distorted versions of (a) in the TID2008 database. Distortion types of (b)–(f) are “additive Gaussian noise,” “spatially
correlated noise,” “image denoising,” “JPEG 2000 compression,” and “JPEG transformation errors,” respectively.

classical PSNR. For Liu et al.’s method [21], we implemented it by
ourselves. For SSIM [1], we used the implementation provided by the
author, which is available at [37]. For all the other methods evaluated,
we used the public software MeTriX MuX [38]. The MATLAB source
code of the proposed ���������� indices is available online at
http://www.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/FSIM.htm.

Four commonly used performance metrics are employed to evaluate
the competing IQA metrics. The first two are the Spearman rank-order
correlation coefficient (SROCC) and the Kendall rank-order correlation
coefficient (KROCC), which can measure the prediction monotonicity
of an IQA metric. These two metrics operate only on the rank of the data
points and ignore the relative distance between data points. To compute
the other two metrics, we need to apply a regression analysis, as sug-
gested by the video quality experts group [39], to provide a nonlinear
mapping between the objective scores and the subjective mean opinion
scores (MOSs). The third metric is the Pearson linear correlation coef-
ficient (PLCC) between MOS and the objective scores after nonlinear
regression. The fourth metric is the root MSE (RMSE) between MOS
and the objective scores after nonlinear regression. For the nonlinear
regression, we used the following mapping function [9]:

���� � ��
�

	
�

�

� 
 �� ���� �

 ���
 �� (12)

where ��, � � �� 	� � � � � �, are the parameters to be fitted. A better
objective IQA measure is expected to have higher SROCC, KROCC,
and PLCC while lower RMSE values.

B. Determination of Parameters

There are several parameters need to be determined for FSIM and
����� . To this end, we tuned the parameters based on a subdataset
of TID2008 database, which contains the first 8 reference images in
TID2008 and the associated 544 distorted images. The eight reference
images used in the tuning process are shown in Fig. 3. The tuning crite-
rion was that the parameter value leading to a higher SROCC would be
chosen. As a result, the parameters required in the proposed methods
were set as: � � , 	 � , 
� � ������, 
� � �����, �� � ����,
�� � ���,�� � �� � 	��, and � ����. Besides, the center frequen-
cies of the log-Gabor filters at four scales were set as: 1/6, 1/12, 1/24,
and 1/48. These parameters were then fixed for all the following exper-
iments conducted. In fact, we have also used the last 8 reference images
(and the associated 544 distorted ones) to tune parameters and obtained
very similar parameters to the ones reported here. This may imply that
any 8 reference images in the TID2008 database work equally well
in tuning parameters for ����������. However, this conclusion is
hard to prove theoretically or even experimentally because there are



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 8, AUGUST 2011 2383

Fig. 5. (a)–(f) are PC maps extracted from images Fig. 4(a)–(f), respectively. (a) is the PC map of the reference image while (b)–(f) are the PC maps of the
distorted images. (b) and (d) are more similar to (a) than (c), (e), and (f). In (c), (e), and (f), regions with obvious differences to the corresponding regions in (a)
are marked by colorful rectangles.

TABLE VI
PERFORMANCE COMPARISON OF IQA METRICS ON Six BENCHMARK DATABASES

��

�� � ������� different ways to select 8 out of the 25 reference im-
ages in TID2008.

It should be noted that the��	
���	
� indices will be most effec-
tive if used on the appropriate scale. The precisely “right” scale depends
on both the image resolution and the viewing distance, and hence, is
difficult to be obtained. In practice, we used the following empirical
steps proposed by Wang [37] to determine the scale for images viewed
from a typical distance: 1) let � � ����� �������������, where �
is the number of pixels in image height or width; and 2) average local
� � � pixels and then downsample the image by a factor of � .

C. Gradient Operator Selection

In our proposed IQA metrics ��	
���	
�, the GM needs to be
calculated. To this end, three commonly used gradient operators listed
in Table I were examined, and the one providing the best result was
selected. Such a gradient operator selection process was carried out by
assuming that all the parameters discussed in Section IV-B were fixed.
The selection criterion was also that the gradient operator leading to a
higher SROCC would be selected. The subdataset used in Section IV-B

was used here. The SROCC values obtained by the three gradient op-
erators on the tuning dataset are listed in Table III, from which we can
see that the Scharr operator could achieve slightly better performance
than the other two. Thus, in all of the following experiments, the Scharr
operator was used to calculate the gradient in ��	
���	
�.

D. Example to Demonstrate the Effectiveness of ��	
���	
�

In this section, we use an example to demonstrate the effectiv
eness of ��	
���	
� in evaluating the perceptible image quality.
Fig. 4(a) is the I17 reference image in the TID2008 database, and
Fig. 4(b)–(f) shows five distorted images of I17: I17_01_2, I17_03_2,
I17_09_1, I17_11_2, and I17_12_2. Distortion types of Fig. 4(b)–(f)
is “additive Gaussian noise,” “spatially correlated noise,” “image
denoising,” “JPEG 2000 compression,” and “JPEG transformation er-
rors,” respectively. According to the naming convention of TID2008,
the last number (the last digit) of the image’s name represents the
distortion degree, and a greater number indicates a severer distortion.
We compute the image quality of Fig. 4(b)–(f) using various IQA
metrics, and the results are summarized in Table IV. We also list the
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Fig. 6. Scatter plots of subjective MOS versus scores obtained by model prediction on the TID2008 database. (a) MS-SSIM, (b) SSIM, (c) VIF, (d) VSNR, (e)
IFC, (f) NQM, (g) PSNR, (h) method in [21], and (i) FSIM.

subjective scores (extracted from TID2008) of these five images in
Table IV. For each IQA metric and the subjective evaluation, higher
scores mean higher image quality.

In order to show the correlation of each IQA metric with the subjec-
tive evaluation more clearly, in Table V, we rank the images according
to their quality scores computed by each metric as well as the subjective
evaluation. From Tables IV and V, we can see that the quality scores
computed by ���������� correlate with the subjective evaluation
much better than the other IQA metrics. From Table V, we can also see
that, other than the proposed ���������� metrics, all the other IQA
metrics cannot give the same ranking as the subjective evaluations.

The success of���������� actually owes to the proper use of PC
maps. Fig. 5(a)–(f) shows the PC maps of the images in Fig. 4(a)–(f),
respectively. We can see that images in Fig. 4(b) and (d) have better
perceptible qualities than those in Fig. 4(c), (e), and (f); meanwhile,
by visual examination, we can see that maps in Fig. 5(b) and (d) [PC
maps of images in Fig. 4(b) and (d)] are more similar to the map in
Fig. 5(a) [PC map of the reference image in Fig. 4(a)] than the maps in
Fig. 5(c), (e), and (f) [PC maps of images in Fig. 4(c), (e), and (f)]. In
order to facilitate visual examination, in Fig. 5(c), (e), and (f), regions
with obvious differences to the corresponding regions in Fig. 5(a) are
marked by rectangles. For example, in Fig. 5(c), the neck region marked
by the yellow rectangle has a perceptible difference to the same re-
gion in Fig. 5(a). This example clearly illustrates that images of higher
quality will have more similar PC maps to that of the reference image
than images of lower quality. Therefore, by properly making use of PC
maps in ����������, we can predict the image quality consistently
with human subjective evaluations. More statistically convincing re-
sults will be presented in the next two sections.

E. Overall Performance Comparison

In this section, we compare the general performance of the com-
peting IQA metrics. Table VI lists the SROCC, KROCC, PLCC, and

TABLE VII
RANKING OF IQA METRICS’ PERFORMANCE (EXCEPT FOR ���� ) ON SIX

DATABASES

RMSE results of ���������� and the other eight IQA algorithms
on the TID2008, CSIQ, LIVE, IVC, MICT, and A57 databases. For
each performance measure, the three IQA indices producing the best
results are highlighted in boldface for each database. It should be noted
that except for ����� , all the other IQA indices are based on the lu-
minance component of the image. From Table VI, we can see that the
proposed FSIM-based IQA metric FSIM or ����� performs consis-
tently well across all the databases. In order to demonstrate this con-
sistency more clearly, in Table VII, we list the performance ranking of
all the IQA metrics according to their SROCC values. For fairness, the
����� index, which also exploits the chrominance information of im-
ages, is excluded in Table VII.

From the experimental results summarized in Tables VI and VII,
we can see that our methods achieve the best results on almost all the
databases, except for MICT and A57. Even on these two databases,
however, the proposed FSIM (or �����) is only slightly worse than
the best results. Moreover, considering the scales of the databases,
including the number of images, the number of distortion types,
and the number of observers, we think that the results obtained on
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TABLE VIII
SROCC VALUES OF IQA METRICS FOR EACH DISTORTION TYPE

TID2008, CSIQ, LIVE, and IVC are much more convincing than those
obtained on MICT and A57. Overall speaking, FSIM and �����

achieve the most consistent and stable performance across all the six
databases. By contrast, for the other methods, they may work well on
some databases but fail to provide good results on other databases.
For example, although VIF can get very pleasing results on LIVE,
it performs poorly on TID2008 and A57. The experimental results
also demonstrate that the chromatic information of an image does
affect its perceptible quality since ����� has better performance
than FSIM on all color image databases. Fig. 6 shows the scatter
distributions of subjective MOS versus the predicted scores by FSIM
and the other eight IQA indices on the TID2008 database. The curves
shown in Fig. 6 were obtained by a nonlinear fitting according to (12).
From Fig. 6, one can see that the objective scores predicted by FSIM
correlate much more consistently with the subjective evaluations than
the other methods.

F. Performance on Individual Distortion Types

In this experiment, we examined the performance of the competing
methods on different image distortion types. We used the SROCC,
which is a widely accepted and used evaluation measure for IQA met-
rics [1], [39], as the evaluation measure. By using the other measures,
such as KROCC, PLCC, and RMSE, similar conclusions could be
drawn. The three largest databases, TID2008, CSIQ and LIVE, were
used in this experiment. The experimental results are summarized in
Table VIII. For each database and each distortion type, the first three
IQA indices producing the highest SROCC values are highlighted in
boldface. We can have some observations based on the results listed in
Table VIII. In general, when the distortion type is known beforehand,
����� performs the best, while FSIM and VIF have comparable
performance. FSIM, ����� , and VIF perform much better than the
other IQA indices. Compared with VIF, FSIM and ����� are more
capable in dealing with the distortions of “denoising,” “quantization
noise,” and “mean shift.” By contrast, for the distortions of “masked
noise” and “impulse noise,” VIF performs better than FSIM and
����� . Moreover, results in Table VIII once again corroborates that

the chromatic information does affect the perceptible quality since
����� has better performance than FSIM on each database for nearly
all the distortion types.

V. CONCLUSION

In this paper, we proposed a novel low-level feature-based IQA
metric, namely FSIM index. The underlying principle of FSIM is
that HVS perceives an image mainly based on its salient low-level
features. Specifically, two kinds of features, the PC and the GM, are
used in FSIM, and they represent complementary aspects of the image
visual quality. The PC value is also used to weight the contribution of
each point to the overall similarity of two images. We then extended
FSIM to ����� by incorporating the image chromatic features into
consideration. The FSIM and ����� indices were compared with
eight representative and prominent IQA metrics on six benchmark
databases, and very promising results were obtained by FSIM and
����� . When the distortion type is known beforehand, �����

performs the best while FSIM achieves comparable performance with
VIF. When all the distortion types are involved (i.e., all the images
in a test database are used), FSIM and ����� outperform all the
other IQA metrics used in comparison. Particularly, they perform
consistently well across all the test databases, validating that they are
very robust IQA metrics.
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Integer Computation of Lossy JPEG2000 Compression
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Abstract—In this paper, an integer-based Cohen–Daubechies–Feauvea
(CDF) 9/7 wavelet transform as well as an integer quantization method
used in a lossy JPEG2000 compression engine is presented. The con-
junction of both an integer transform and quantization step allows for
a complete integer computation of lossy JPEG2000 compression. The
lossy method of compression utilizes the CDF 9/7 wavelet filter, which
transforms integer input pixel values into floating-point wavelet coeffi-
cients that are then quantized back into integers and finally compressed
by the embedded block coding with optimal truncation tier-1 encoder.
Integer computation of JPEG2000 allows a reduction in computational
complexity of the wavelet transform as well as ease of implementation in
embedded systems for higher computational performance. The results
of the integer computation show an equivalent rate/distortion curve to
the JasPer JPEG2000 compression engine, as well as a 30% reduction
in computation time of the wavelet transform and a 56% reduction in
computation time of the quantization processing on an average.

Index Terms—Cohen–Daubechies–Feauvea (CDF) 9/7 wavelet, integer
computation, JPEG2000.

I. INTRODUCTION

JPEG2000 is the latest image compression standard from the Joint
Pictures Expert Group [9]. It was established as an International Stan-
dards Organization (ISO) standard in December of 2000 [8], revised

Manuscript received November 03, 2009; revised September 22, 2010; ac-
cepted February 03, 2011. Date of publication February 14, 2011; date of cur-
rent version July 15, 2011. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. A. R. Reibman.

E. J. Balster is with the Department of Electrical and Computer Engineering,
Kettering Laboratory, University of Dayton, Dayton, OH 45469 USA (e-mail:
balsteej@notes.udayton.edu).

B. T. Fortener and W. F. Turri are with the University of Dayton Research
Institute, Dayton, OH 45469 USA (e-mail: fortenbt@udri.udayton.edu; william.
turri@udri.udayton.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2011.2114353

1057-7149/$26.00 © 2011 IEEE




