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Abstract

In this paper we derive an algorithm to follow the entire solution path of
the sparse principal component analysis (PCA) problem. The core idea is to
iteratively identify the pairwise variables along which the objective function
of the sparse PCA model can be largest increased, and then incrementally
update the coefficients of the two variables so selected by a small stepsize.
The new algorithm dominates on its capability of providing a computational
shortcut to attain the entire spectrum of solutions of the sparse PCA problem,
which is always beneficial to real applications. The proposed algorithm is
simple and easy to be implemented. The effectiveness of our algorithm is
empirically verified by a series of experiments implemented on synthetic and
real problems, as compared with other typical sparse PCA methods.
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1. Introduction

The principal component analysis (PCA) is one of the most classical and
popular techniques for data processing and dimensionality reduction, and has
a wide range of applications throughout science and engineering [1, 2, 3]. In
essence, PCA aims to find the orthogonal directions along which the variance
of the input data can be maximally preserved. Such directions correspond
to the so called principle components (PCs). Denote the data matrix as
X ∈ Rd×n, where d and n are the number of variables (dimensionality) and
the number of observations (size), respectively. The first principal component
(PC) of the data X is the solution to the following optimization model:

[Lpca] :
wpca = argmax

w

V (w) = wTXXTw

s.t. wTw ≤ 1.
(1)

The second PC can be successively attained by solving (1), under the con-
straint that it is orthogonal to the first, and so on.

Recently, the research on the sparse PCA problem has attracted much
attention [4]-[13]. The motivation of sparse PCA is to facilitate the inter-
pretation of dimensionality reduction by involving fewer non-zero elements
of the variables in the derived PCs. This series of research is especially mer-
itorious in the area where the original variables are of significant physical
meanings. Currently, sparse PCA has been successfully applied to many ap-
plications such as object recognition [16], biological gene analysis [10], and
financial asset trading [5].

The sparse PCA model can be directly formulated by supplementing the
l0 constraint to the traditional PCA model, Lpca, to enforce sparsity of the
derived PCs. The corresponding optimization model is:

[L0(k)] :

wl0(k) = argmax
w

V (w) = wTXXTw

s.t. wTw ≤ 1
‖w‖0 ≤ k.

(2)

The above L0(k) optimization is a hard combinatorial problem and very diffi-
cult to be exactly solved, especially for high dimensional data. Currently, by
virtue of the slacking, thresholding, and greedy techniques, several methods,
including DSPCA [5], PathSPCA [6], DCPCA [7], GPowerl0 , GPowerl0,m [8],
and etc., have been developed to approximate the solution to L0(k) or its
extensions.

2



As compared with the L0(k) model, another model for sparse PCA is more
generally employed by relaxing the non-convex l0 constraint to a weaker but
convex l1 constraint, as expressed in the following:

[L1(t)] :

wl1(t) = argmax
w

V (w) = wTXXTw

s.t. wTw ≤ 1
‖w‖1 ≤ t.

(3)

The typical methods constructed on this model or its related extensions in-
clude SCoTLASS [9], SPCA [4], GPowerl1 , GPowerl1,m [8], EMPCA [10],
ALSPCA [11], PMD [13], sPCA-rSVD [14], RSPCA [15], and etc..

Despite these developments, an important problem is still often encoun-
tered in real applications of sparse PCA: how to select an appropriate pa-
rameter k/t of the l0/l1 constraint for the L0(k)/L1(t) model based on the
given data. In practice, users often use some default value for the parameter,
or retrain the model multiple times under different parameter settings and
then figure out a good choice of k or t from them [4]. This, however, is ac-
tually a very difficult task, since on one hand, multiple training for a sparse
PCA method is always very time consuming, and on the other hand, there
is no specific criterion, like the predictive performance for the classification
or regression problem, to judge whether a sparse PC vector is “good” for the
unsupervised sparse PCA problem. A very useful methodology against this
challenge is to derive the entire solution path of the sparse PCA model, i.e.,
the set of solutions for all meaningful values of the tuning parameter. The
solution path so derived not only is capable of offering great convenience on
proper selection of optimal tuning parameter against specific application of
sparse PCA, but also giving an insightful spectrum to reflect the intrinsic
mechanism underlying the sparse PCA model. Along this line, multiple effi-
cient path-following algorithms have been designed for a family of well known
machine learning and pattern recognition problems. They include the LARS
for lasso [17], the SVMPath for L1 and L2 constraint SVMs [18, 19], the
GLM path algorithm for generalized linear models [20], the path algorithm
for multiple kernel learning [21], and etc..

In this paper we consider the extension of such path-following technique
to the sparse PCA problem. Inspired by the forward stagewise regression
method (FSε, [22, 23]) designed for lasso, the core idea of the proposed
method is to repeatedly identify the pairwise variables along which the ob-
jective V (w) of the sparse PCA model can be increased at most, and then

3



incrementally update the coefficients of the two variables by a small stepsize.
The new method capitalizes on its capability of creating a coefficient profile
to fit the entire solution path of the sparse PCA problem, which is always
beneficial to real applications.

In Section 2 the core idea of our method and its implemented details are
introduced. In Section 3 a series of experimental results are presented to
substantiate the effectiveness of the proposed method, as compared with the
existing techniques. We finish with conclusion in Sections 4.

2. The coordinate-pairwise algorithm for sparse PCA

Denote the input data matrix as X = [x1, · · · ,xd]
T ∈ Rd×n, where d and

n are the numbers of the variables and the observations, respectively, and
xi ∈ Rn corresponds to the coefficients of the i-th variable. Throughout the
paper, we denote matrices, vectors, and scalars by upper-case letters, lower
case bold-faced letters, and lower-case non-bold-faced letters, respectively.

2.1. Reformulation of the L1(t) model

The proposed path-following algorithm is constructed on an equivalent
reformulation of the L1(t) model, as expressed in the following:

[L2,c(s)] :

wl2,c(s) = argmax
w

V (w) = wTXXTw

s.t. wTw ≤ s
‖w‖1 ≤ c,

(4)

where c is a pre-specified constant.
Although the models L2,c(s) and L1(t) look somewhat alike, they are of

significant difference in their intrinsic mechanisms of implementing sparse PC
calculation. In specific, L1(t) attains the PC vector with different cardinality
through fixing the l2 constraint wTw ≤ 1, while varying the l1 constraint
‖w‖1 ≤ t with respect to t. Contrarily, L2,c(s) realizes this aim by fixing
the l1 constraint ‖w‖1 ≤ c, while changing the l2 constraint wTw ≤ s with
respect to s. Our motivation for this reformulation can be very intuitively
understood by virtue of Figure 1. For the L1(t) model, the optimal solution
wl1(t) with respect to t tends to be shifted along the vertex of the constraint
area of L1(t), i.e., along the nonlinear sub-manifold ofwTw = 1 (illustrated
as the sub-circle in the left panel of Figure 1). While for the reformulated
L2,c(s) model, the corresponding optimal wl2(c, s) with respect to s inclines
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Figure 1: Graphical presentation for the implementation mechanisms of the L1(t) (left
panel) and L2,c(s) (right panel) models. L1(t) attains different sparse PCs by setting the
l2 constraint wTw ≤ 1 (the circular area) fixed while the l1 constraint ‖w‖1 ≤ t (the
diamond area) altered; Yet L2,c(s) realizes this aim by fixing the l1 constraint ‖w‖1 ≤ c

while varying the l2 constraint wTw ≤ s. The solution paths of the two models tend to
be moved along the red curves as depicted in the two panels, respectively (started from
the same initial point, depicted as the circles in the figure).

to move along the linear surface of ‖w‖1 = c (depicted as the line segment
in the right panel of Figure 1). It is intuitively clear that the solution path of
the new model with respect to s tends to be more easily followed than that
of the L1(t) model with respect to t. Based on this direct comprehension, we
expected to develop an effective and simple strategy to generate the entire
solution path of sparse PCA by virtue of the L2,c(s) model.

A natural question is what the relationship between L1(t) and its refor-
mulation L2,c(s) is. The following theorem clarifies the intrinsic equivalence
between the two models.

Theorem 1. For the optimal solutions wl1(t) and wl2,c(s) of L1(t) and

L2,c(s) models, respectively, it holds that wl1(t) = t
c
wl2,c(

c2

t2
) and wl2,c(s) =√

swl1(
c√
s
).

The proof of Theorem 1 is given in the Appendix. This theorem im-
plies that a comprehensive solution path of L1(t) with respect to t can be
equivalently achieved by searching the entire solution path of L2,c(s) model
with respect to s. This constitutes the fundament of the to-be-constructed
path-following algorithm for sparse PCA.

2.2. The core idea of our method

Inspired by the forward stagewise regression strategy (FSε, [23]) proposed
for lasso, we aim to build up the entire solution path for sparse PCA by iter-
atively generating the solution of L2,c(s+ε) from that of L2,c(s) in successive
small step ε. In specific, there are two steps involved in each iteration of
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the proposed method: (1) selecting the pairwise coordinates/variables along
which the objective function of the L2,c(s) model tends to be maximally in-
creased; and (2) updating the pairwise coordinates so selected in a small
step with the other variables fixed. Correspondingly, two key problems are
required to be resolved: (i) how to find the proper pairwise coordinates to be
updated in each iteration; (ii) how to build up easy computation to increment
the pairwise coordinates so selected.

We first consider the aforementioned problem (ii). Denote the solution
of L2,c(s) as wo = (wo

1, w
o
2, · · · , wo

d)
T , and suppose that the i-th and j-th

coordinates (wo
i , w

o
j ) ofw

o are selected to be updated. Our aim is to formulate
simple computation to incrementally update them in the feasible region of
L2,c(s+ ε) such that the objective function V(w) can be increased at most.
To this aim, we should first find the direction v along which V(w0) tends to
be largest increased in the feasible region of L2,c(s + ε), and then optimally
move the i-th and j-th coefficients of wo along this direction to approach the
solution w∗ of L2,c(s+ ε).

When we fix the coefficients of the variables of wo except the i-th and
j-th ones, the cost function V (w) can be reexpressed as:

V(w)=V (wi, wj) + c0,

where V (wi, wj) corresponds to the portion of V(w) with respect to wi and
wj, and c0 is a constant independent of wi and wj. Then the model L2,c(s+ε)
with respect to the pairwise variables wi and wj is transformed into the
following form:

[L
(i,j)
2,c (s+ ε)] :

max
wi,wj

V (wi, wj)

s.t. w2
i + w2

j ≤ s−
∑

k 6=i,j

(wo
k)

2 + ε

|wi|+ |wj| ≤ c−
∑

k 6=i,j

|wo
k| .

Here we further assume that woTwo = s and ‖wo‖1 = c (in the following
we will prove that this assumption always holds along the generated solution
path). Under this assumption, it is easy to deduce that s −

∑

k 6=i,j

(wo
k)

2 =

(wo
i )

2 + (wo
j )

2 and c −
∑

k 6=i,j

|wo
k| = |wo

i | +
∣

∣wo
j

∣

∣, and thus L
(i,j)
2,c (s) can be
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equivalently written as:

[L
(i,j)
2,c (s+ ε)] :

max
wi,wj

V (wi, wj)

s.t. w2
i + w2

j ≤ (wo
i )

2 + (wo
j )

2 + ε
|wi|+ |wj| ≤ |wo

i |+
∣

∣wo
j

∣

∣ .

(5)

We then introduce an easy strategy to heuristically attain the direction
v, along which the objective function V (wi, wj) tends to be largest increased

in the feasible region of L
(i,j)
2,c (s+ ε), in the following.

Since wo corresponds to the solution to L2,c(s), we can reasonably as-
sume the following KKT conditions (we will discuss the reasonability of this
assumption in Section 2.4):

2XXTwo − γwo − λsign(wo) = 0

γ
(

woTwo − s− ǫ
)

= 0,

λ (‖wo‖1 − c) = 0,

γ ≥ 0, λ ≥ 0. (6)

Since ∆V(w) = 2XXTw, the gradient direction ∆V = (voi , v
o
j )

T of V (wi, wj)
at (wo

i , w
o
j ) can be attained by:

voi = sign(wo
i )(γ |wo

i |+ λ), voj = sign(wo
j )(γ

∣

∣wo
j

∣

∣+ λ). (7)

Assume |wo
i | ≥ |wo

j | without loss of generality, we can then get that: for the
orthogonal directions v = (sign(wo

i ),−sign(wo
j ))

T and v′ = (sign(wo
i ), sign(w

o
j ))

T ,
it holds that

vT∆V = γ(|wo
i | −

∣

∣wo
j

∣

∣) ≥ 0, v′T∆V = γ(|wo
i |+

∣

∣wo
j

∣

∣) + 2λ > 0.

It can then be deduced that the largest increase of the cost function V (wi, wj)

at (wo
i , w

o
j )

T in the feasible region of L
(i,j)
2,c (s+ ε) is to be attained along the

direction v =
(

sign(wo
i ),−sign(wo

j )
)T

, i.e., along the edge of the l1 constraint

area Ωc = {(wi, wj)
T | |wi|+ |wj| ≤ |wo

i |+
∣

∣wo
j

∣

∣}, as depicted in Figure 2. For
small stepsize ε, the optimum w∗ = (w∗

1, w
∗
2, · · · , w∗

d)
T of L2,c(s + ε) is thus

expected to be obtained by

w∗
k =







wo
k, for k 6= i, j,

wo
i + sign(wo

i )η, for k = i,
wo

j − sign(wo
j )η, for k = j,

(8)
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Figure 2: Graphical illustration for the mechanism of the pairwise-cooperate stagewise
updating process of the proposed method. The right panel depicts the demarcated area
of the left panel in a larger scale. The areas surrounded by the dashed and solid curves

represents the the constraint areas of L
(i,j)
2,c (s) and L

(i,j)
2,c (s+ε), respectively. The circle and

square represent wo, w∗ involved in (8), respectively; ∆V = (vi, vj)
T denotes the gradient

direction of V (wi, wj); and v = (sign(wo
i ),−sign(wo

j ))
T and v′ = (sign(wo

i ), sign(w
o
j ))

T

are two orthogonal directions. It is easy to see that v lies on the edge of the l1 constraint

area of L
(i,j)
2,c (s), Ωc = {(wi, wj)

T | |wi|+ |wj | ≤ |wo
i |+

∣

∣wo
j

∣

∣}.

where the stepsize η from wo to w∗ can easily be computed by

(wo
i + sign(wo

i )η)
2 +

(

wo
j − sign(wo

j )η
)2 − (wo

i )
2 −

(

wo
j

)2
= ǫ

⇒ 2η2 + 2(|wo
i | −

∣

∣wo
j

∣

∣)η = ǫ

⇒ η = ǫ
√

(|wo
i |−|wo

j |)2+2ǫ+|wo
i |−|wo

j |
. (9)

By updating wo to w∗ as aforementioned, it is easy to see that the assump-
tions w∗Tw∗ = s + ε and ‖w∗‖1 = c still hold. Such pairwise-coordinate
updating can thus be successively implemented until the convergence condi-
tion is met. All of the aforementioned can be easily understood by observing
the graphical illustration of Figure 2.

It should be noted that after the pairwise-coordinate updating (8), the
increased value of the cost function V (w) can be easily calculated as follows:

J (i, j, ǫ) = V (w∗)− V (wo)

=
(

sign(wo
i )v

o
i − sign(wo

j )v
o
j

)

η

+
∥

∥sign(wo
i )xi − sign(wo

j )xj

∥

∥

2

2
η2. (10)

The above J (i, j, ǫ) can thus be taken as a reasonable criterion against the
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Algorithm 1 Coordinate-Pairwise Algorithm for Sparse PCA (COP-PCA)

Given: X = [x1, · · · , xd]
T ∈ Rd×n, the stepsize ε

Execute:
1. Compute the optimal solution wpca of Lpca; w(0)← wpca; t← 0
2. Repeat

2.1. I ← nonzero element index of w(t)
2.2. (i∗, j∗)← argmax

i,j∈I
J (i, j, ε)

2.3. η ← ε
√

(|wt
i∗ |−|wt

j∗ |)2+2ε+|wt
i∗ |−|wt

j∗ |
2.4. If |wt

j∗ | < η, amend η = |wt
j∗ |, and go to step 2.5

2.5. w(t+ 1)← (wt+1
1 , wt+1

2 , · · · , wt+1
p )T , where wt+1

i∗ = wt
i∗ + sign(wt

i∗)η,

wt+1
j∗ = wt

j∗ − sign(wt
j∗)η, and wt+1

k = wt
k for k 6= i∗, j∗

2.6. t← t+ 1
Until the termination condition is satisfied

Return: the solution path {w(0),w(1),w(2), · · · } of L2(c, s)

aforementioned problem (i), i.e., the proper selection of the pairwise coordi-
nates to be updated. It should be noted that the zero element of wo should
not be selected as the candidate since its absolute value cannot be decreased
any more and the updating step (8) cannot be implemented for such element.

The above analysis implies that the solution path of L2(c, s) with vary-
ing s can be sequentially approximated by iteratively updating the pairwise
coordinates (see Eq. (8)) along which the maximum of J (i, j, ε) (see Eq.
(10)) can be attained. The initial point wo can be appropriately set as the
optimal solution wpca to the Lpca model. It is easy to deduce that such wo

corresponds to the solution to L2,c(s) where c = ‖wpca‖1 and s = 11.

2.3. The coordinate-pairwise algorithm for sparse PCA

We imbed the coordinate-pairwise updating technique as aforementioned
into Algorithm 1 (called the COP-PCA algorithm briefly). It is easy to
observe that the algorithm only involves simple computations and thus is
easy to be implemented. Here we only discuss the method for one PC vector.
More PCs of the data can be approximately constructed by applying the
proposed algorithm greedily to the remainder of the projected data into the
orthogonal spaces to the obtained PC vectors.

1After the initialization, the proposed method is to incrementally track the solution
path of L2,c(s) under fixed c = ‖wpca‖1 and gradually increased s.
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It should be noted that when |wt
j∗| < η, step 2.4 is activated to amend

the stepsize η for updating wt
i∗ and wt

j∗ in the algorithm. This is because in
this case, the stepsize η calculated in step 2.3 of Algorithm 1 will conduct
the abnormity that the updated w(t + 1) goes out of the feasible region of
L2,c(s+ ε). In specific, let η1 = η − |wt

j∗|, and then we have

|wt
i∗ + sign(wt

i∗)η|+ |wt
j∗ − sign(wt

j∗)η|
= |wt

i∗ + sign(wt
i∗)η1 + sign(wt

i∗)|wt
j∗||

+|wt
j∗ − sign(wt

j∗)η1 − sign(wt
j∗)|wt

j∗||
= |wt

i∗|+ η1 + |wt
j∗|+ η1

> |wt
i∗|+ |wt

j∗|.

Step 2.4 of the proposed algorithm easily resolves this problem by shortening
the stepsize η as a smaller η1 = |wt

j∗|. It is easy to see that as long as this step

is activated, wt+1
j∗ attains 0 and the corresponding label j∗ is to be moved

out from the non-zero element index I, and simultaneously the number of
nonzero elements (i.e., the sparsity) of w(t) reduces one along the solution
path so generated. It can thus be deduced that this step is to be activated
no more than d− 1 times.

The remainder problem is the proper specification of the stepsize ε and
appropriate setting of the termination condition for coordinate-pairwise up-
dating iterations. When we initiate wpca (the solution of Lpca) as the starting
point of our algorithm, a natural idea is to implement the iterations of the
algorithm until the sparsity of w(t) is reduced to one. In this process, the
coefficients of w(t) shrink to 0s one by one based on their capability of catch-
ing up the variance information V (w) from data. Along the solution path
so generated, the l2 constraint parameter s monotonically increases from 1
(corresponding to w(0) = wpca) to ‖wpca‖21 (corresponding to the last ele-
ment in the solution path, where only one nonzero element left in w(t)), and
in each iteration, w(t + 1)Tw(t + 1) brings ε increase to w(t)Tw(t). Thus,
the stepsize ε and the number of iteration steps IterNum is of the following
relationship:

IterNum =
‖wpca‖21 − 1

ε
. (11)

This means that instead of directly specifying ε, we can more easily preset an
appropriate iteration number IterNum for the algorithm, and the stepsize ε
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is then implied to be
‖wpca‖21−1

IterNum
based on Eq. (11). Under such specification,

the algorithm is to be terminated after IterNum iterations, and the entire
solution path of the L2(c, s) model with respect to s is simultaneously to be
achieved. Besides, if the proper PC sparsity is known beforehand by prior
knowledge or experience, then we can simply initiate a small ε or equivalent-
ly a large iteration number IterNum, and repeat the coordinate-pairwise
updating of w(t) until its sparsity attains the pre-specified value.

2.4. Computational complexity

In this subsection we discuss the computational complexity of the pro-
posed algorithm. While only very simple computations are involved in the
coordinate-pairwise updating process (i.e., steps 2.3-2.6), the computation of
the proposed COP-PCA algorithm is mainly costed on sorting the d(d−1)/2
elements of J (i, j, ε) (i.e., step 2.2), which needs around O(d2logd) time by
utilizing the well known heapsort algorithm. This cost, however, can be
further alleviated since the {i, j} candidates which are possibly chosen as
the maximum of J (i, j, ε) can be picked up from I by some useful prior
information, as described in the following.

Based on Eq. (10), by omitting the o(ε) element of J (i, j, ε), it can be
approximated as

J (i, j, ε) ≈
|voi | −

∣

∣voj
∣

∣

√

(|wo
i | −

∣

∣wo
j

∣

∣)2 + 2ε+ |wo
i | −

∣

∣wo
j

∣

∣

=
γ

√

1 + 2 ε

|wo
i |−|wo

j | + 1
.

This naturally implies the following fact: Instead of sorting the d(d − 1)/2
elements of J (i, j, ε), we only need to sort O(d) elements of {|wt

k|, k ∈ I},
and collect m (m≪ d) largest and smallest ones from them as candidates for
further comparison of J (i, j, ε). The computation of the proposed algorithm
is then decreased to O(ndlogd)×IterNum correspondingly. This means that
the computational complexity of the proposed algorithm is approximately
linear in both the size and the dimensionality of the input data.

As compared with the computational complexities of the current sparse
PCA methods, such as O(nd3)×IterNum of SPCA, O(nd4logd)×IterNum
of DSPCA, O(ndlogd)×IterNum of EMPCA, O(nd2)×IterNum of ALSP-
CA, O(nd)× IterNum of GPowerl0, and O(nd3)× IterNum of PathSPCA
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(where IterNum is the iteration number of the corresponding method), it is
evident that the proposed algorithm is of a comparable computational com-
plexity for sparse PCA calculation. Then the advantage of the new algorithm
is obvious: it is capable of yielding the entire solution path of the sparse PCA
model only under one such computation. Also, because along the path, each
solution is ameliorated gradually by fully making use of the previous solution
information, the proposed algorithm is expected to perform consistently well
to get the entire solutions to the problem.

2.5. Discussion on the reasonability of the KKT assumption

The reasonability of the KKT assumption (6), as well as the COP-PCA
algorithm, lies in the following two aspects. First, the solution path generated
by the COP-PCA method is capable of effectively tracking the exact path
of L2,c(s) in all of our implemented experiments. This empirically validates
that the KKT conditions (6) of L2,c(s) are expected to be satisfied along
the generated path. Second, the path w(t) generated from Algorithm 1 is
always beneficial to explore the intrinsic information of sparse PCs of the
data at the following four-fold aspects: (i) ‖w(t)‖1 keeps to be a constant
(i.e., ‖wpca‖1) along the path; (ii) w(t)Tw(t) linearly increases (with the
slope ε) along the path; (iii) V (w(t)) (the objective function) monotonically
increases along the path; (iv) the sparsity of w(t) monotonically decreases
from d to 1 along the path (Figure 5 graphically illustrates these aspects).
The path so generated thus provides a very useful spectrum underlying the
the intrinsic implementation mechanism of the sparse PCA model L2,c(s), as
substantiated in the following experiments.

3. Experiments

To evaluate the performance of the proposed COP-PCA algorithm, it was
applied to several synthetic and real problems. For comparison, 9 of the cur-
rent sparse PCA methods, including SPCA [4], DSPCA [5], PathSPCA [6],
EMPCA [10], GPowerl1 , GPowerl0 , GPowerl1,m, GPowerl0,m[8], and ALSPCA
[11], have also been utilized. The results are summarized and interpreted in
the following discussion. It should be noted that for each problem, the sparse
PCs corresponding to different sparsity constraint parameters were attained
by executing the proposed algorithm only once, while by running the other
competing methods multiple times.
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3.1. Hastie data

The Hastie data set was firstly proposed by [4], and has become one of
the most frequently utilized data for the performance evaluation of sparse
PCA. The data set contains a collection of 10-D data points (x1, · · · , x10)

T

generated via the following two processes: firstly three hidden factors were
created:

V1 ∽ N(0, 290), V2 ∽ N(0, 300), V3 = −0.3V1 + 0.925V2 + ε,

where ε ∽ N(0, 1), and V1, V2 and ε are independent; afterwards, 10 observed
variables were generated as

xi = V1 + εi, εi ∽ N(0, 1), i = 1, 2, 3, 4,

xi = V2 + εi, εi ∽ N(0, 1), i = 5, 6, 7, 8,

xi = V3 + εi, εi ∽ N(0, 1), i = 9, 10, (12)

where εis (i = 1, · · · , 10) are independent. It has been clarified that the data
generated as above are of intrinsic sparse PC vectors [4]. The first PC vector
should recover the factor V2 only using (x5, x6, x7, x8), and the second should
recover the factor V1 only using (x1, x2, x3, x4). The 9 current sparse PCA
methods and the proposed COP-PCA method were respectively employed
to calculate the first two PC vectors of the Hastie data. Through properly
tuning parameters, all of the employed methods, except EMPCA, Gpowerl0,m ,
and Gpowerl1,m , can faithfully deliver the ideal sparse representations of the
first two PCs underlying the data. The speciality of COP-PCA is that it
further generates the smooth solution paths for the corresponding sparse PC
vectors, as depicted in Figure 3. The path intuitively depicts the intrinsic
evolution process of the corresponding PC vector when it varies from dense
to sparse.

3.2. Pitprop data

The pitprop data firstly introduced in [24] contain 180 observations and
13 measured variables. It is the classic example showing the difficulty of in-
terpreting principal components [4, 9]. For the first PC of this data set, the
proposed COP-PCA method, together with DSPCA, EMPCA, GPowerl1 ,
and GPowerl0 , consistently deliver the ideal PC vector with different pre-
specification of its sparsity2. This can be easily observed from Figure 4(a).

2We have tried but failed to properly tune the parameters of Gpowerl0,m , Gpowerl1,m
in the pitprop data, and hence both of their results are not involved in this section.

13



0 2000 4000 6000 8000 10000
−0.5

0

0.5

1

1.5

2

2.5

3

Iteration Steps

C
oe

ffi
ci

en
ts

Entire Path of Hastie Data (1−th PC)

 

 

0 2000 4000 6000 8000 10000
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Iteration Steps

C
oe

ffi
ci

en
ts

Entire Path of Pitprop Data (1−th PC)

 

 
w1
w2
w3
w4
w5
w6
w7
w8
w9
w10
w11
w12
w13

0 2000 4000 6000 8000 10000
−2.5

−2

−1.5

−1

−0.5

0

0.5

 

 

C
oe

ffi
ci

en
ts

Iteration Steps

Entire Path of Hastie Data (2−th PC)

w1
w2
w3
w4
w5
w6
w7
w8
w9
w10

w1
w2
w3
w4
w5
w6
w7
w8
w9
w10

Figure 3: The entire solution paths corresponding to the first (the left panel) and second
(the middle panel) PCs of the Hastie data, and the first PC of the pitprop data (the right
panel). All paths were generated from the proposed COP-PCA method by presetting the
iteration number as 10000.
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Figure 4: (a)(c) Percentage of explained variances with respect to different pre-specified
cardinalities of the first PC vector attained by applying the employed methods to pitprop
data and colon cancer data, respectively. (b)(d) Percentage of cumulative variances ex-
plained by the first 6 and 10 PCs attained by applying the sparse PCA methods to pitprop
data and colon cancer data, respectively. The embedded sub-panels in (c)(d) depict the
amplifications of the positions the corresponding arrows point from.
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It is clear that more variance is explained by these methods than other em-
ployed sparse PCA methods with the same number of non-zero PC loadings.
Besides, since the first 6 PCs of the data capture 87% of the total variance,
we compared the explanatory powers of 6 sparse PCs of all these employed
methods. The COP-PCA captures 80.68% of the total variance with cardi-
nality pattern of (4, 4, 4, 4, 4, 4) (totally 24 non-zero loadings), as compared
with 76.99% of SPCA, 79.71% of DSPCA, 80.28% of PathSPCA, 80.68% of
EMPCA, 80.95% of GPowerl1 , 81.04% of Gpowerl0 , 53.59% of ALSPCA un-
der the same PC cardinality settings, as depicted in Figure 4(b) respectively.
It is evident that as compared to the current sparse PCA methods, the pro-
posed method is of the comparable, or even better performance on variance-
capturing capability on the first 6 PCs. The prominence of the COP-PCA
method lies on the fact that it can further generate the entire solution path
of the problem, as depicted in the right panel of Figure 3. It is seen that the
13 variables of the data sequentially shrink to zeroes, intrinsically reflecting
their different significance on capturing data variance.

3.3. Colon cancer data

The colon cancer data [7] consist of 62 tissue samples (22 normal and
40 cancerous) with the gene expression profiles of 2000 genes extracted from
DNA micro-array data. The biological background of the data makes it
a suitable candidate for studying the performance of sparse PCA methods
where feature selection is needed to get interpretable results. We have per-
formed the 9 current sparse PCA methods on the colon cancer data, while
the experiments on SPCA, DSPCA, PathSPCA, GPowerl1,m, GPowerl0,m,
and ALSPCA could not be completed in reasonable time. Thus the results
do not include the results of these methods.

The first PC vector of the data with different specified number of non-
zero loadings (from 500 to 1999) were calculated by EMPCA, Gpowerl1 ,
Gpowerl0 , and COP-PCA methods, respectively. The mean variance ex-
plained by COP-PCA among these cardinality specifications is 0.003382%,
0.003191%, and −0.003074% more than those of EMPCA, Gpowerl1 , and
Gpowerl0 , respectively. It can be clearly observed from Figure 4(c) that such
deviations are very unsubstantial. The similar phenomenon is observed when
applying these methods to compute the first 10 sparse PCs of the data. The
corresponding cardinalities of these PC vectors were all set as 1000 for easy
comparison. As compared to 84.1821% of the total variance captured by the
first 10 PCs of classical PCA, COP-PCA, EMPCA, Gpowerl1 , and Gpowerl0
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Figure 5: The tendency curves of the l1 constraint ‖w(t)‖1, the l2 constraint w(t)Tw(t),
and the objective V (w(t)), corresponding to the first PC solution path yielded from the
COP-PCA method. The first, second, third rows of panels depict the results obtained on
the Hastie data, the pitprop data and the colon cancer data, respectively.

explain 83.0324%, 83.0309%, 83.0269%, and 83.0341% of the total variance
by their corresponding first 10 sparse PC vectors, as demonstrated in Figure
4(d). From the figure, it is evident that the four cumulative variance curves
cannot be materially distinguished, either. These results show that for such
data, all of the four employed methods are of similar capabilities on sparse
PCA computation, while the proposed method dominates on its meaningful
exploration on the entire solution path of the sparse PC vectors and easy
specification of initial parameters.

Besides the above results, we also depict in Figure 5 the tendency curves
of the l1 constraint ‖w(t)‖1, the l2 constraint w(t)Tw(t), and the objective
V (w(t)) of the L2,c(s) model, corresponding to the solution paths of the
first PC of the Hastie data, the pitprop data and the colon cancer data, as
calculated by the COP-PCA method, respectively. It is easy to observe that
the l1 constraint ‖w(t)‖1 keeps to be a constant, the l2 constraint w(t)Tw(t)
linearly increases, and the objective V (w(t)) monotonically increases along
the generated solution path w(t). All of these results are consistent with
our theoretical arguments presented in the end of Section 2, and thus further
substantiate the intrinsic effectiveness mechanism of the proposed method.
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3.4. Computation complexity evaluation

As analyzed in Section 2.4, the computational cost of the proposed method
is comparable or even less than the current sparse PCA methods. In this sec-
tion we want to further verify this point through experiments. For this task,
we have designed 18 extended Hasite data sets with dimensions ranging from
d = 10 to d = 180 with interval 10. Each data set contains a collection of
data points (x1, x2, · · · , xd)

T generated in the following way: firstly create
three hidden factors:

V1 ∽ N(0, 290), V2 ∽ N(0, 300), V3 = −0.3V1 + 0.925V2 + ε,

where ε ∽ N(0, 1), and V1, V2 and ε are independent; and then generate d
observed variables as:

xi = V1 + εi, εi ∽ N(0, 1), i = 1, 2, · · · , 0.4d,
xi = V2 + εi, εi ∽ N(0, 1), i = 0.4d+ 1, 0.4d+ 2, · · · , 0.8d,
xi = V3 + εi, εi ∽ N(0, 1), i = 0.8d+ 1, 0.8d+ 2, · · · , d, (13)

where εis (i = 1, · · · , d) are all independent. Just as the Hastie data, the data
sets so generated are also of intrinsic sparse PC vectors. The first PC vector
tends to recover the factor V2 only using (0.4d + 1, 0.4d + 2, · · · , 0.8d) vari-
ables, and the second should recover the factor V1 only using (1, 2, · · · , 0.4d)
ones. The 9 competing sparse PCA methods, including SPCA, PathSPCA,
EMPCA, GPowerl1 , GPowerl0 , GPowerl1,m, GPowerl0,m, ALSPCA and the
proposed COP-PCA method were utilized to calculate the first two sparse PC
vectors of each data set. We recorded the computation times of these meth-
ods and compared their efficiency in Figure 6. To make a fair comparison, we
set the maximal iteration number of all competing methods for calculating
each PC vector as 100. The actual average iteration number of the compet-
ing methods among these 18 experiments are: SPCA, 200; PathSPCA, 76;
EMPCA, 200; GPowerl1 , 8.3; GPowerl0 , 6.7; GPowerl1,m, 6.3; GPowerl0,m,
5.7; ALSPCA, 5.6; and COP-PCA, 200, respectively. The average time of
the utilized methods among these experiments are: SPCA, 0.2157s; Path-
SPCA, 0.1466s; EMPCA, 1.8792s; GPowerl1 , 0.0614s; GPowerl0 , 0.0496s;
GPowerl1,m, 0.0795s; GPowerl0,m, 0.0646s; ALSPCA, 0.1574s; and COP-
PCA, 0.1128s, respectively.

From the above statistics and Figure 6, it can be seen that the compu-
tation cost of the proposed COP-PCA method is comparable to the other
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Figure 6: The computational times of SPCA, PathSPCA, EMPCA, GPowerl1, GPowerl0,
GPowerl1,m, GPowerl0,m, ALSPCA and COP-PCA on 18 extended Hastie data sets with
the dimensions varying from d = 10 to d = 180.

competing sparse PCA methods (a little higher than GPowerl1 , GPowerl0 ,
GPowerl1,m and GPowerl0,m, while lower than SPCA, PathSPCA, EMPCA
and ALSPCA). This complies with our theoretical analysis aforementioned
in Section 2.4.

4. Conclusion

Inspired by the early path methods constructed on the other settings, we
have proposed a new path-following algorithm for the sparse PCA problem.
The proposed algorithm is simple and easy to be implemented, and is expect-
ed to effectively explore the entire solution path of the sparse PCA model.
Along the path so generated, the data variables sequentially shrink to zeroes,
intrinsically reflecting their different significance on capturing data variance.
The path so generated can not only provide great convenience on proper s-
election of optimal tuning parameter for real sparse PCA applications, but
also give further insight into the intrinsic effect of the sparse PCA model.
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Appendix: Proof of Theorem 1

Theorem 1. For the optimal solutions wl1(t) and wl2,c(s) of L1(t) and

L2,c(s) models, respectively, it holds that wl1(t) = t
c
wl2,c(

c2

t2
) and wl2,c(s) =√

swl1(
c√
s
).

Proof:
(1) wl2,c(

c2

t2
) can be attained through the optimization model L2,c(

c2

t2
) as

follows:
wl2,c(

c2

t2
) = argmax

w

V (w) = wTXXTw

s.t. wTw ≤ c2

t2

‖w‖1 ≤ c.

(14)

As a comparison, c
t
wl1(t) can be obtained through solving the following

optimization:

c
t
wl1(t) = argmax

w

V ( t
c
w) = t2

c2
wTXXTw

s.t. t2

c2
wTw ≤ 1

t
c
‖w‖1 ≤ t,

(15)

which is equivalent to the following model:

argmax
w

t2

c2
wTXXTw

s.t. wTw ≤ c2

t2

‖w‖1 ≤ c.

(16)

Evidently, the two optimization models (14) and (16) are intrinsically equiv-
alent, and thus wl2,c(

c2

t2
) = c

t
wl1(t), i.e.,

wl1(t) =
t

c
wl2,c(

c2

t2
). (17)

(2) By substituting s = c2

t2
into (17), we have

wl1(
c√
s
) =

1√
s
wl2,c(s),

i.e.,

wl2,c(s) =
√
swl1(

c√
s
).

The proof is then completed. �
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