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Functional interfaces are at the core of research in the emerging field of ‘domain
boundary engineering’ where polar, conducting, chiral, and other interfaces and twin
boundaries have been discovered. Ferroelectricity was found in twin walls of paraelec-
tric CaTiO3. We show that the effect of functional interfaces can be optimized if the
number of twin boundaries is increased in densely twinned materials. Such materials
can be produced by shear in the ferroelastic phase rather than by rapid quench from
the paraelastic phase.

Keywords: twin boundaries; multiferroic; CaTiO3; twinning

1. Introduction

Functional interfaces are not simple structural juxtapositions of adjacent bulk materials,

but contain novel structural elements which do not exist in the bulk. Typical examples

are superconducting domain boundaries in insulating materials [1,2], twin boundaries

with high defect mobilities [3–6], two-dimensional electron gas at interfaces [7–10], un-

usual vortices near twin boundaries [11], or multiferroicity and chirality at domain bound-

aries [12–14] If such properties are exclusively related to domain boundaries, such as twin

walls, then they qualify as objects of the emerging field of ‘domain boundary engineering’

[15,16] which embodies the hope that functional domain boundaries can, one day, be

reproduced in an engineering fashion for applications, say, in electronic industry. A typi-

cal example is the IBM racetrack memory based on the controlled movement of magnetic

domain walls. Their movement is registered electromagnetically and their position is

used as memory information. The desired breakthrough is now to find ferroelectric do-

main walls where the information can be written and read by simple application of elec-

tric fields. The memory is the location of the wall and the ferroelectric spontaneous

polarization of that domain wall. The wider industrial consequence of such local struc-

tures as memory devices, conductors, holographic templates, or as membranes for

batteries have motivated significant research efforts during recent years.

2. CaTiO3 and high twin densities

One of the first materials, which was identified theoretically for domain boundary applica-

tions, was CaTiO3. Experimentally, CaTiO3 is the first ferroelastic material where the
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succeeded in observing the predicted ferroelectric polarization inside a ferroelastic twin

wall while the rest of the crystal remained centrosymmetric. Two lines of research came

together in this material: first, it was shown that twin walls and antiphase boundaries repre-

sent sinks for oxygen vacancies. The stabilization energy for oxygen vacancies was pre-

dicted to be �0.7 eV with a repulsive interaction between vacancies [5,17–19]. It was

then expected that oxygen vacancies are rather uniformly distributed within twin walls and

depleted in the bulk [20]. The second prediction was based on the inherent instability of

regular TiO6 octahedra where Ti positions tend to locate slightly off the geometrical mid-

point of the octahedra [17]. Numerical calculations [17] had shown that twin walls in

CaTiO3 are ferrielectric with maximum dipole moments at the wall; a small ferroelectric

dipole moment was found perpendicular to the wall with alternating (antiferroelectric)

dipoles between neighboring walls. The same tendency for polar layers in CaTiO3, e.g.

near surfaces, was also predicted for CaTiO3/BaTiO3 interfaces [21].

While computer simulations show polar twin walls rather clearly, the challenge for

domain boundary studies is to observe the described singularities experimentally. Van

Aert et al. [22] have shown that sufficient advances have been made using aberration-

corrected transmission electron microscopy (TEM) imaging in combination with statisti-

cal parameter estimation theory [23–25] to investigate functional domain boundaries (see

Figure 1). They confirmed that only the Ti positions take part in the polar deformation of

the unit cell but that Ca remains, within experimental observations, inside the 12-fold

Figure 1. Exit-wave reconstructions of the (110) twin boundary (after [22]). (a) Amplitude of the
reconstructed exit wave. The CaTiO3 crystal is imaged along the [001] zone axis orientation; the
(110) twin boundary is indicated by the horizontal white line. The Ca and Ti column positions
are marked by red and green dots, respectively. The angle of 181.2� reveals the twin relation over
the interface. (b) Phase of the reconstructed exit wave, the fitting region used for the statistical
parameter estimation, is indicated by the white rectangle.
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coordinated cavity inside the perovskite structure. The functional character of the twin

wall was hence proven (Figure 2a,b).

The question then arises: what other properties can be expected from such ‘exotic’

walls. Collective phenomena were discussed in [26,27] which leads directly to the practi-

cal proposition to make as many twin boundaries as possible in a sample. The dynamic

behavior of twin walls under external forcing by applied strains to a sample depends sen-

sitively on the inner structure of the wall. It can be expected that local pinning of chiral

walls [12,28] will impede the speed of advancing walls. The wall movement is then a su-

perposition of ballistic and jerky movements. Pinning centers for such movements are re-

lated to impurities, while intrinsic pinning occurs when walls intersect in so-called

junctions. The twin density is closely related to the junction density. The key advance in

this research is related to the way high twin densities are achieved [28,29], including the

role played by the junction density and the internal properties of the ferroelastic material

which allows such junctions to form [30]. Two options exist: first, one can quench a sam-

ple from a high temperature (the paraelastic phase) to temperatures well inside the stabili-

ty field of the ferroelastic phase. This method has been used ever since ferroelastic

crystals were discovered. It is the reverse of the slow cooling process, which was

employed whenever twinning of a sample during a phase transition was considered un-

wanted (say in crystallographic investigations of single crystals) and researchers tried to

avoid working with twinned materials. This situation has drastically changed: today we

often wish to make as many twin boundaries as possible so that quenching rather than

slow cooling becomes the method of choice. The second methodology to increase the

twin density is to deform the crystal by external shear inside the stability field of the fer-

roelastic phase. This situation is encountered when thin films of one ferroelastic material

are deposited onto another ferroelastic material at high temperatures. When the device is

cooled to room temperature, the template will shear and impose this shear to the thin

film. When this shear strain surpasses the yield strain, the thin film will spontaneously

twin with a high twin boundary density. This pattern is then essentially stable under fur-

ther shear. Driven systems [31] were used experimentally to generate high twin densities

[32,33].

Figure 2. Map of the mean Ti atomic displacement vectors (after [22]). (a) Mean displacements of
the Ti atomic columns from the center of the four neighboring Ca atomic columns and indicated
by green arrows. Displacements of Ti atomic columns in the (b) x- and (c) y-directions averaged
along and in mirror operation with respect to the twin wall together with their 90% confidence
intervals.
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We can now discuss the difference between these two methods. When disorder is gen-

erated by structural rather than micro structural phenomena, one requires a source of dis-

order, which is commonly provided by local atomic disorder. Starting from uniform

ground states, quench will freeze in some disorder of the para phase, which represents the

initial state in the ferroelastic phase from where the microstructure evolves. Ref. [34] has

derived the structure factor of the displacement – displacement correlation for T > Tc in

the simple case of Ornstein–Zernike fluctuations:

SK~

�
1

r2c
þ a2cos2Qþ b2sin4Qsin22’þ gk2

��1

:

This function is a four-armed starfish in three dimensions and represents the diffuse dif-

fraction pattern in Figure 3(a). The equivalent microstructure is tweed [35] that evolves

into stripe patterns that have a structure of dog’s bones shown in Figure 3(b) [36–39].

The kinetic evolution is then for the quench experiment, the gradual change from the star

to the dog’s bone.

Figure 3. The kinetic effect of annealing tweed pattern with (a) a four-armed starfish-type struc-
ture factor T > Tc to a stripe pattern with (b) a dog’s bone structure.
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The statistical fluctuations in a system with order parameters with a local double well

potential that are coupled with elastic interactions will show fluctuations, which aligned

preferentially along the two elastically ‘soft’ directions. These are the four arms of the

starfish with large fluctuations and suppressed fluctuations between the arms.

Below the transition point, the twin boundaries form along the first elastically soft di-

rection and disallow fluctuations in the second elastically soft direction. The four arms of

the starfish are then reduced to heterogeneities along only one direction and their shape

reflects the more confined nature of the twin boundaries. Each twin boundary will then

show a ‘dog’s bone’ structure. The superposition of all such structures is observed experi-

mentally (see [27,38,39]) (Figures 4 and 5).

The range in k-space in Figure 5 is from k ¼ �0.04 to 0.04 reciprocal units. These

images would be observed in X-ray or neutron diffusion near the Bragg reflections, taken

into account of the atomic scattering functions, and are equivalent to those in Figure 3 for

simple elastic systems. The elastically soft system is shown in (a) and the hard system in

(b). Note the slimmer arms of the starfish, as compared with the quenched sample in

Figure 3. The stronger concentration of the diffuse scattering originates from the stricter

confinement of the twin domains along the elastically soft directions and the smaller num-

ber of junctions compared with tweed pattern. The same conditions for a sample with

‘hard’ elastic interactions (Figure 5b) show the predominance of one domain orientation

and fewer twin walls [27].

Comparison between the results in Figures 4 and 5 clearly shows that the microstruc-

ture of the quenched sample is different from that of the sheared sample. Quenching leads

to quasi-harmonic fluctuations which can then sharpen up under low-temperature anneal.

They will lead after long anneal to stripe patterns. Sheared samples are initially better

organized and show twin boundaries which are largely parallel to each other right from

Figure 4. Domain pattern formed after the collapse at the yield stress for a large system with
106 atoms in (a) and (b) and for a small system (10200 atoms) in (c) and (d). (Length scales are
1000 atoms along one corner of the images in [a] and [b], and 101 atoms per corner in [c] and [d]).
The images in (a) and (c) represent elastically soft systems, while images in (b) and (d) show elasti-
cally hard systems (the colors refer to the local shear angles, after [27]).
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Figure 5. (a) and (b) Diffuse scattering (scattering factor) of strain-induced microstructures for a
sample with 106 atoms and soft nearest neighbor interactions.
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the point of their nucleation. Intersections of twin boundaries lead to the formation of

junctions which are the main characteristics of the microstructure (rather than the twin

density in a quenched stripe pattern). Computer simulation indicates that denser micro-

structures can be obtained by shear rather than by quench [27].

In conclusion, we find that the effect of functional interfaces, such as those in CaTiO3,

can be optimized if the number of twin boundaries is increased. The optimal way to ob-

tain highly twinned materials is not necessarily by rapid quench but rather by slow shear

of the material in the ferroelastic phase.
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