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Phase diagram of ferroelastic systems in the presence of disorder: Analytical model
and experimental verification
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There is little consensus on the nature of the glass state and its relationship to other strain states in ferroelastic
materials which show the shape memory effect and superelasticity. We provide a thermodynamic interpretation
of the known strain states, including precursory tweed and strain-glass phases, by mapping the problem onto
a spin model and analytically obtaining the phase diagram using real-space renormalization group methods.
We further predict a spontaneous transition from the glass state to the ordered martensite phase. We verify this
prediction by mapping out the experimental phase diagram for the ternary ferroelastic alloy Ti50(Pd50−xCrx)
and demonstrate the emergence of the spontaneous transition. Our work thus provides a consistent framework
in which to understand the various experimental and theoretical studies on the glassy behavior associated with
ferroelastic materials.
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I. INTRODUCTION

Ferroelastic materials undergo first-order transitions that
are characterized by a lattice strain or shuffle, and transform
from a high-temperature strain-disordered paraelastic state
(austenite) to a low-temperature strain-ordered ferroelastic
state (martensite) where long-range elastic interactions are
important. It is known that the thermodynamics of such
phase transitions is strongly influenced by the presence of
disorder.1–7 In particular, statistical compositional fluctuations
play a fundamental role in bringing about a precursory
strain state known as tweed. This is a cross-hatched pat-
tern observed well above the martensitic-transformation start
temperature.8–10 Recent experiments on ferroelastic alloys
have shown that by introducing disorder via doping point
defects or compositional variations beyond a critical value, an
abnormal glasslike state, which is a frozen state of local strain
order, can be generated below a transition temperature.11–15

This glass phase was initially observed in Ni-rich Ti50−xNi50+x

where the austenitic B2 parent structure appeared to persist to
0 K above a compositional threshold x > 1.3, below which
it transformed to a martensitic B19′ phase.11 This so-called
“strain glass” is of interest not only from a theoretical point of
view; it has been shown to display superelasticity and shape
memory effects, which are typically seen in austenitic and
martensitic states.15

Experiments and theory have so far provided little under-
standing of the nature of the glassy behavior in ferroelastic ma-
terials and its relationship to other strain states. For example,
the tweed state has been the subject of a number of theoretical
studies and has variously been interpreted as a “glass”
phase.9,10 Although recent experiments distinguish strain glass
from tweed,12 the claims are largely based on diagnostics that
monitor certain static and dynamic aspects of the materials;

these include the broken ergodicity of static properties [e.g., the
strain measured by zero-field (ZFC) and field cooling (FC)],
or frequency dispersion of dynamic properties.14 However,
nonglassy phases, such as polytwins in martensite or nanos-
tructured ferromagnetics (e.g., FeReCr), also show similar
nonergodic static behavior and frequency dispersion.16,17 In
addition, although numerical simulations based on contin-
uum Landau descriptions in the presence of disorder13 can
reproduce some form of the experimental results,11–15 such
solutions are also based on similar empirical diagnostics and
tend not to be predictive. Therefore, there is a need for a
predictive approach using analytical techniques that would
allow the various ordered and disordered ferroelastic states to
be distinguished and which can be experimentally verified.

In this paper, we provide a thermodynamic interpreta-
tion of the known strain states in a ferroelastic system,
including austenite, martensite, tweed, and strain glass. After
mapping the problem onto a spin model, we use real-space
renormalization group (RG) methods to analytically calculate
thermodynamic phases in terms of RG attractive fixed points.
The RG approach progressively integrates out microscopic
degrees of freedom so that the attractive basins characterize
the physics at large scales. The values of the interaction
strength and strength of disorder uniquely characterize the
different phases, including the frustrated glassy state, thereby
allowing the phase diagram in terms of temperature and
disorder to be determined. We thus theoretically determine
the phase diagram of a model ferroelastic, and the phase
diagram predicts a spontaneous transition from strain glass
to martensite if the strength of disorder in the system has
intermediate values. This latter aspect was apparently not
recognized previously, although it has recently been speculated
that the spontaneous transition occurs.18 We verify these
predictions by mapping out the experimental diagram for
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a ternary ferroelastic Ti50(Pd50−xCrx) alloy (where x is the
atomic concentration of Cr) and examining its consequences.
Moreover, our calculations show that the tweed phase can
be interpreted as a thermodynamic equilibrium phase. Our
model thus provides a unified, consistent framework in which
to understand the various experimental and theoretical studies
on the glassy behavior associated with ferroelastic materials.
Moreover, we find that the long-range elastic interaction or
the precise form of the disorder is not crucial to describing the
phase diagram. These ideas are well recognized for spin glasses
but are not as well known within the strain-glass community.

The plan of our paper is as follows. In the next section,
we review how effective spin models can be deduced from
Ginzburg-Landau (GL) functionals, and we discuss the various
means to include quenched disorder in the model. The third
section is devoted to the calculation of the analytical phase
diagram from our model in the presence of disorder. We explain
how a real-space RG procedure can be implemented and we
present several approaches and approximations to solve the
resulting equations. The results are compared to Monte Carlo
simulations and we provide a discussion of the relevance of
simplified numerical algorithms—be it a one-spin-flip Monte
Carlo or the steepest-descent method for the continuum GL
model—for these types of problems. The role of the long-range
interactions is also discussed in relation to previous work. Sec-
tion IV contains our experimental results on Ti50(Pd50−xCrx)
alloys. We measure the transformation behavior of the alloys
by means of dynamical mechanical analysis (DMA) and the
electric resistivity. In situ synchrotron x-ray and transmission
electron microscopy (TEM) were employed to detect the
predicted spontaneous phase transformation. Our experiments
lead to a phase diagram that is very similar to the one
we establish analytically. Finally, we discuss our results in
the broader context of ferroelastic transitions in general and
the possible generalizations of our theoretical work to more
complex transitions.

II. PSEUDOSPIN MODEL AND QUENCHED IMPURITIES

Our approach is to use a model that captures the salient
physics and microstructure associated with ferroelastic trans-
formations. We will use a pseudospin model derived from a
continuum formulation based on a Landau potential and strain
compatibility forces.19,20 The addition of quenched disorder
then permits studies of the model using the tools of statistical
mechanics. We review in this section the crucial steps in
the derivation of such spin models starting from standard
Ginzburg-Landau free-energy functionals. We then discuss
how the effect of impurities in the original GL theories can
be taken into account in spin models.

A. Spin model

The idea of using a spin model for ferroelastic transitions
was introduced in Ref. 19. This idea was later generalized to
many other transitions and shown to capture the salient physics
of continuum GL models.20 For simplicity, we will study
here the two-dimensional (2D) square-to-rectangle (SR) trans-
formation driven by the deviatoric strain e2 = 1√

2
(ε11 − ε22),

where εμν are components of the strain tensor εμν = 1
2 ( ∂uμ

∂rν
+

∂uν

∂rμ
) defined in terms of displacements u. The generalization

to more complicated—and more realistic—transitions will
be discussed in Sec. V. The Landau free energy of the
system is FGL[e2] = E0

∫
d2r[fL + fG + fLR], where the

local free energy for the first-order transition is fL = (τ − 1)e2
2+ e2

2(e2
2 − 1)2, the gradient term fG = ξ 2|∇e2|2 accounts for

the cost of creating interfaces between different variants,
and fLR = A1

2

∫
d2r ′e2(�r )U (�r − �r ′)e2(�r ′) is the elastic long-

range force. The scaled temperature τ = T −Tc

Teq−Tc
is expressed in

terms of the transition temperature Teq and Tc is the tempera-
ture of the austenite stability limit. The long-range term comes
from the so-called compatibility equation �∇ × ( �∇ × ε)T = 0
on the strain tensor ε, that ensures that the displacement field is
single valued. This leads to the anisotropic kernel U (�r − �r ′),
which reads in Fourier space

Û (�k) =
(
k2
x − k2

y

)2

k4 + 8A1k2
xk

2
y

/
A3

ν(�k). (1)

The factor ν(�k) = 1 − δk,0 ensures that this long-range term
vanishes for a uniform strain field. In all that follows, the ratio
A1/A3 = 1

2 will be kept constant. Transforming back into real
space, we roughly have U � cos 4θ

r2 .
The strain e2 is the order parameter for this transition.

The Landau term fL = (τ − 1)e2
2 + e2

2(e2
2 − 1)2 ensures that

the system undergoes a first-order phase transition at τ = 1.
When τ < 4/3, this term has three minima, which correspond
to phases called austenite (e2 = 0) and martensite [e2 =
±ε(τ )], where ε(τ ) = [ 2

3 (1 +
√

1 − 3τ
4 )]1/2. For 1 < τ < 4/3,

the martensite is a metastable state. To obtain nonuniform
textures, one minimizes the GL functional FGL[e2] as usual.
Note that at this stage the GL continuum model is in itself
a mean-field description of the microscopic problem, and as
such it does not contain any information about fluctuations
around the mean-field solution given by the minimization
of FGL[e2]. An alternative point of view is to consider a
formal partition function Z = ∫

D[e2]exp(−βF [e2]), where
the strain configurations are summed over with a weight given
by the usual Boltzmann weight. The Landau (or mean-field)
approximation is then nothing but a saddle-point calculation of
this functional integral. One can simplify the calculation of Z
by retaining only the strain minima given by the Landau part of
F , transforming then e2 into a discrete variable that we rewrite
as e2(�r) = ε(τ )S(�r) with the pseudospin S(�r) = 0,±1. This
is the main point of the pseudospin approximation; instead of
keeping only one configuration which minimizes the full GL
functional FGL[e2], we retain in the partition function all the
configurations that minimize the local Landau term fL = (τ −
1)e2

2 + e2
2(e2

2 − 1)2. Within this approximation, the partition
function reads Z � ∑

{S} exp(−βH ), where the Hamiltonian
H is obtained from the continuum theory as H = FGL[e2(�r) →
ε(τ )S(�r)]. After a proper discretization,19,20 it reads

βH = −J (τ )
∑
〈i,j〉

SiSj + �(τ )
∑

i

S2
i + βA1

2

∑
ij

SiUijSj ,

(2)
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where �(τ ) = D0(τ )/2[gL(τ ) + 4ξ 2] and J (τ ) = D0(τ )ξ 2,
with D0 = 2βE0ε(τ )2 and gL = (τ − 1) + [ε2(τ ) − 1)2. The
states Si = ±1 correspond to the two rectangular variants
while Si = 0 represents the square austenite. Note that this
spin model makes sense only for τ � 4/3, as for τ > 4/3
only the state S = 0 is allowed. We have therefore mapped
our continuum GL theory onto a lattice spin-1 model with
Hamiltonian (2). This Hamiltonian with A1 = 0 is known
in the spin literature as the Blume-Capel model21 and it
reproduces all the well-known features of the transition;20 in
particular, it has a first-order transition around τ � 1.

There are several points that are worth mentioning at this
stage. It is usual to deduce GL theories from lattice models, not
the other way around. The reason for this is that GL theories
are easier to deal with and contain interesting coarse-grained,
mean-field information about the initial microscopic model.
In our case, we chose to start from a simplified GL theory to
map onto a spin-1 statistical model that may seem harder to
handle. On the other hand, spin models will turn out
to be very convenient when introducing quenched disorder
as connections to the usual spin-glass models can then be
made.8,22 It is also important to realize that when progressing
from mean-field GL theory to a classical spin model we
have actually put in additional information about thermal
fluctuations, as the former a priori does not contain any
information about fluctuations around the mean-field solution.
The Hamiltonian (2) is an effective model, with temperature-
dependent coefficients and is not an accurate microscropic
description of the phenomenon that we are studying. The
additional information contained in the effective Hamilto-
nian (2) is somewhat arbitrary and other choices of reasonable
Hamiltonian would be possible. For example, one could as
well have introduced two different temperatures, the physical
temperature T that would appear in τ , and another more
artificial temperature Te that would appear in the Boltzmann
factor exp(−H/Te). As was suggested in Ref. 8, one can then
also let Te = 0 so that one would need to minimize H in
order to obtain statistical properties. We chose to introduce
somewhat artificially thermal fluctuations by taking T = Te,
a point of view completely analogous to what is usually done
with the well-known φ4 theory. This is a crucial point when
dealing with such effective spin models.

B. Spin model with quenched disorder

Now that we have seen how to model ferroelastics using
spin models, we consider the influence of impurities in the
model. Our aim is to understand how quenched impurities
affect the phase diagram of ferroelastic materials. This is
usually done phenomenologically in Landau theory13 by
introducing a random field or by introducing randomness in the
transition temperature Tc with nonzero spatial correlations.23,24

In this paper, we follow the idea that one need not worry
about the precise microscopic form of the disorder induced by
impurities as one expects the effect of quench disorder in the
interactions of the model to yield somewhat universal features.
Recall that our spin model is an effective model, so the results
we are after are generic features of the phase diagram, such as
its topology, rather than an accurate, quantitative description to
be compared directly with experiments. Note that this train of

thought is very similar to what was done in spin-glass theory
for the usual ferromagnets (see, e.g., Refs. 25–27). The point
is then to start from the pure (disorder-free) Hamiltonian (2)
and to take the nearest-neighbor couplings to be quench-
independent random variables Jij , drawn from the distribution
P(Jij ), with mean J (τ ) and with variance σJ . As we will
see later, the precise form of this distribution is irrelevant to
the global topology of the phase diagram. This is a strong
argument in favor of the “universality” discussed previously.
We believe that this way of introducing disorder tends to be
more satisfying than the very specific, sometimes fine-tuned,
methods usually used in the literature. The parameter σJ can
be thought of as a measure of the quenched disorder in the
system; in particular, for σJ = 0 we recover a pure system. For
future reference, we give the explicit form of our disordered
Hamiltonian:

βH = −
∑
〈i,j〉

Jij (τ )SiSj + �(τ )
∑

i

S2
i + βA1

2

∑
ij

SiUijSj ,

(3)

where the couplings Jij are quenched variables drawn from
the distribution P(Jij ). In this paper we will use two different
types of distribution:

P(Jij ) = 1

2
δ(Jij − J1) + 1

2
δ(Jij − J2), (4a)

P(Jij ) = 1√
2πσJ

exp

(
− [Jij − J (τ )]2

2σ 2
J

)
, (4b)

with J1 = J (τ ) + σJ and J2 = J (τ ) − σJ . In the following,
the distribution (4a) will be referred to as “bimodal” whereas
we will denote (4b) as Gaussian. These equations define the
model we will attempt to solve in the next section.

III. PHASE DIAGRAM

We now consider how real-space renormalization group can
be used to compute the full phase diagram of the the spin model
(3). We also present preliminary Monte Carlo results and
discuss their relationship to the phase diagram of the model.

A. Real-space renormalization group for the pure model

Our goal in this section is to obtain an analytical phase
diagram of the model defined by Eq. (2) in the limit A1 = 0.
From now on we will take only the limit of vanishing
long-range interactions A1 = 0 as we do not believe they
are important to understand the phase diagram of ferroelastic
materials. We will return to this later. There are several ways to
deal with a Hamiltonian such as (2); an obvious straightforward
method would be to perform a mean-field approximation. This
yields (see, e.g., Ref. 20 for a description in the context
of martensitic transitions) a first-order phase transition at
τ � 1 between a martensite phase with m = 〈S〉 
= 0 and
a high-temperature austenite phase characterized by m = 0.
Here we choose a different, usually more reliable method:
the real-space renormalization group. Its application to our
pure spin-1 model goes back to Ref. 28 and is of course well
known. We review here some of the essential elements before
proceeding to the case of disorder.
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The idea is to approximate the square lattice by a hierarchi-
cal lattice, obtained by iterating the construction scheme

(5)

Several other choices of hierarchical lattices to approximate the
square lattice are possible; however, the one we chose is known
to be a very good approximation in the case of spin-1 models
(see, e.g., Ref. 29), We define our spin model on such a lattice
by the Hamiltonian βH = −J

∑
〈i,j〉 SiSj + �

4

∑
〈i,j〉 (S2

i +
S2

j ). Note that we expressed the crystal-field term � as a sum
over the links instead of a sum over sites in order to take into
account the fact that the coordination number of the sites in the
lattice (5) is not constant. It is well known that such precautions
are needed when dealing with the renormalization of local
field terms such as −h

∑
Si or specifically here �

∑
S2

i . This
corresponds to assigning weights to the sites in the crystal-field
interaction term (�) according to their coordination numbers
which in this lattice, unlike the square lattice, are not uniform.
This inhomogeneity is necessary so that the square lattice is
correctly approximated using a hierarchical lattice.

On such a lattice, the partition function can be computed
exactly by summing progressively over the spins. The renor-
malization procedure consists in decimating spins according
to the scheme

(6)

so that the renormalization process corresponds to inverting
the arrows in Eq. (5). More formally, if one denotes by H1234

the Hamiltonian of the left-hand side of Eq. (6) and by H ′
12 its

right-hand side, one has

exp[−βH ′
12] = Tr exp[−βH1234], (7)

where Tr amounts to a partial summation performed on
spins S3 and S4. This equation then gives the relationship
between H1234 and the renormalized Hamiltonian H ′

12, so that
one can draw the evolution of the coupling parameters by
repeating this decimation procedure. It is not hard to see that
this transformation is exact if and only if one introduces an
additional coupling −K

∑
〈i,j〉 S2

i S
2
j that is generated upon

renormalization. Although this biquadratic interaction is ab-
sent in our original model, it is generated by the RG procedure,
and must be taken into account to follow the exact RG flow. In
our case, the elementary Hamiltonian H1234 reads βH1234 =
−∑

〈i,j〉 [JSiSj + KS2
i S

2
j ] + 1

4�
∑

〈i,j〉 [S2
i + S2

j ], where the
sum are performed over the links (〈13〉,〈14〉,〈42〉,〈32〉,〈34〉) in
Eq. (6). It is worth emphasizing again that the additional cou-
pling term −K

∑
〈i,j〉 S

2
i S

2
j must be introduced in the Hamil-

tonian, otherwise there is no analytical solution to be found for
Eq. (7). The renormalized HamiltonianH′

12 then reads βH ′
12 =

−J ′S1S2 − K ′S2
1S2

2 + �′
4 (S1

2 + S2
2) + C ′, where C ′ becomes

a simple multiplying constant exp(−C ′) that contributes to the
renormalization of the free energy, irrelevant for our purposes.

It is straightforward to solve Eq. (7) for all S1,S2. This yields
a nonlinear map (J ′,�′,K ′) = R[J,�,K] that gives the exact
renormalized couplings of the effective Hamiltonian H ′ in
terms of the initial ones. By iterating this map, one can obtain
the effective Hamiltonian describing the physics of the system
at large scale, where the microscopic degrees of freedom of
the system have been summed over. Basins of attraction of
this map correspond to thermodynamical phases, characterized
by attractive fixed points. For example, the martensite phase
(ferromagnetic phase in the spin language) has J ∗ = +∞
and �∗ = −∞, so at large scales the effective Hamiltonian
describing the system forces the spin to be in the S = ±1
states, with a strong correlation between nearest neighbors.
Meanwhile, austenite can be described by the attractive fixed
point J ∗ = 0 and �∗ = ∞ so it corresponds to a disordered
phase that favors S = 0. To obtain the phase diagram of our
spin model (2) for A1 = 0, we simply iterate the mapR starting
from the initial point (J,�,K) = (J (τ ),�(τ ),0). We find that
the system flows to the martensite fixed point for τ � 0.96 and
to the austenite fixed point for τ � 0.96. Moreover, the study of
the largest eigenvalue of the linearized renormalization group
matrix around the transition at τ � 0.96 can be used to prove
that the transition is of first order,28,29 as expected.

B. Real-space renormalization group with disorder

The idea of using spin-glass models to describe disordered
ferroelastic materials originates from Refs. 8 and 22. The
mean-field replica approach of this model22,30 yields a strain-
glass phase but also several unwanted features that are contrary
to both experiments and Monte Carlo simulations. The absence
of a tweed precursor is an example. We use here a different
approach relying on real-space RG which we believe is simpler
and usually more reliable. Although our starting point is the
same Hamiltonian (3), we will see in this paper that the RG
provides interesting results that can be tested experimentally.

The implementation of the RG procedure for disordered
systems is very similar to the pure case in Sec. III A.
The real-space RG in disordered systems still relies on a
decimation procedure to progressively sum over the spin
variables, integrating out the microscopic degrees of freedom
(see, e.g., Refs. 28, 29, and 31). After each summation step,
the effective Hamiltonian describing the remaining degrees of
freedom is assumed to be the same as the original one but
with renormalized coupling coefficients. This turns out to be
exact for the hierarchical lattice (5). The only difference is that
for disordered systems the RG allows us to follow the prob-
ability distribution of the couplings upon the renormalization
procedure instead of the couplings themselves. In order to
do so, the main point is to obtain the RG equations in the
case of a completely inhomogeneous system. Even though
the initial Hamiltonian (3) (with A1 = 0) has pure K = 0 and
� interactions, the RG flow will lead to randomness in all
couplings, so one has to consider the more general Hamil-
tonian βH = −∑

〈i,j〉[JijSiSj + KijS
2
i S

2
j − �ij

4 (S2
i + S2

j ) −
�

†
ij

4 (S2
i − S2

j )]. The initial condition for the RG flow is the
Hamiltonian (3) with A1 = 0, so that before renormalization,
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Kij = 0, �ij = �(τ ), and �
†
ij = 0. Note that we once again

considered the crystal-field term as existing on the edges of
the lattice and not on the sites. This should be reminiscent
of our treatment of the pure case in Sec. III A. The solution of
Eq. (7) in this case yields a map R that gives the renormalized
couplings (J ′

12,K
′
12,�

′
12,�

†′
12) in terms of the original ones

(J14,J13, . . . ,K14,K13, . . . ,�14,�13, . . . ,�
†
14,�

†
13, . . . ). One

then analyzes the evolution of the joint probability distribu-
tion P(Jij ,Kij ,�ij ,�

†
ij ) upon renormalization, starting from

the initial distributions P(�ij ) = δ(�ij − �(τ )), P(�†
ij ) =

δ(�†
ij ), P(Kij ) = δ(Kij ), and P(Jij ) given by either (4a)

or (4b). Let us now be slightly more explicit. Let Kij =
(Jij ,Kij ,�ij ,�

†
ij ) denote the four couplings existing on the

link (ij ). The RG maps K′
ij = R[{Kij }] then gives the four

renormalized couplings K′
ij = (J ′

12,K
′
12,�

′
12,�

†′
12) as a func-

tion of the 20 initial ones {Kij } = (K13,K14,K34,K23,K42),
where we used the labeling of Eq. (6). The RG recursion re-
lation for the joint distribution P(Kij ) = P(Jij ,Kij ,�ij ,�

†
ij )

then reads

P ′(K′
ij ) =

∫ ⎡
⎣∏

ij

dKijP(Kij )

⎤
⎦ δ(K′

ij − R[{Kij }]), (8)

where the product is over the five links of Eq. (6), so there
are 20 integrations to be performed at each RG step. We
emphasize again that even though one starts from pure K

and � couplings, randomness in these parameters will be
generated by the RG procedure. Similarly, even if one starts
from a bimodal Gaussian distribution for P(Jij ), the resulting
distribution obtained after several renormalization steps could
in principle be much more complicated.

C. Basins of attraction and thermodynamical phases

Before solving explicitly Eq. (8), let us discuss how the
phases are characterized within this formalism. The RG
distributionP(Jij ,Kij ,�ij ,�

†
ij ) will typically flow to attractive

fixed points that will characterize thermodynamical phases. In
principle, one would need an infinite number of parameters to
characterize RG-invariant distributions P∗(Jij ,Kij ,�ij ,�

†
ij ).

However, for our purposes it turns out that the thermodynamic
phases can obtained as RG basins of attraction characterized
only by the values of �∗ and (J ∗,σ ∗

J ) at the fixed point. Here
�∗ and J ∗ are the mean values of J and � at the fixed point,
while σ ∗

J is the standard deviation of J .
The martensite (ferroelastic) phase corresponds to the usual

ordered ferromagnetic phase (J ∗ = ∞,�∗ = −∞,σ ∗
J /J ∗ =

0). In terms of order parameters (OPs) used in mean-field
theory and replica calculations (see, e.g., Ref. 22), this phase
is characterized by a nonzero magnetization m = 〈Si〉 
= 0,
where the overbar represents an average over the disorder and
the angular brackets an average with respect to Boltzmann
weights. We find two paraelastic disordered phases with J ∗ =
0, σ ∗

J = 0, and �∗ = ±∞. The case �∗ = ∞ corresponds
to the austenite case as it favors S = 0, whereas the case
�∗ = −∞ is interpreted as a disordered phase of martensite
clusters which we identify as the tweed phase. The OP
that allows us to distinguish between the two phases is

TABLE I. Characterization of the different thermodynamic
phases in terms of the calculated renormalization group fixed points.
The austenite and tweed phases are clearly separated because one
fixed point has the value �∗ = +∞ (so the state S = 0 is favored)
whereas the other has �∗ = −∞. We also show the corresponding
OP values m = 〈Si〉, p = 〈S2

i 〉, and q = 〈Si〉2 for the phases as
characterized in mean-field and replica theory.

Phase OP characterization RG fixed point

Austenite m = q = 0, p small �∗ = +∞, J ∗ = 0, σ ∗
J = 0

Martensite m 
= 0, p 
= 0, q 
= 0 �∗ = −∞, J ∗ = ∞,
σ∗
J

J ∗ = 0
Tweed m = q = 0, p large �∗ = −∞, J ∗ = 0, σ ∗

J = 0
Strain glass m = 0, p 
= 0, q 
= 0 �∗ = −∞, J ∗ = 0, σ ∗

J = ∞

the “martensite volume fraction” p = 〈S2
i 〉. We also remark

that the tweed precursor we find is ergodic and nonglassy,
consistent with results of recent experiments.32 This is to be
compared with the hypothesis of Refs. 9 and 10 that interpreted
tweed as a glassy phase. Our model results are that tweed is
a thermodynamic phase, rather than a metastable precursor.
Note also that this tweed phase is not captured by a mean-field
replica-symmetric analysis of our 2D model.22 The last phase
that we encounter corresponds to a spin or strain glass with
infinite randomness (σ ∗

J = ∞) and (J ∗ = 0, �∗ = ∞). The
effective Hamiltonian describing the system at large scales
has features in which variants S = ±1 are favored (because
�∗ = ∞), and the values J ∗ = 0 and σ ∗

J = ∞ imply random
infinite couplings on each bond, thus denoting frustration.
This phase is also characterized by the Edwards-Anderson
order parameter q = 〈Si〉2 which in the replica language
corresponds to the overlap between two replicas q = 〈S1

i S
2
i 〉

of the system.25 The characterization in terms of RG fixed
points or OPs of these four thermodynamic phases is gathered
in Table I.

D. Analytical phase diagram

1. Numerical resolution

We now discuss how one can solve (8). An obvious
method would be to sample numerically the joint distribution
P(Jij ,Kij ,�ij ,�

†
ij ). This allows one to solve explicitly Eq. (8)

numerically. We used pools of 160 000 values to sample
the distribution P(Jij ,Kij ,�ij ,�

†
ij ). The results are shown

in Fig. 1 for both bimodal (4a) and Gaussian (4b) initial
distributions. The parameters appropriate for our example are
E0 = 3, ξ = 0.5, Teq = 1, and Tc = 0.9. Note that, strictly
speaking, our spin model is not defined for τ > 4/3, as the
spin approximation yields only one state S = 0 in that case.
However, we can still think of this region as being in the
austenite phase, as this is the only phase allowed by the spin
approximation. One of the most striking features of these
phase diagrams is the appearance of an intermediate tweed
phase between the austenite and martensite phases as the
disorder is turned on. This is consistent with what is known
experimentally (see Sec. IV). Meanwhile, the phase diagram
has the same topology for both types of disorder. This is a
strong result in favor of the universality discussed in Sec. II A.
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FIG. 1. Analytical phase diagrams from the exact numerical
resolution of the RG equations on the hierarchical lattice. Main
figure: the initial distribution of the disorder was taken to be bimodal.
Inset: initial Gaussian distribution. Notice the absence of a spin- or
strain-glass phase (see the text).

One notes the absence of the spin- or strain-glass phase,
which is to be expected. Strictly speaking, the model (3)
in two dimensions should not have a spin-glass phase at
finite temperature.31 To be more precise, the Hamiltonian (3)
is believed to have a spin-glass lower critical dimension
dc lying somewhere between 2 and 3. This means that for
d < dc (low dimension), and in particular for d = 2, the
spin-glass phase should be destroyed by thermal fluctuations.
Meanwhile, it was recently proved31 that the very same
model (forgetting about the temperature dependence of the
coefficients) has a spin-glass phase at finite temperature in
3D. (Note that the SR transition embedded in 3D—or in
our spin model in 3D—corresponds to a slightly constrained
tetragonal-to-orthorhombic transition.) Of course, a spin-glass
phase can also be found within a mean-field or replica solution
of the model,22 as the mean field effectively corresponds to
d = ∞. We expect this spin-glass phase to reappear on higher-
dimensional hierarchical lattices.31 Although one might think
that the absence of a spin-glass phase in 2D could be of crucial
importance experimentally, this is actually irrelevant to us, for
the following reasons:

(a) Even though a spin-glass phase should not exist in
2D, we still expect kinetic features to make the system look
“glassy.” This will be discussed in more detail in Sec. III E
below. The point is that the distinction in experiments and
numerics between a genuine spin-glass phase and a glassy
kinematic behavior is actually a very subtle issue.

(b) As our spin model was derived from a mean-field
Landau energy without thermal fluctuations, we are interested
in generic (mean-field-like) features of our model. This is
a consequence of the discussion at the end of Sec. II A.
The spin-glass lower critical dimension is not a meaningful
quantity in our case as our model was derived from a mean-field
Landau energy in the first place. Therefore, the fact that the
somewhat artificial fluctuations—introduced in going from
the continuum GL theory to our spin model—may or may

not destroy the spin-glass phase is not relevant, as these
fluctuations do not exist in the original Landau model. Our
model is thus meaningful only in a mean-field-like context.

Therefore, one need not worry about this issue of the lower
critical dimension here; it would be meaningful only if our spin
model were a precise microscopic description of ferroelastics.

2. Projection approximation

Although the direct numerical resolution of Eq. (8) is the
most straightforward way to proceed, it is also useful to have
an approximate way of solving this system, thereby allowing
one to perform the calculations analytically. A possibility to
avoid this rather cumbersome numerical procedure is to make
a further approximation in the case of bimodal disorder (4a).
One can remark that rather than follow the full evolution
of these distributions, one could enforce the renormalized
distributions to be the same as the initial ones but with
renormalized parameters. That is, we enforce the distribution
of the Jij couplings to remain bimodal upon renormalization,
keeping K and � constant. Although this approximation may
appear too drastic, it is quite common in spin-glass-related
problems and we will show in the following that it captures
all the important features of the phase diagram of the model
(3). Note that such an approximation typically yields results
characteristic of higher-dimensional systems (see, e.g., Ref. 29
and references therein), and thus should alter the spin-glass
lower critical dimension. As discussed previously, this is not
important for our purposes. In the following, we will refer
to this approximation as the “projection approximation,” as
it indeed consists in projecting the renormalized distributions
onto the initial ones.

Figure 2(a) shows the phase diagram in the plane (τ,σJ ) ob-
tained by iterating the RG map in the projection approximation
case. In the absence of disorder (σJ = 0), we find a first-order
phase transition between the austenite and martensite phases
with τ � 1, as expected. As one increases the disorder, an
intermediate tweed phase arises before it transforms into the
low-temperature phase (either martensite or strain glass). For
large enough disorder and low temperature, we find a spin-
glass phase that we interpret as a strain glass. Interestingly,
when the disorder of the system is in the intermediate regime
(1.3 < σJ < 2.3 in our model), we find there should exist a
spontaneous phase transition from strain glass to martensite;
this is a prediction that was not obtained by previous numerical
simulations13,19,23,24,33 based on Landau theory. The existence
of a spin-glass phase in this calculation is related to our
projection approximation, which is known to produce results
characteristic of higher-dimensional systems (it is therefore
legitimate to think of this approximation as a kind of mean
field). Note also that except for the spin-glass phase, the
exact numerical resolutions of Fig. 1 and the projection
approximation results of Fig. 2(a) are very much alike.

E. Monte Carlo simulations and influence
of long-range interactions

We also present some preliminary Monte Carlo (MC)
simulations that tend to confirm our RG results. We first note
that one has to be very careful when doing MC simulations on
a disordered system; in particular, one has to use algorithms
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FIG. 2. (Color online) Comparison between theoretical and experimental phase diagrams. (a) Phase diagram in the temperature-disorder
(τ ,σJ ) plane for our spin model, obtained within the RG projection approximation. τ is the normalized temperature and σJ characterizes the
amount of quenched disorder in the system. (b) Experimental phase diagram of the ternary ferroelastic Ti50(Pd50−xCrx). STG refers to strain
glass. 9R is a new martensite phase formed, other than B19, if TiPd-based alloys are doped with certain defects. It is a martensite with long
periodic stacking structure.

that properly sample the configurations of the system, such
as replica MC or parallel tempering.34 Unfortunately, these
algorithms lose their full efficiency because the coefficients
in our Hamiltonian are temperature dependent. We thus use
a simplified simulated annealing algorithm, which we expect
to yield reasonable results at least for small disorder. The
algorithm is the analog of the steepest-descent method used
in the literature to minimize disordered GL functionals. We
emphasize here that such minimization methods are often
adequate when dealing with spin-glass-like systems as the free
energy typically possesses many metastable minima. We first
describe the microstructure obtained in the presence of long-
range interactions. Figure 3(a) shows typical microstructures
obtained in different regions of the phase diagram on a 256 ×
256 lattice, with the strength of the long-range term of A1 = 4.
These textures are fully consistent with what is observed
in continuum GL theories and in experiments. In particular,
we find the usual cross-hatched pattern for the tweed phase.
Nevertheless, our RG approach provides a clear meaning to the

tweed phase, even in the absence of long-range interactions.
We also show in Fig. 3(b) field-cooling and zero-field-cooling
results that are usually used in both numerical studies and
experiments to test for breaking of ergodicity and glassiness.
These curves were obtained by averaging over 103 disordered
configurations on 64 × 64 lattices; other lattice sizes were
tested without much difference. The curves shown in Fig. 3(b)
may be interpreted as a signature of history dependence or
ergodicity breaking. However, as argued previously, we do
not expect the 2D version of the Hamiltonian (3) to have a
spin-glass phase. The term “spin glass” should be understood
here in the technical sense of the term; this does not prevent
the system from showing kinematic “glassy behaviors” in
the sense sometimes used by experimentalists. Therefore, our
ZFC and FC results should be interpreted as a pure kinematic
effect, possibly related to the slow convergence of our MC
algorithm. Similar problems should occur when minimizing
GL disordered functionals thanks to naive steepest-descent
algorithms. It is worth emphasizing that probing spin-glass

FIG. 3. (Color online) Monte Carlo results; the parameters are given in the text. (a) Typical microstructures obtained for A1 = 4 on a
256 × 256 lattice in the different phases of the phase diagram. (a1) austenite, (a2) tweed, (a3) martensite, and (a4) strain glass. (b) Example
of FC and ZFC curves with A1 = 0 for disorder σJ = 1.5,2,2.25,2.5 from top to bottom. The curves represent the (normalized) susceptibility
χ = m/h against the temperature τ . (c) Qualitative phase diagram showing the influence of the long-range interaction and disorder on the
various phase transitions. Four different phases are shown: austenite, martensite, tweed, and strain glass.
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phases in the usual spin models is a very subtle question to
address numerically, and this cannot be answered using simple
ZFC and FC experiments.

Finally, we suggest that the main features of our phase
diagram persist even in the presence of long-range interactions
(see related discussions in Refs. 23 and 24). The influence of
the elastic long-range interaction on the austenite-tweed and
tweed–strain-glass transition temperatures is shown schemat-
ically in Fig. 3(c). For no disorder (σJ = 0), the austenite-
martensite transition temperature decreases linearly with A1,
as included phenomenologically within Landau theory. All
the transition temperatures decrease with A1; in particular the
glass transition is shifted to lower temperatures because the
long-range interactions compete with the randomness.22 In
the asymptotic limit A1 → ∞, the disorder becomes irrelevant
and only the austenite phase remains; we therefore conjecture
that the phase diagram is shifted to lower temperatures with
increasing A1. This result could have implications in the study
of colossal magnetoresistance materials where the interplay
of disorder and long-range strain-mediated interactions has a
bearing on the phase separation of coexisting insulating and
conducting phases.35

F. Extension to three dimensions

We now put our work focused on the 2D SR transition
in a more general context and explain how one can extend
the results to more realistic situations. Although our RG
analysis is in 2D and is for a square-to-rectangle transition,
we do not expect the salient features of the phase diagram
to change for other transitions in 2D or 3D. As an example,
let us discuss how one can extend our approach to the 3D
cubic-to-tetragonal (CT) transition. A spin model for this
transition was already proposed in Ref. 20. The CT transition
is described in terms of a two-dimensional order parameter
given by the adjunction of both deviatoric and shear distortions
[e2 = (εxx − εyy)/

√
2,e3 = (εxx + εyy − 2εzz)/

√
6]. The free

energy functional can be written as a sum of three terms,
F = ∫

d3�r [fL(e2,e3) + fG( �∇e2, �∇e3) + A1
2 fLR(e2,e3)]. The

Ginzburg term reads fG = ξ 2(|∇e2|2 + |∇e3|2), whereas
fLR(e2,e3) is a long-range part that should not be important
here (its explicit expression can be found in Ref. 20). The
Landau part is slightly more complicated, fL(e2,e3) = τ (e2

2 +
e3

2) − 2(e3
3 − 3e3e2

2) + (e2
2 + e3

2)2. This free energy can be
minimized with respect to e2 and e3, leading to four minima for
τ < 9

8 . Leaving out the e2 = e3 = 0 minimum, the three others
are given in the complex plane by ε(τ )ω3

k , with ω3
3 = 1, and

where similarly to the 2D case, one introduces

ε(τ ) = 3

4

(
1 +

√
1 − 8τ

9

)
. (9)

One can observe that τ = 4/3 now corresponds to the upper
spinodal. Retaining the Landau minima in the free energy fL,
we define a pseudospin �S such that �e = (e2,e3)T → ε(τ )�S,
with

�S ∈
{(

0

0

)
,

(
1

0

)
,

( −1/2

±√
3/2

)}
. (10)

The Landau part of the free energy hence reduces to fL(τ ) =
ε2(τ )gL(τ )�S2(�r ), where gL(τ ) = τ − 1 + [ε2(τ ) − 1]2. This
leads to the pseudospin model

βH = −J (τ )
∑
〈i,j〉

�Si · �Sj + �(τ )
∑

i

�S2
i

+ βA1

2

∑
ij

Uij
�Si · �Sj , (11)

with �(τ ) = D0(τ )
2 [gL(τ ) + 6ξ 2], J (τ ) = D0(τ )ξ 2, and D0(τ )

defined as before. This model is a three-dimensional clock
model with long-range interactions. The two-dimensional spin
�S can take three values on the unit circle in addition to the value
�S = �0.

It is straightforward to extend the renormalization group
method to this class of models. This is done by considering
hierarchical lattices with fractal dimension close to 3, for which
the RG decimation step becomes exact if one introduces an
additional coupling −K

∑
〈i,j〉(�Si · �Sj )2. We solved exactly

the pure model defined by Eq. (11) for A1 = 0, on a three-
dimensional hierarchical lattice, to find two phases separated
by a first-order phase transition around τ � 1, as expected. The
high-temperature austenite phase is characterized by 〈�S〉 = �0,
whereas the martensite phase shows one of the three variants
lying on the circle | �S| = 1. Quench disorder can be easily
introduced through random Jij couplings and the RG iteration
can be generalized to the disordered case. The calculated
phase diagram is very similar to that obtained for the SR
transition in 2D in Fig. 2(a), although the numerical resolution
of the RG equations is much more difficult in this case. We
find two different “paraelastic” phases, the usual austenite
characterized by the RG fixed point (J ∗ = 0, �∗ = ∞),
and a tweed fixed point with (J ∗ = 0, �∗ = −∞) which
corresponds to a disordered phase of martensitic variants.
We also expect this kind of model to show a spin- or
strain-glass phase, at least in high dimensions. These results
are consistent with our extensive study of the SR 2D model.
It is thus very tempting to conjecture that the behavior of
even more complicated clock models, describing more evolved
transitions, should have a phase diagram very similar to that
of the SR model.

IV. EXPERIMENTAL PHASE DIAGRAM

To check the predictions of our RG calculations, we
experimentally investigated the phase transformation behavior
as a function of temperature T and concentration x for
Ti50(Pd50−xCrx) alloys.

In the low-Cr-content regime (x � 8), the system undergoes
a B2 → B19 martensitic transformation. The transformation
properties of Ti50(Pd45Cr5) alloy are shown in Figs. 4(a1)–
4(a3). The B2 → B19 martensitic transformation at its
transformation temperature Ms is accompanied by a sharp
increase in electrical resistivity [Fig. 4(a1)]. It is found that the
electrical-resistivity curve deviates from linearity above Ms ,
and the onset temperature of the deviation Tnd is defined as the
tweed formation temperature. The martensitic transformation
is also characterized by a frequency-independent peak in
internal friction [Fig. 4(a2)] and a frequency-independent
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FIG. 4. (Color online) The transformation behavior of Ti50Pd(50−xCrx) alloys as a function of Cr (point defect) concentration, by means of
electrical resistivity and DMA measurements. (a1), (a2), (a3) show that the low-Cr-content Ti50(Pd45Cr5) alloy undergoes a normal martensitic
transformation, whereas (c1), (c2), (c3) show that the high-Cr-content Ti50(Pd38Cr12) alloy undergoes a strain-glass transition. (b1), (b2), (b3)
show that the intermediate-Cr-content Ti50(Pd40Cr10) alloy, located in the crossover region between martensite and strain glass, transforms from
the parent phase to strain glass (at Tg) and then to martensite (at Tm).

dip in storage modulus [Fig. 4(a3)]. Note that the frequency
independence in the dynamical mechanical analysis dip and
peak is an important feature of martensitic transformation.

For high Cr content (x � 12), the alloys adopt a tran-
sition path from austenite through tweed to strain glass.
The transformation properties of Ti50(Pd38Cr12) alloy are
shown in Figs. 4(c1)–4(c3). As shown in Fig. 4(c1), the
electrical resistivity also shows a deviation from linearity
below Tnd , indicating the appearance of a tweed state. The alloy
undergoes a frequency-dependent storage modulus dip and an
internal friction peak [Figs. 4(c2) and 4(c3)], in contrast with
the frequency-independent behaviors during the martensitic
transformation [Fig. 4(a1)]. This demonstrates that a dynamic
freezing strain-glass transition occurs in high-Cr-content
alloys. The ideal glass frozen temperature (T0) was obtained
by fitting the DMA dip temperature Tg(ω) and frequency ω

with the Vogel-Fulcher relation ω = ω0 exp{−Ea/kB[Tg(ω) −
T0]}. Note that the frequency dependence in the DMA dip and
peak is an important feature of strain-glass transformation.

For the crossover regime (9 < x < 12) between martensite
and strain glass, the alloys experience all four strain states upon
cooling, and a spontaneous transformation from strain glass to
the martensite phase (9R) takes place. Figures 4(b1)–4(b3)
show the predicted spontaneous transformation behavior for
the Ti50(Pd40Cr10) alloy. Upon cooling, the tweed phase first
forms at Tnd = 531 K [Fig. 4(b1)]. Further cooling gives
rise to a frequency-dispersive internal friction peak and a
storage modulus dip in the DMA results in Figs. 4(b2) and
4(b3), which correspond to a strain-glass transition with
frozen temperature T0 of 250 K. With a further decrease in

temperature, a frequency-independent internal friction peak
appears in the DMA results [Fig. 4(b2)], which shows a

FIG. 5. (Color online) (a) Internal friction and (b) storage mod-
ulus for Ti50(Pd40Cr10) alloy during step cooling and step heating
processes, under an ac stress field with a frequency of 1 Hz. The
nearly zero thermal hysteresis of the higher-temperature transition
at Tg suggests that it is a glass transition, whereas the large thermal
hysteresis (about 10 K) of the lower-temperature transition (at Tm)
suggests that it is a first-order phase transformation.
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FIG. 6. (Color online) In situ synchrotron XRD patterns of (a) Ti50(Pd40Cr10) alloy and (b) Ti50(Pd38Cr12) alloy from 400 to 125 K. Obvious
peak splitting with decreasing temperature can be found in the Ti50(Pd40Cr10) alloy, corresponding to the first-order transition shown in Fig. 5.
However, no such splitting occurs in the strain-glass alloy Ti50(Pd38Cr12).

similar feature to the martensitic transformation [Fig. 4(a2)].
This indicates that a certain phase transformation occurs.
We further studied the thermal hysteresis of the two phase
transformations to characterize them. As shown in Fig. 5, the
glass transition at higher temperature is associated with nearly
zero thermal hysteresis in the internal friction anomaly and
storage modulus, which is consistent with previous studies
on the strain-glass transition.11–15 From the peak intervals
of the internal friction and storage modulus in Fig. 5, we
found that the lower-temperature transition is associated with
a thermal hysteresis of about 10 K, which suggests a first-
order transition. We interpret the transition as a spontaneous
transformation from strain glass to normal martensite. We
also employed in situ synchrotron x-ray diffraction (XRD) to
check the predicted spontaneous behavior for Ti50(Pd40Cr10),
as shown in Fig. 6(a). In the tweed region (400 and 300 K),
only a sharp (110)B2 peak appears without peak splitting. At
252 K where the strain glass is frozen, clear peak splitting
can be observed, and the new peaks can be indexed as
(002)9R , (200)9R , and (111)9R , suggesting the presence of
short-range order associated with the 9R structure. With
further decrease to 125 K, the peak splitting becomes stronger
and the 9R peak height drastically increases, indicating the
formation of 9R martensite. To exclude the possibility that
the above peak splitting is caused by nanodomain growth,
contrast in situ synchrotron XRD was also carried out on

Ti50(Pd38Cr12), in which the strain-glass state is stable, but
that system can also show nanodomain growth with decrease
of temperature.11–13 Figure 6(b) clearly shows that the (110)B2

peak shows no splitting throughout the measurement temper-
ature range. Therefore, the peak splitting in the Ti50(Pd40Cr10)
alloy should indicate a transformation from strain glass to
martensite.

The microstructure evolution in Ti50(Pd40Cr10) was further
investigated by in situ TEM observations from 330 to 110 K,
and the results are shown in Fig. 7. In the tweed region (330
and 300 K), contrast from nanodomains can be seen with
diffused superspots in the diffraction pattern; however, when
the sample is cooled to 110 K (the martensite region), where
9R peaks appear in the Bragg reflections, parallel martensite
domains are visible in addition to nanodomains. From the
present experimental results, we conclude that the second-step
transition is a spontaneous transition from a strain-glass to
the normal martensite phase 9R. We note that although the
spontaneous transition does occur, the parent peak still exists
in the synchrotron XRD pattern. This suggests that not all the
nanodomains in the strain glass spontaneously transform into
9R martensite within our measurement window. The lack of
completeness of this spontaneous transition can be ascribed
to kinetic limitations. In addition, it is also noted that the
spontaneous phase transition here is rather weak and sluggish,
as the phase mixture of strain glass and martensite exists
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FIG. 7. (Color online) In situ TEM observation of Ti50(Pd40Cr10)
alloy from 330 to 110 K. Upon cooling, the nanodomains in the tweed
region (330 and 300 K) gradually transform to parallel martensite
domains (170 and 110 K). The corresponding diffraction spots from
newly formed martensite domains become stronger with decreasing
temperature. This suggests a spontaneous transition from strain glass
to martensite, consistent with the DMA results shown in Fig. 5 and
the in situ synchrotron XRD patterns shown in Fig. 6(a).

over a wide temperature range. This could be the reason
for the absence of anomaly in our conventional differential
scanning calorimetry measurements (in which only latent heat
is measured). Changes in heat capacity may aid in identifying
the spontaneous transition.

According to the above experimental results, a modification
is made to the previous phase diagram of Ti50(Pd50−xCrx)
alloys,36 where a crossover composition regime is included,
as shown in Fig. 2. A similar phase diagram, including
the spontaneous phase transition, can be found in the
Ti50(Ni50−xFex) strain-glass alloy,37 and also in the La-
modified Pb(Zr0.65Ti0.35)O3 ferroelectric relaxor ceramic.38

V. CONCLUSION

Our study emphasizes the importance of statistical me-
chanics and spin-glass theory which, in conjunction with
experiments, provide a general framework to understand
universal features of the strain-glass and tweed phases in
ferroelastic materials. Our specific aim has been to emphasize
how pseudospin models of martensites provide a predictive
route towards understanding aspects of glass behavior seen in
experiments. This suggests that ferroelastics are very similar
to ferroelectric and ferromagnetic materials, in the sense that
they can be described within the same framework of statistical

mechanics of spin models. A crucial feature of ferroelastic
spin models is the additional S = 0 state, which allows for two
different “paraelastic” phases, austenite and tweed. Tweed is
characterized in our study as a disordered phase of martensitic
variants. This tends to show that the tweed state observed is
a true thermodynamical phase, that exists even in the absence
of long-range interactions, just like martensite and austenite.
This is an important outcome of our study as so far tweed has
been mostly interpreted as a spin glass or as a static precursor.
We also believe that many key ideas emanating from the
spin-glass and statistical mechanics community should apply
to the case of ferroelastics as well. For example, it still seems
widely believed in the strain-glass community that the precise
form of the quenched disorder modeling impurities is crucial
for an understanding of the physics of the systems under
scrutiny. We know from experience that this is not true for
spin glasses, and it seems highly unlikely that it could be true
for disordered ferroelastics. We also wish to emphasize that
long-range interactions, although crucial for microstructures,
do not seem to be relevant to understand the global topology
of the phase diagram.

Although we have mainly focused on a specific model in
2D, we argued in Sec. III F that our conclusions should apply
to a wide variety of 2D and 3D ferroelastic transitions; in
particular, we believe that our calculated phase diagram is
“generic.” To be more precise, we expect to find very similar
topology of phase diagrams for other transitions with more
variants in both two and three spatial dimensions. The alloy
we chose as an example in the paper gives rise to two product
phases as a function of disorder (B2 to B19, and B2 to 9R). Our
analysis predicts that ferroelastics undergoing transitions to
one product phase, such as TiNiFe, FePd, or CaTiO3, will show
a very similar phase diagram and a spontaneous transition. We
thus expect the general topology of the phase diagram shown
in Fig. 3(c) to be quite robust.
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