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Thermally activated avalanches: Jamming and the progression of needle domains
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Large-scale computer simulations of a simple model with a square-lattice topology, a small shear deformation

walls constitute pinning centers which impede the free movement of the kinks in the walls. These intersection

points then act as a pattern of intrinsic, self-induced defects which lead ultimately to the power-law distribution

of the crackling noise of the domain walls.
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I. INTRODUCTION

The kinetic process of front propagation of ferroic, mul-
tiferroic, and martensitic materials can be smooth, jerky, or
combine both aspects.1–6 It can also be athermal or thermally
activated.7–9 Smooth propagation is understood as a feature of
solitary waves (or domain walls),10–15 while the experimentalon the universality of the avalanche dynamics. Since the earlywork of Bak,

22,23 Nattermann,5,24,25 and others, a multitude of
renormalization studies,26,27 simulations, and basic physical
considerations28–30 have elucidated this aspect.

The application to the �eld of ferroic phase transitions
was much less elaborate, besides some work on the role of
the Larkin length,31,32 the roughening transition, and their
importance for the formation of avalanches. The Larkin length
describes directly the ability of twin walls to meander in order
to capture as many defects as possible inside the walls. This
increases pinning of walls, i.e., systems with short Larkin
lengths pin more strongly while pinning is much weaker
in materials with long Larkin lengths. Meandering requires
local bending of twin walls, which is strongly impeded by

highly anisotropic elastic forces in ferroelastic and martensitic
materials. Electron-microscopic observations have shown that
weak bending of twin walls is possible in such materials, while
the Larkin length remains large compared with the length of
the crystallographic unit cells.33 The movement of such twin
walls with very weak bending is described in this paper.

The general term crackling noise described the approach
to multitudes of jerks in extended systems very aptly.28 An
important result from previous work30 on such crackling noise
is that near zero temperatures and at a critical point, the
energy distribution of the jerks, follow a power law withP(ω)
∼ ω−1/σνz, where 1/σν is the fractal dimensiondf of the
avalanche size andz relates to the correlation lengthξ with
the characteristic avalanche durationt ∼ ξz. Equally, the size
exponent and duration exponent have been derived in several
models. These results are hard to compare with experimental
observations in ferroelastic and multiferroic materials, how-
ever. We will show below that the elementary jerk is related to
the advancement of a needle or a kink in a wall, which interacts
with other needles and kinks. The interatomic interactions
are highly anisotropic so that results from simulations in
models such as isotropic random-�eld Ising models are not
realistic for ferroic materials. It also appears that the Larkin
length of such elastic systems is very long, and bending
of interfaces requires large energies which are usually not
involved in the formation of jerks.34 In addition, we have no
easy possibility of picking up demagnetization signals, as in
Barkhausen noise spectra, so that the determination of size
distributions of avalanches becomes very dif�cult. The most
reliable way forward appears to be to measure the energy
(Gibbs free energy or potential energy) of a ferroic system
and estimate relative changes in the energy content of jerks
and avalanches.1 Most importantly, renewed emphasis was
put on the temperature effect,35 which we will explore in this
paper.
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All this begs the following question: are all jerks also
avalanches? Are experimentally observed jerks the fundamen-
tal kinetic events for crackling noise or, alternatively, can jerks
be thermally activated, isolated, and unrelated to collective
behavior? An even more extreme scenario may be true, namely,
that jerks in highly defective materials and at suf�ciently
low temperatures lead to crackling noise (with a power-law
distribution of energy jumps) while jerks in materials with low
defect concentrations and perhaps slightly higher temperatures
masquerade as avalanches, but may be simply propagating
fronts in systems with �nite size or �nite diameters of grain
boundaries.

Some indications for the possible answers stem from three
key experimental observations that have motivated these stud-
ies of avalanches and front progression: �rst, the coexistence
of both types of excitations in the measurement of the heat �ux
during the martensitic phase transition in CuZnAl.1 The second
observation is that a single needle domain displays crackling
noise together with thermally activated front propagation.2

Third, one �nds power-law dynamics in dynamical mechanical
analysis, resonance ultrasonic spectroscopy experiments, and
in AE,3–5,16–19 over some extended interval (two or more
decades). The measured exponents and some theoretical
predictions cluster around characteristic values, namely, 1.3
for the size distribution (Ref.28, and references therein)
and about 2 for the energy distribution.1,28,36,37 The question
can now be asked whether all jerks are defect-generated
avalanches and whether athermal behavior is required to
generate such avalanches. We will show that this is not
necessarily the case. At moderate temperatures we �nd jerky
behavior which displays classic power-law exponents without
any extrinsic defects, while jerks can be thermally activated at
high temperatures.

II. THE MODEL

Our simulations follow the tradition of large-scale simula-
tions with open (free) boundary conditions and interatomic
potentials.38–42 Periodic boundary conditions are not used
because domain boundaries often nucleate as needle domains
from the crystal surface. Surface relaxations play a major role
in the determination of the time evolution of twin walls. A
typical singular case for the movement of a jerky domain
wall would be a simple nucleation of a needle domain and its
propagation until it hits the opposite surface. Obviously, such
jerks cannot be seen in simulations using periodic boundary
conditions. The computer codeLAMMPS was used with an NVT
ensemble.

The model is based on interatomic interactions43 rather
than force-�eld simulations44 because the elementary step
leading to advancement of twin boundaries is known to
be—for narrow twin boundaries—related to the sideways
movement of kinks inside the boundary.45 Kink propagation
was previously observed in the propagation of phase fronts
for a polytypic transition in PbI2 but was not observed in
ferroelastic materials.46 Such atomic-scale kinks are well
reproduced by atomic-scale simulations, while force-�eld
calculations average over such �ner structural details.46

The interatomic potentials were chosen to reproduce most
closely the macroscopic Landau potentials of the relevant

FIG. 1. (Color online) The model with nearest- and third-nearest
neighbors along the horizontal and (almost) vertical axis; the bold
double arrows indicate the nonlinear Landau springs. The shear angle
is 4◦ in a box of 106 atoms including surface relaxations.

materials.10–12,33 It was found that in ferroelastic materials
the macroscopic Gibbs free energy closely follows a Landau
potential.10 In addition, similar Landau potentials were also
recently found in martensitic phase transformations and used
for simulations.47–55 The following requirements are posed for
our potential: (1) The ground state of the model has to be
a slightly sheared pseudocubic lattice, i.e.,a heavily twinned
crystal would have an apparent, overall cubic symmetry but
is noncubic within any domain. (2) The length scales of the
interfaces have to be of the order of three atomic repetition
units. The shear angle of ferroelastic materials10 is typically
below 4◦ while martensitic materials have often larger shear
angles. We decided to construct the model such that the shear
angle was �xed to 4◦, which appears to be a good compromise
for metallic and oxide materials. The shear angle is determined
by the diagonal springs in the square con�guration (Fig.1)
which was chosen to mimic the observed Landau potentials.
The thickness of the interface and the surface relaxations are
determined by the competition of springs between nearest
neighbors and next-nearest neighbors in the direction per-
pendicular to the twin boundary.56 The resulting potential is
a sum of nearest-neighbor interaction (short black lines in
Fig. 1), U (r) = 20(r − 1)2, next-nearest-neighbor interaction
(diagonal in the square lattice, heavy lines, yellow and orange
online in Fig. 1), U (r) = −10(r − √

2)2 + 2000(r − √
2)4,

and third-nearest-neighbor interaction (long black lines in
Fig. 1), U (r) = −(r − 2)4, wherer is the distance vector.

The ground state of this lattice is sheared with a shear
angle determined by the diagonal interaction. In addition, free
boundary relaxations enhance the shear angle57 to 4◦. The
calculated cell has 106 particles and contains two buffer layers
on the top and bottom of the two-dimensional sheet. These
buffer layers were sheared by the external boundary condi-
tions (�xed shear angle, hard boundary conditions). Limited
computer power leads to simulations in two dimensions. We
believe that this choice is reasonable because it was shown
previously that the addition of further layers did not change
the microstructures signi�cantly.12,39

The initial condition contained one horizontal twin bound-
ary [Fig.2(a)] which under external strain moved laterally so
that the �nal situation was a single crystal. Each con�guration
was annealed before any strain was changed as boundary
condition for 106 time steps using a conjugate gradient
re�nement procedure to �nd the optimal position for each
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FIG. 4. (Color online) Time evolution of the microstructure at various temperatures. The lower panel of (a) shows the typical sawtooth
behavior with superimposed noise in the derivative of the energy curves. The probability to �nd a jerk of a certain energy content is then
plotted as a function of energy of the jerk at different temperatures as shown in (b), (d), (f), and (h). These distributions show erratic behavior at
very low temperatures [(a) and (b)], power spectra below the Vogel-Fulcher temperature [(c) and (d)], and thermally activated behavior at high
temperatures [(g) and (h)]. At 1.2TVF [(e) and (f)] the spectrum shows a short cutoff for the power law with large exponential tails.
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systems and a similar quantity (des/df )2, where es is the
macroscopic shear strain andf is the applied force, was used
in the experimental paper.2 These data are shown in Figs.4(a),
4(c), 4(e), and 4(g); large jerks appear at the edge of the
sawteeth and smaller ones inside the ramps of each sawtooth.
We note here that the avalanches are not properly de�ned in
the thermal case and also in the power-law region close to
the Vogel-Fulcher temperature. With this caveat in mind, the
analysis of the derivatives appears to be the best option at
present.

The probability to �nd a jerk of certain energy content is
then plotted as a function of energy of the jerk. Here we see the
three regimes very clearly in Figs.4(b), 4(d), 4(f), and4(h):
the probability distribution is exponential at high temperatures
and follows closely a Vogel-Fulcher (VF) distributionP(E)
∼ exp−([E/(T − TVF)]), where TVF is the Vogel-Fulcher
temperature. We calibrate all temperatures with respect toTVF
(= 4 × 10−4, in our potential units). This thermally activated
behavior disappears whenT is less than 1.2TVF and gives
way to a power-law distributionP(E) ∼E−α dependence in
the temperature regime well below 1.2TVF [Fig. 4(f)]. In the
Vogel-Fulcher regime we �nd a very good agreement of the
distribution function with the Vogel-Fulcher law. Plotting the
absolute value of the inverse exponent (normalized byTVF)
as a function of temperature (Fig.5) leads to the de�nition of
TVF. At a slightly higher temperature of 1.2TVF we �nd that
the exponential distribution is already signi�cantly perturbed
while a power-law �t is valid only over a very small interval.
We de�ne this temperature as the crossover point between
the Vogel-Fulcher regime and the power-law regime. At lower
temperatures we �nd the power-law regime in the interval II.

FIG. 5. (Color online) Inverse exponent of the logarithmic prob-
ability functions in Fig.4 as a function of temperature. The linear
dependence of the inverse slope constitutes the Vogel-Fulcher law. We
normalized the temperature scale with respect to the Vogel-Fulcher
temperature. At lower temperatures (regime II) the probability
functions follow a power law with energy exponents around 2. At
very low temperatures (regime I) our simulations do not provide
suf�cient data to constitute reliable functional dependences. In this
regime a fairly erratic dependence is expected even in experimental
observations of small samples. (a)–(e) refer to the microstructures of
Fig. 3 that are seen in the various regimes.

The horizontal line indicates the upwards shift of thex axis if
one takes the 1.2TVF as the crossover point.

IV. DISCUSSION

Vogel-Fulcher relaxational behavior is typically observed
in glassy systems and systems which undergo relaxor phase
transitions.60 TVF is often called the freezing temperature
at which all dynamical relaxations cease. It is commonly
believed that the dielectric response of glasses and relaxor
materials is governed by the ensemble of local con�gura-
tions which relax dynamically with an exponentially broad
spectrum of relaxation times. For relaxation spectra which
are smooth and wide enough, the real part of the dielectric
permittivity can be approximated by the following logarithmic
scaling:

ε(ω, T ) = ε0(T ) f (ln ω0/ω ,T ).

The maximum ofε(ω,T ) may occur atTA so that theTVF
can be approximated by

TVF = TA + C(ln ω0/ω),

with some constantC which describes the dispersion of
the relaxation times.61 Logarithmically slow relaxations and
temperature dependences of the Vogel-Fulcher type are hence
conceptually linked62 and have been explored widely for
highly disordered systems.63 Our results for the power-law
distribution at modest temperatures just belowTVF show
power-law behavior with exponentα ≈ 2, which is identical
to those one would expect for avalanche statistics with large
defect concentrations.64 This clearly shows that the empirical
observation of power-law distributions withα near 2 does
not imply that defect-generated crackling noise or critical
avalanches, or self-induced criticality is at play. No extrinsic
defects are part of our model so that the only reason why jerky
front propagation follows a power-law distribution appears to
be that the active centers of the movement, namely, the twin
boundaries, generate the defects intrinsically. This means that
at a well-de�ned wall concentration their interaction leads
to jamming and hinders further time evolution of the strain
release. Close inspection of the domain pattern in Fig.3
shows that the active defects are the intersections between
walls and the tips of needle domains. Parallel twin walls do
not (virtually) interact over distances relevant in our patterns
so that the network of interacting centers is de�ned by the
points (or lines in three dimensions) of intersections of walls.
The intersections form a fairly high defect density which
would satisfy the usual conditions of avalanche dynamics.
We can then characterize our results as follows: the defect
concentration is too low at low temperatures to generate
smooth jerk distributions. At slightly higher temperatures,
these concentrations are suf�cient and power-law distributions
are seen. The energy exponent assumes values around 2.
At temperatures well above the Vogel-Fulcher temperature,
we �nd thermally activated behavior with constant activation
energies.
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