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Precursor phenomena are critical issues for martensitic transformation, as they provide important clues for
understanding the origin of the transformation and the structure of the transformation products. Prior to
temperature-induced martensitic transformation, it has been recognized for a long time that the basal plane

shear modulus C� ��110� �11̄0� shear mode� of the parent phase decreases on approaching the transformation
temperature. On the other hand, martensitic transformation can also be induced by stress; but little has been
known about whether similar precursor phenomenon also exists prior to such stress-induced martensitic trans-
formation. In the present study, we successfully simulated the stress-induced martensitic transformation and
associated superelasticity in a generic martensitic system by means of molecular dynamics method. Through
calculating C� as a function of applied stress, we found a significant softening of C� prior to the stress-induced
martensitic transformation. This is a clear evidence for the existence of lattice softening prior to stress-induced
martensitic transformation. Our results suggest that lattice softening is a common feature for both temperature-
and stress-induced martensitic transformation. An interesting result is that stress does not soften all the crys-

tallographically equivalent �110� �11̄0� shear moduli �all are C� by definition�; it softens some of them while
it hardens the rest. This is contrasting with the temperature-induced C� softening, in which all equivalent �110�
�11̄0� shear moduli simultaneously soften to the same extent. It corresponds to the well-observed fact for given
stress direction only certain martensite variant�s� are induced while other variants are prohibited. We also
formulated an analytical theory to investigate the variation of C� under stress, and obtained similar result as
that of our molecular dynamics simulations.

DOI: 10.1103/PhysRevB.74.104111 PACS number�s�: 64.70.Kb, 63.70.�h, 64.60.�i, 71.15.Pd

I. INTRODUCTION

Martensitic transformation �MT� is a displacive, diffu-
sionless first-order transformation from a high-symmetry
phase at high temperature to a low-symmetry phase �marten-
site� at low temperature. It has been extensively studied for
decades because of its importance in metallurgy and its key
role in shape memory phenomenon.

An interesting feature of martensitic transformation in
shape memory alloys is the existence of precursor
phenomena,1,2 which announce the instability of the system
towards a martensitic phase. Prior to temperature-induced
martensitic transformation, many important precursor phe-
nomena in various shape memory alloys have been observed
by various methods. Elastic constant measurements3–9 al-
ways show a softening of elastic constant C� ���C11-

C12� /2, which reflects the resistance to �110� �11̄0� shear	
prior to martensitic transformations; Neutron scattering ex-
periment in most cases10–13 confirms a low-lying TA2 acous-
tic phonon which further softens with approaching transfor-
mation temperature. Elastic neutron scattering in most cases
reveals a central peak,13 and x-ray diffraction reveals diffuse
scattering and extra diffuse spots,14 These suggest the exis-
tence of static martensitelike structure above the transforma-
tion temperature. Many TEM observations reported diffuse
streaks along �110� directions and in some cases discrete
diffuse spots were observed.15,16

Among these phenomena, the anomalous dynamical re-
sponse of the lattice to some specific displacements are inti-

mately related to the transformation mechanism and have
been reported to occur in all bcc martensitic system investi-
gated so far, i.e., all bcc martensitic materials exhibit a low-
lying TA2 �110� �11̄0� phonon branch, which corresponds to
a low value of the elastic constant C�. Both the elastic con-
stant and the TA2 phonon soften on approaching the trans-
formation temperature.

On the other hand, stress can also induce martensitic
transformation. However, little is known about whether the
above-mentioned precursor phenomena exist prior to stress-
induced MT. This is mainly due to the difficulty in experi-
mentation under stress. The change of phonon energy and
elastic constant with stress reflects the anharmonicity of the
lattice. Previous investigations about the third order elastic
constants2,5,17–20 and Gruneisen parameters2,20–22 indicate en-
hanced anharmonicity close to the transition temperature, but
these studies measured anharmonicity effect only for low
stress level. It is not clear how the lattice dynamic properties
change from zero stress up to the critical stress at which
martensite is induced. The investigation of this important
problem may provide new insights into the underlying
mechanism of martensitic transformation under stress.

The purpose of the present work is to use molecular dy-
namics �MD� simulations approach to explore this important
issue. So far, most MD simulations of martensitic transfor-
mations have focused solely on temperature-induced
MT,23–27 and no simulations for stress-induced MT and its
related precursor effect have been done to date. This is
mainly due to the lack of appropriate potential function.
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In the present study, we applied an appropriate Lennard-
Jones potential function and successfully simulated the
stress-induced martensitic transformation of a generic mar-
tensitic system. Our simulations reproduced the characteris-
tic superelastic deformation behavior associated with the
stress-induced transformation. This indicates that our simu-
lations capture the essential physics of the martensitic sys-
tem. Then we focus on the possible softening of elastic con-
stant C� prior to stress-induced MT by MD simulations. Our
result clearly shows significant softening in C� prior to the
stress-induced MT, proving the existence of lattice softening
before stress-induced MT. Furthermore, our simulations pro-
vide the microscopic information in atomic level about C�
softening prior to stress-induced MT, and point out the dif-
ference in C� softening between temperature-induced and
stress-induced MT.

The layout of this paper is as follows: first, in Sec. II, we
introduce the analytical formula of elastic constants C� under
stress, which is the basis for calculating the change of C�
with stress prior to stress-induced MT. Section III focuses on
the molecular dynamics simulations. Then in Sec. IV, we
compare our results with thermodynamic theory, and prove
elastic softening prior to stress-induced MT by an analytical
theory, and then make a comparison between temperature-
and stress-induced MT. Finally, the conclusions are made in
Sec. V.

II. BASIC FORMULA OF ELASTIC CONSTANT C�
UNDER FINITE STRESS

The physical meaning of C� is the “stiffness” against a

�110� �11̄0� type shear ��110� shear along �11̄0� direction�.
Accordingly, C� under a finite shear stress � j exerted on the
system �as in our case� can be calculated as follows:

Ci��� j� � 
 d�i

d�i



�j

, �1�

where � j is the finite shear stress and d�i and d�i are the
infinitesimal shear stress and strain, respectively. The sub-

script i and j denote a particular �110� �11̄0� type shear mode
of the infinitesimal shear stress d�i and that of the finite shear

stress � j; it can be �110� �11̄0	, �101� �1̄01	, or �011� �01̄1	
shear mode.

When there is no finite stress exerted on the system, the

elastic moduli Ci� for different �110� �11̄0� type shear modes

are the same, as different �110� �11̄0� type shear modes in a
cubic system are equivalent. However, under finite stress, the
crystal is slightly distorted and has a lower symmetry; as the
result, the Ci� may take different values for different �110�
�11̄0� type shear mode i under the finite stress � j.

Equation �1� shows that to obtain C� under finite shear
stress � j, we should first apply the finite shear stress � j, fol-
lowed by superimposing on it a small shear stress d�i and
then measuring its resultant small shear strain d�i. However,
our MD software has difficulty to generate a shear stress,
although it can produce tensile and compressive stresses.

Thus we cannot directly use Eq. �1� to calculate the elastic

constant C� of a �110� �11̄0� shear mode under stress. This
difficulty can be circumvented by noticing the equivalence of
a pure shear stress state with a tension-compression biaxial
stress state. For example, the stress state of a pure �101�
�1̄01	 shear mode is equivalent to a tension-compression bi-
axial stresses �0 along �100	 and −�0 along �001	 direction,
as shown in Fig. 1. Considering such an equivalence, C� can
be expressed in terms of the biaxial stress and strain

Ci��� j� = 
d�i

d�i



�j

, �2�

where � j is the biaxial stress equivalent to finite �110� �11̄0�
shear stress � j, d�i, and d�i are the infinitesimal biaxial stress
and strain corresponding to d�i and d�i, respectively.

Equation �2� provides an explicit and simple method for
the measurement of elastic constant C� as a function of finite

shear stress for different �110� �11̄0� modes. Our MD simu-
lations uses this method to calculate the variation of Ci� �� j�
with biaxial stress � j. The finite biaxial stress � j is first ex-
erted on the crystal �represented by a “super cell” that com-
prises thousands of unit cells of the crystal�, and the dimen-
sion change of the super cell is monitored. Then a small
“measuring stress” d�i is applied on the strained super cell

along an appropriate �110� �11̄0� orientation, followed by
measuring the resultant small strain change d�i, which is
obtained by measuring the distortion of the super cell by this
“measuring stress” relative to the cell shape under finite
stress � j only. The elastic constant C� along this particular
orientation is then calculated by Eq. �2�.

III. MOLECULAR DYNAMIC SIMULATION

A. Computational modeling

MD simulations were carried out with a commercial soft-
ware “Materials Explorer 2.0,” which is based on the
Parrinello-Rahman method.28 In this method, the external
stress is directly introduced to the Lagrangian equations of
motion. To begin with the MD simulations, an external stress

FIG. 1. Sketches of the geometrical configuration of biaxial
stress case relative to the crystal. Symbols used here: �0, external
stress.
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is exerted on the system, and a long run is needed to estab-
lish the equilibrium of the system under the external stress;
then the corresponding strain can be obtained by calculating
the variation of the Parrinello-Rahman cell �super cell� axis
lengths. By repeating the above steps, the corresponding
strain at different external stress can be obtained. Of course,
the external stress should be zero in the first run to establish
the reference equilibrium state of the system.

Unfortunately, due to the lack of a proper potential energy
function, this software could not simulate martensitic trans-
formation. In this work, a special 8-4 Lennard-Jones poten-
tial �instead of the standard 12-6 Lennard-Jones potential�
was introduced into the software to simulate the martensitic
transformation. This 8-4 potential was proposed originally by
Sanchez et al.,29 to study the phase diagrams of Ni-Al alloy
and later extended to a wide range of binary alloys by Shi-
mono and Onodera.30 Recently Suzuki and Shimono24

showed that this potential is capable of simulating the
temperature-induced MT.

By using this potential, we are able to simulate the mar-
tensitic transformation of a “generic” martensitic system that
undergoes a B2 to L10� �an L10 based orthorhombic struc-
ture� transformation.23,24 As will be seen later, our simula-
tions of this generic martensitic system capture the essential
physics of martensitic transformation and the effect of exter-
nal stress.

The expression for two-body 8-4 potential Vab can be
written as follows:

Vab�r� = eab��rab/r�8 − 2�rab/r�4� , �3�

where eab and rab represent the bond strength between atoms
and the atomic size respectively. For our model B2 crystal,
these two parameters are chosen from that of a typical mar-
tensitic system Ti-Ni, the values of eab and rab are shown in
Table I. The mole mass of the atoms in our model B2 crystal
are set to be 47.9 g/mol �Ti atom� and 58.7 g/mol �Ni atom�
respectively, the density of Ti atom and Ni atom are
4.5 g cm−3 and 8.9 g cm−3, respectively. But one should not
expect that such a simple potential can generate the complex
B19� martensite of Ti-Ni; the martensite with the above po-
tential should be considered.

Furthermore, the isothermal-isobaric ensemble was
adopted, and the initial MD cell �with B2 structure� was built
up in a cubic box containing 3456 atoms �1728 Ti atoms and
1728 Ni atoms�. To avoid the existence of the free surface in
the MD cell, periodic boundary conditions were imposed in
three dimensions.

B. Temperature induced martensitic transformation

As the stress-induced MT occurs in the parent state, i.e.,
at a temperature above the transformation temperature, we
need to know first the transformation temperatures. They are

Ms �martensite-start temperature upon cooling�, Mf
�martensite-finish temperature upon cooling�, As �reverse-
transformation-start temperature upon heating�, and Af
�reverse-transformation-finish temperature upon heating�.
For this purpose, we first simulated martensitic transforma-
tion during temperature cycles to determine these tempera-
tures of our ensemble.

The simulation started with an ensemble of parent phase
�B2 structure� at 300 K. After 20 picoseconds �ps� thermal
holding, cooling procedure started and the ensemble was
cooled from 300 K to 0.1 K in 60 ps. In the subsequent
40 ps, the temperature of the system was kept at 0.1 K to get
the equilibration of the low temperature phase. Then the en-
semble was heated up to 300 K again in 60 ps. The variation
of temperature with time is shown in Fig. 2.

The Parrinello-Rahman cell axis lengths, which are re-
lated to the size and shape of the unit cell of our model
crystal, are shown as a function of time in Fig. 2. It is found
that the length of three cell axes keep almost the same until
the temperature �T� reaches 196 K, which means that B2
structure �parent phase� is stable down to 196 K. When the
system is cooled from 196 K to 189 K, the cell lengths
change abruptly; indicating that the B2 structure immediately
transforms into a close-packed structure labeled L10�. When
the system is heated up to 249 K again, the values of lattice
constants again changed suddenly, and this sudden change
finishes at 254 K. On further heating, the value of lattice
constants remained stable and expanded continuously.

As shown in Fig. 2, by introducing a proper potential
function, we can successfully simulate temperature-induced
MT. Furthermore, the average Ms temperature for four runs
of the B2 to L10� transformation turns out to be 196 K, and
the corresponding As temperature is 249 K, while the aver-

TABLE I. Parameters in Eq. �3�.

r11�10−10 M� r22�10−10 M� r12�10−10 M� e11�10−27 J� e22�10−27 J� e12�10−27 J�

1.0000 0.8494 0.8947 1.133 75 1.033 87 1.249 00

FIG. 2. The Parrinello-Rahman cell axis lengths and tempera-
ture are shown as a function of time. The cell is related to the size
and shape of the unit cell of a completely ordered B2 crystal with
3456 atoms.
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age Mf temperature is 189 K, and the average Af temperature
is 254 K. The hysteresis of the present phase transformation
is about 59 K, which indicates the present MT is a first order
phase transformation.

C. Uniaxial and biaxial stress induced martensitic
transformation

With the information of transformation temperatures of
the ensemble, we can now simulate stress-induced MT. Ini-
tially, the temperatures of the ensemble were cooled from
300 K to a given temperature in 20 ps, which is higher than
Ms �196 K�, and were held for 20 ps to establish equilib-
rium, and then an external stress was applied.

As we know, when a martensitic system is stressed above
the Af point, superelasticity occurs, while a martenstic sys-
tem is stressed among Ms and Af point, we can only get
partial superelasticity. Now we show the results of our MD
simulations.

First, a uniaxial compressive stress was applied along
�001	 direction at 260 K to simulate the superelastic behav-
ior; the loading rate was 20 N/ps. The variations of cell size
and external stress with time were shown in Fig. 3. To facili-
tate the description below, the martensitic-transformation-
start stress upon loading is defined as the critical stress ��cr�,
which was shown in Fig. 3.

When a uniaxial compressive stress is applied along �001	
direction of the ensemble, there is a contraction in the �001	
direction and an expansion in �010	 and �100	 direction. This
elastic deformation behavior continues until the applied
stress reaches a critical stress, which is 510 MPa at 260 K.
However, as shown in Fig. 3, the fluctuation of lattice con-
stants prior to stress-induced MT are much higher than those
of temperature-induced MT shown in Fig. 2, so it is difficult
to obtain the corresponding compressive strain directly.

In the present MD simulation, a long run of 2000 time
steps was carried out for a given loading. All the compres-

sive strain corresponding to the applied stress was calculated
with the last 1000 time steps of this run, and a method of 10
data-point smoothing was used to smooth compressive strain
versus time curves.

The calculated compressive stress-strain curve along
�001	 direction at 260 K is shown in Fig. 4�a�. It is clear that
the superelasticity, which is caused by the stress-induced
transformation and the reverse transformation on unloading,
has been simulated successfully. It shows that the introduced
potential function can successfully describe both
temperature- and stress-induced MT.

Then, MD simulations for biaxial stress state shown in
Fig. 1, was done to calculate the variation of elastic constant
C� prior to stress-induced MT according to Eq. �2�. In the
present calculation, an external tensile stress is applied along
�100	 direction, and a compressive stress is simultaneously
applied along �001	 direction. The loading rate along �100	
and �001	 direction are 10 N/ps.

Figure 4�b� shows the simulated stress-strain curves along
�100	 directions for �100	-�001	 biaxial stress state. When the
temperature of the ensemble is 260 K, which is higher than
Af �254 K�, we can see that the stress-strain behavior in bi-
axial loading is very similar to the case of uniaxial loading
shown in Fig. 4�a�. On loading, the system deforms elasti-
cally until point B is reached, from which L10� martensitic
transformation starts to form. As the loading increases, the
deformation proceeds by the stress-induced MT from point B
to point C on the stress-strain curve and form a plateau. The

FIG. 3. The Parrinello-Rahman cell axis lengths and uniaxial
compressive stress along �001	 direction are shown as a function of
time. The cell is related to the size and shape of the unit cell of a
completely ordered B2 crystal with 3456 atoms. Symbols used here:
�cr, Stress-induced martensitic transformation starting stress.

FIG. 4. Simulated stress-strain curves of our B2 model crystal
�a� at 260 K for the case of uniaxial compression. The curve was
calculated from Fig. 3; �b� at different temperature for the case of
biaxial stress state shown in Fig. 1.
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applied stress at point B is defined as the critical stress. From
point C to point D, it deforms elastically again. On unload-
ing, the strain recovers elastically from point D to near point
E first, and then it recovers more quickly by the reverse
transformation from the L10� to B2 structure �point E-F�.
When the loading is completely removed, the ensemble re-
covers to its original structure �point G�.

When the temperature of the ensemble is 240 K, which is
among Ms and Af, we can only get a partial superelasticity
�shown in Fig. 4�b�	, which is also consistent with the well-
known experimental observation. It is clear from these ob-
servations that superelastic behavior can also be induced in
biaxial stress mode or an equivalent pure shear mode.

Based on the above, we can calculate the elastic constant
C���� of different shear mode at the given �100	-�001	 biax-
ial stress mode shown in Fig. 1. First, we keep the �100	-
�001	 biaxial stress �0 as constant, then apply an infinitesi-
mal tension-compression stress along �100	-�001	 direction,
�100	-�010	 direction, and �010	-�001	 direction, respec-
tively. According to Eq. �2�, C���� of three crystalgraphically
equivalent shear mode at the given stress �0 can be obtained.

Figure 5�a� shows the relationship between C101� ��� �i.e.,

C���� of �101��1̄01	 shear mode	 and external stress at dif-
ferent temperature for the present biaxial state. First, we can

see that the elastic constant C101� ��� shows a significant soft-
ening with the increase of the applied stress at constant tem-
perature. It is further noted that the softening is not linear
with respect to stress. All of above are very similar to those
of temperature-induced MT. This indicates that elastic con-
stant softening is a common feature both in temperature- and
stress-induced MT. Furthermore, C101� ��� decreases with the
decrease of temperature at given applied stress, which is
similar to the elastic softening prior to temperature-induced
MT without external stress. It also proves the validity of the
present calculation.

Figure 5�b� shows the relationship between C���� of dif-
ferent crystallographically equivalent shear modes and exter-
nal stress at a constant temperature �260 K�. We can see that,
at a given temperature �260 K�, C���� softens only in

�110��11̄0	 and �101��1̄01	 shear modes and hardens in

�011��01̄1	 shear mode for the present biaxial stress state,
which is different from that of temperature-induced MT. We
will discuss it in the following sections.

D. Atomic configurations prior to stress-induced martensitic
transformation

From the above results, we can confirm that elastic con-
stant C� in some specific directions soften with the increase
of applied stress prior to stress induced MT. However, what
is the corresponding microscopic picture at atomic levele? To
find the answer, we show the variation of atomic configura-
tions prior to stress-induced MT.

In our MD simulations, the ideal crystal structure of par-
ent phase is B2 phase �shown in Fig. 6�a�	, while that of
martensitic phase is L10� phase, as shown in Fig. 6�b�. For
the case of biaxial stress state shown in Fig. 1, Fig. 6�c�–6�e�
show the variation of atomic configurations viewed in differ-
ent directions when the applied stress increases from zero to
critical stress. Viewed from �001	B2 direction �Fig. 6�c�	, we

can see that, four clusters which move along �110��11̄0	 di-
rection are formed prior to critical stress, and the atoms in
the adjacent two clusters move along �100��100	 direction. If
viewing from �010	B2 direction �Fig. 6�d�	, we can also find

four clusters, which move along �101��1̄01	 directions, are
also formed prior to critical stress. However, if viewed from
�100	B2 direction �Fig. 6�e�	, we cannot see there exists ob-
vious clusters prior to critical stress. These indicate that,

clusters are formed only in �110��11̄0	 and �101��1̄01	 shear
mode, but not in the crystallographically equivalent

�011��01̄1	 shear mode for the present biaxial stress condi-
tion. As will be seen later, such nonequivalence in clustering
is related to the nonequivalence in the C� softening along

different �110� �11̄0� shear mode, and also related to the
selected formation of martensite variants by stress.

IV. DISCUSSION

A. Comparison between simulated result and thermodynamic
theory

To verify the present MD simulations, we first compared
the simulated results with thermodynamic theory.

FIG. 5. Predicted elastic constant C���� by MD simulations �a�
of �101��1̄01	 shear mode as a function of the applied stress prior to
the B2-L10� transformation at different temperature; �b� of three
crystallographially equivalent shear modes prior to the stress in-
duced B2-L10� transformation at constant temperature. The biaxial
stress is applied alone �100	-�001	 orientation as shown in Fig. 1.

Symbols used here: C101� ���, C���� of �101��1̄01	 shear mode.
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A thermodynamic method to analyze the effect of stress
on MT temperature is the use of the Clausius-Clapyeyron
relationship, which can be expressed as follows for a uniaxial
stress:31

d�

dT
= −

�HV

T0��
, �4�

where �HV is the enthalpy change of the transformation per
unit volume, � a uniaxial stress, �� a transformation strain,
and T0 the temperature where �GP→M =0 ��GP→M is the
chemical free energy change per mole�.

It should be noted that Eq. �4� is only valid for uniaxial
tension. For the case of biaxial stress state in the present
study, the relationship between the stress in tensile direction
and temperature can be easily derived as the following by a
standard thermodynamic approach

d�

dT
= −

�HV

T0���11 − ��33�
, �5�

where ��11 and ��33 are the transformation strains in the
tensile and compressive direction respectively, � the stress in
tensile direction.

For the MD simulations in the present study, Ms=196 K,
Af =254 K. Following the conventional assumption that T0

= 1
2 �Ms+Af�, which is widely used in martensite literature,32

T0 is calculated to be 225 K. At a given temperature, by
calculating the variation of the Parrinello-Rahman cell axis
lengths during stress-induced MT in three dimensions �for
example, 260 K�, the transformation strain in three dimen-
sions ���11,��22,��33� can be obtained, then the value of
��11−��33 can be obtained at the given temperature. Con-
sidering the transformation strains are weakly temperature
dependent and do not change greatly with temperature, the
value of ��11−��33 are averaged at different temperature. In
the present study, the averaged ��11−��33 from B2 to L10�
under biaxial stress state is 8.256%.

The enthalpy change of phase transformation can be cal-
culated with �H=�U+ P�V, where P is the external pres-
sure, which is 1.013�105 Pa for the present MD simula-
tions. �U and �V are the changes of internal energy and
volume per mole during the phase transformation respec-
tively, which are 399.36 J /mol and 64 mm3/mol, respec-
tively in the present ensemble. Furthermore, the molar
weight of our model crystal is 53.3 g/mol, and its equivalent
density is 6.7 g/cm3. Based on the above data, �HV of B2 to
L10� phase transformation of our model crystal is obtained as
−50.2 J /cm3.

FIG. 6. �Color online� Atomic
configuration during temperature
induced and stress induced mar-
tensitic transformation. �a� ideal
B2 structure; �b� ideal martensitic
structure; �c� variation of atomic
configurations between 0 and �cr

viewed from �001	B2 direction for
the case of biaxial stress state; �d�
variation of atomic configurations
between 0 and �cr viewed from
�010	B2 direction for the case of
biaxial stress state; �e� variation of
atomic configurations between 0
and �cr viewed from �100	B2 di-
rection for the case of biaxial
stress state. Symbols used here:
�cr, Stress induced martensitic
transformation starting stress; the
blue rectangle represent the initial
cell of the ensemble, the red rect-
angle represent the final cell of the
ensemble; The yellow points rep-
resent Ti atom, and the dark points
represent the Ni atoms; the tails of
the atoms represent the trajecto-
ries of atoms.
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By substituting the above values into Eq. �6�, the pre-
dicted slope of � versus T curve is 2.70 MPa/K. As shown
in Fig. 7, the slope of ��T curve predicted by our MD
simulations is 2.74 MPa/K, which fits well with the
Clausius-Clapyeyron relationship. This indicates that our
MD results are reliable, and the critical stress for stress-
induced MT does increase linearly with temperature, obeying
the Clausius-Clapeyron equation.

B. Proving elastic softening prior to stress-induced MT by an
analytical theory

Now we show that, with an analytical method, we can
also prove the existence of elastic softening prior to stress-
induced MT, supporting our simulation results.

In a stressed crystal, the thermodynamic potential 	 is
related to the Helmholz free energy F, the stress �ik, and
strains �ik as follows:33

	 = F − �
i,k

�ik�ik. �6�

The Helmholz free energy �F� of a cubic crystal in terms
of the symmetry adapted strain components is given in Ref.
34. By considering only symmetry breaking terms, the
Helmholz free energy �F� in our case2,5 is

F = F0 +
1

2
C��
1

2 + 
2
2� −

1

3
C3
1�
1

2 − 3
2
2�

+
1

4
C4�
1

2 + 
2
2�2, �7�

where C3= 1
83

�3C112−2C123−C111� is a combination of the
third order elastic constants, and C4 is a combination of
fourth-order elastic constants; 
1= �2�33−�11−�22� /3 and

2= ��11−�22� are the symmetry strains appropriate for cubic
system, expressed in the terms of Lagrangian strain tensor
components ��ij�. It is noted that 
2= ��11−�22� also repre-

sents the �110��11̄0	 shear strain, i.e., the C� shear for

�110��11̄0	 mode. Under volume invariance condition ��11

+�22+�33=0�, the relationship between Lagrangian strains
and the order parameters can be expressed as

�11 = −

1

23
+


2

2
, �22 = −


1

23
−


2

2
, �33 =


1

3
. �8�

For the present biaxial stress state shown in Fig. 1, the
strain energy term can be expressed as

�
i,k

�ik�ik = �0��11 − �33� = �0�−
3

2

1 +


2

2
� , �9�

where �0 is the tensile stress for the biaxial stress state
shown in Fig. 1.

Therefore, the thermodynamic potential 	 of the stress
crystal as a function of 
1 and 
2 can be written as

	 = F0 +
1

2
C��
1

2 + 
2
2� −

1

3
C3
1�
1

2 − 3
2
2�

+
1

4
C4�
1

2 + 
2
2�2 − �0�−

3

2

1 +


2

2
� . �10�

The elastic constant C� for the �110��11̄0	 shear mode
�C110� ��0�	 can also be defined by the second derivative of

thermodynamic potential 	 with respect to �110��11̄0	 shear
strain 
2��0�= ��11��0�−�22��0�	

C110� ��0� =
�2	

�
2
2 = C� + 2C3
1��0� + C4�
1

2��0� + 3
2
2��0�	 ,

�11�

where 
1��0� and 
2��0� are the equilibrium values of the
strains under the biaxial stress �0.

As the thermodynamic potential Eq. �7� must be invariant
with respect to symmetry operations �permutation of �11, �22,
and �33�, Eq. �7� will keep the same form for another two sets
of 
1��0� ,
2��0�


1���0� = �2�22��0� − �33��0� − �11��0�	/3,


2���0� = �33��0� − �11��0� , �12a�


1���0� = �2�11��0� − �22��0� − �33��0�	/3,


2���0� = �22��0� − �33��0� . �12b�

By using these two sets of 
1��0� and 
2��0� respectively,
one can build up the same thermodynamic potentials as Eq.
�10�. The second derivatives of the potential with respect to


2� and 
2� yield elastic constant C� for �101��1̄01	 and

�011��01̄1	 shear mode �C101� ��0� and C011� ��0�	, respectively

C101� ��0� =
�2	

�
2�
2 = C� + 2C3
1���0�

+ C4�
�1
2��0� + 3
�2

2��0�	 , �13�

C011� ��0� =
�2	

�
2�
2 = C� + 2C3
1���0�

+ C4�
�1
2��0� + 3
�2

2��0�	 . �14�

FIG. 7. Relationship between the critical stress in tensile direc-
tion for the present biaxial stress state and temperature by MD
simulations. The corresponding slope predicted by the Clausius-
Clapeyron equation is 2.70.
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In the following we calculate the equilibrium values of
the three sets of 
1 and 
2 as a function of external biaxial
stress �0. Actually only one set of the 
1 and 
2 needs to be
calculated and the rest two sets can be obtained by relations
Eqs. �12a� and �12b� and Eq. �8�. Now we calculate 
1 and

2. Consider thermodynamic potential Eq. �10�; when the
stressed crystal reaches equilibrium, the following conditions
must be satisfied:

�	

�
1
= C�
1 − C3
1

2 + C3
2
2 + C4�
1

3 + 
1
2
2� +

3

2
�0 = 0,

�	

�
2
= C�
2 + 2C3
1
2 + C4�
2

3 + 
2
1
2� −

�0

2
= 0. �15�

Generally the equilibrium order parameters 
1��0� and

2��0� are complex functions of external stress �0. Noticing
strains are small in the parent state �before martensite is in-
duced�, we can make a Taylor expansion and keep the terms
up to second order. Then


1��0� = m1�0 + m2�0
2,


2��0� = n1�0 + n2�0
2, �16�

Where m1,n1,m2,n2 are constants. For a first order approxi-
mation, assuming the system is harmonic �i.e., C3=C4=0�,
from Eq. �15� one obtains

m1 = −
3

2

1

C�
, n1 =

1

2

1

C�
. �17�

Then Eq. �16� has only two unknown constants to be de-
termined. Substituting Eq. �16� into Eq. �15� and neglecting
terms higher than second order, we obtain

m2 =
1

2

C3

C�3 , n2 =
3

2

C3

C�3 . �18�

Thus the equilibrium value of 
1��0� and 
2��0� as a
function of external biaxial stress is as follows:


1��0� = −
3

2

�0

C�
+

1

2

C3

C�

�0
2

C�2 , 
2��0� =
1

2

�0

C�
+

3

2

C3

C�

�0
2

C�2 .

�19a�

With 
1��0� and 
2��0� we can calculate 
1���0�, 
2���0�,
and 
1���0�, 
2���0� from Eqs. �12a� and �12b� and Eq. �8�.
They are


1���0� = −
C3

C�

�0
2

C�2 , 
2���0� = −
�0

C�
, �19b�


1���0� =
3

2

�0

C�
+

1

2

C3

C�

�0
2

C�2 , 
2���0� =
1

2

�0

C�
−

3

2

C3

C�

�0
2

C�2 .

�19c�

Substituting Eqs. �19a�, �19b�, and �19c� into Eqs. �11�,
�13�, and �14�, respectively, and keeping terms up to second
order, we can obtain elastic constant C� for the three crystal-

lographically equivalent shear modes, �110��11̄0	, �101�
��1̄01	, and �011��01̄1	, respectively

C̃110� ��0� = C110� ��0�/C� = 1 − 3��̃0 + ��2 +
3

2
���̃0

2,

�20a�

C̃101� ��0� = C101� ��0�/C� = 1 − �2�2 − 3���̃0
2, �20b�

C̃011� ��0� = C011� ��0�/C� = 1 + 3��̃0 + ��2 +
3

2
���̃0

2,

�20c�

where C̃110� ��0�, C̃101� ��0�, and C̃011� ��0� represent respec-
tively the normalized elastic constant C���0� /C� of

�110��11̄0	, �101��1̄01	, and �011��01̄1	 shear mode at given
biaxial stress �0; �=C3 /C�, �=C4 /C�; �̃0 is the generalized
stress �̃0=�0 /C�. It is clear that under external stress the
elastic constant C� for the three “crystallographically equiva-
lent” shear modes is no longer the same.

According to the Landau theory, C�, C3, and C4 are posi-
tive, thus �=C3 /C�0. Furthermore, from the available ex-
perimental data on Cu-based shape memory alloys,4,5,17,20 it
is found 2�2−3�0. With the information above, we can
conclude from Eqs. �20a�–�20c� that under the biaxial stress
�0 along �100	-�001	 direction, the elastic constant C���0� of

�110��11̄0	 and �101��1̄01	 shear modes softens with increas-

ing external stress �0, whereas C���0� of �011��01̄1	 shear
mode hardens with the increasing applied stress �0.

Figure 8�a� shows the variation of C̃���0� with the exter-

nal stress �0 for three �110� �11̄0� shear modes. The � and �
values ��=5.8 and �=10.8� here are derived from the ex-
perimentally determined C��7.42 GPa�, C3�43.26 Gpa�, and
C4 �80 Gpa� values for Cu2.72Al1.122Ni0.152 shape memory
alloy.17 It is clear that with the increase of applied stress �0

along �100	-�001	 direction, C̃���0� hardens for �011��01̄1	
shear mode, and softens for �110��11̄0	 and �101��1̄01	
modes. It is further noted that the stress-induced softening

for �110��11̄0	 shear mode or hardening for �011��01̄1	 shear
mode are almost linear with respect to external stress. Ex-
perimentally it has been found in Cu-based shape memory
alloys, C� seems to be a linear function of external
stress,5,17,20 our calculated result in Fig. 8�a� is consistent
with such an observation.

Figure 8�b� also shows the variation of C̃���0� with the

external stress �0 for the three �110� �11̄0� shear modes, but
with larger � and � ��=29, �=54�. We can see that the

variation of C̃���0� with the biaxial stress �0 becomes quite
nonlinear. This situation is quite similar to the our MD re-
sults in Fig. 5�b�. Therefore, the analytical expression Eqs.
�20a�–�20c� provides a quantitative analysis to the stress-
induced softening or hardening behavior of C� along differ-
ent orientations for different systems.
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It is noted that elastic softening by stress reflects the
strong lattice anharmonicity of martensitic system. In this
respect, our work is related to previous work2,5,17–22 on the
anharmonicity of martensitic systems. These investigations
have concentrated on the measurement of high order elastic
constant2,5,17–20 and Gruneisen parameters.2,20–22 In principle,
if a complete set of second, third, and fourth rank elastic
constant is known, it is possible to deduce �through Landau
free energy expansion� the dependence of elastic constant C�
on stress at any stress/strain level. However, a complete set
of high order �in particular fourth order� elastic constant is
very difficult to obtain by experiment, and the third order
elastic constants are available only for a very few
systems2,5,17–22 to date. By comparison, our approach �calcu-
lating C� from the stress-strain relation� is a straightforward
method and does not need any information about high order
elastic constants. Therefore, the present method is a conve-
nient and general method to calculate the softening behavior
of elastic constant C� under stress; it can also provide useful
information about anharmonicity of the system �i.e., higher
order elastic constants�.

Unlike the case of stress-induced elastic softening �which
is directly linked to anharmonicity of the system�, it seems
that the relation between temperature-induced elastic soften-
ing and anharmonicity is not self-evident. However, it should
be noted that the softening of elastic constant with tempera-
ture actually indirectly leads to an enhanced anharmonicity.

This is because elastic constant is the coefficient of the har-
monic terms �quadratic terms� in the Landau free energy ex-
pansion. Softening of elastic constant with temperature
means that the harmonic energy decreases with lowering
temperature. However, the anharmonic energies �higher or-
der terms� are essentially insensitive to temperature changes.
As the result, with lowering temperature, anharmonic ener-
gies gradually dominate the system and leads to a phase tran-
sition. Therefore, the softening of elastic constant with low-
ering temperature is equivalent to an enhanced
anharmonicity, although the �second rank� elastic constant
itself does not reflect the anharmonicity.

C. Comparison of elastic constant C� softening between
temperature and stress-induced martensitic transformation

As we know, both temperature and stress can induce mar-
tensitic transformation. So it is of interest to make a com-
parison of elastic constant softening behavior between
temperature- and stress-induced MT.

By definition, C� corresponds to the �110� �11̄0� shear
modulus. Prior to temperature-induced MT, C� is naturally
related to the Zener instability35 and to the formation of
basal-plane-based martensites. Considering the cubic sym-
metry of the crystal, the possibility of Zener instability for
three crystallographically equavilent shear modes

��110��11̄0	, �101��1̄01	, and �011��01̄1	�, are the same, i.e.,
the softening of C� prior to temperature-induced MT can
occur in any of these three crystallographically equivalent
shear modes. Furthermore, according to such a softening be-
havior, martensitic nuclei can be formed with any of these
three crystallographically equivalent shear modes.

However, prior to stress-induced MT, the elastic constant
C� softening behavior is quite different from the case of
temperature-induced MT. for the present biaxial stress con-
dition, we can see from Figs. 5�b� or Fig. 8 that C� under

stress softens only in �110��11̄0	, �101��1̄01	 shear modes

but harden in �011��01̄1	 shear mode. The softening behavior
of C� will cause the instability of the parent phase for the

�110��11̄0	, �101��1̄01	 shear modes, and thus the nucleation

of the martensitic phase occurs only with �110��11̄0	,
�101��1̄01	 shear modes, and not with another crystallo-
graphically equivalent shear mode. This corresponds to the
well-observed fact that for given stress direction only certain
martensite variant�s� are induced while other variants are
prohibited.

Furthermore, from the atomic movement prior to the criti-
cal stress �Fig. 6�, we can see that C� softening behavior
under stress is related to the microscopic strain clustering
along certain orientations. For the present biaxial stress state,

there exist only �110��11̄0	 and �101��1̄01	 strain clusters,

not �011��01̄1	 clusters. As discussed above, we can see that
the selected formation of strain clusters is just related to the
formation of a specific martensite variant under stress.

V. CONCLUSION

In the present study, by using molecular dynamic simula-
tion, the elastic constant softening behavior prior to stress-

FIG. 8. Calculated normalized elastic constant C���� /C� as a
function of external biaxial stress ��0� for three �110� �110� shear
modes. The biaxial stress is applied alone �100	-�001	 orientation as
shown in Fig. 1. �a� �=5.8 and �=10.8, �b� �=29 and �=54.
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induced martensitic transformation has been investigated.
The following conclusions are obtained.

�1� By introducing an appropriate atomic potential, we
successfully simulated the superelasticity of a generic mar-
tensitic system by using molecular dynamics method.

�2� A new method for calculating the elastic constant C�
under biaxial stress state is proposed, and the variation of C�
prior to stress-induced martensitic transformation is simu-
lated. It is found that the softening of elastic constant C� is a
common feature both for temperature-and stress-induced
martensitic transformation.

�3� The softening of C� under stress is nonlinear prior to
stress induced MT, although it is approximately linear at low
stress level.

�4� The softening of C� prior to stress-induced martensitic
transformation is different from that prior to temperature-
induced one. The softening of C� prior to stress-induced mar-

tensitic transformation occur only in some of the �110� �11̄0�
shear modes, depending on stress states.

�5� For the biaxial stress state, the critical stress prior to
stress induced martensitic transformation also increases lin-
early with the increase of temperature, obeying the Clausius-
Clapyeyron relationship.

�6� An analytical theory for the stress-induced precursory
effects is formulated, and yields similar results as by using
molecular dynamic simulations.
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