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Abstract

Precursor phenomena are critical issues for martensitic transformation, as they provide important clues for understanding the origin of the
transformation and the structure of transformation products. Prior to temperature-induced martensitic transformation, it has been widely recognized
for a long time that the basal plane shear modulus C′ (=(C11 − C12)/2) of the parent phase decreases with approaching transformation temperature.
On the other hand, martensitic transformation can also be induced by stress. But little is known about whether similar precursor phenomenon also
exists prior to such a stress-induced martensitic transformation (SIM). In the present study, we used molecular dynamics method to simulate the
precursory stage of a stress-induced martensitic transformation. A new method for calculating the elastic constants C′ prior to SIM was proposed.
The relationship between C′ and applied stress at different temperatures was calculated. Our results showed that the softening of elastic constant C′

is a common feature for both temperature and stress-induced martensitic transformation. For stress-induced martensitic transformation, the critical
stress to induce the transformation increases with increasing temperature and obey Clausius–Clapyeyron relationship; at a given temperature, C′

decreases with the applied stress approaching the critical stress.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Martensitic transformation (MT) is defined as a displacive,
diffusionless first-order transformation from a high-symmetry
phase at high temperature to a low-symmetry phase (martensite)
at low temperature. MT has been extensively studied for decades
because of its importance in metallurgy and its key role in shape
memory phenomenon.

An interesting feature of martensitic transformation in shape
memory alloys is the existence of precursor phenomena [1,2].
For temperature-induced martensitic transformation, it is well
known that they are a consequence of weak restoring forces in
specific crystallographic directions that announce the possibility
of a dynamical instability. Commonly, these systems have a low
lying transverse TA2 phonon branch together with a low value
of the corresponding elastic constant C′ (=(C11 − C12)/2); both
the whole branch and the elastic constant soften with decreas-
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ing temperature. These phenomena have been studied in Ni–Ti
[3–6], Ni–Al [7,8], Au–Cd [9], and other body-centered cubic
(bcc), based alloys [10].

On the other hand, stress can also induce martensitic transfor-
mation. However, little is known whether or not any precursor
phenomena exist prior to a stress-induced martensitic transfor-
mation (SIM). In this paper, we mainly investigate the possibility
of the elastic constant softening prior to SIM. In studying the
precursory softening phenomena, for the temperature-induced
martensitic transformation, elastic constants were measured
with rectangular parallelepiped resonance and the pulse-echo
ultrasonic method [4–6,11]. However, due to the difficulty of
measurement, they are rarely applied for SIM.

Owing to the rapid progress of computers, molecular dynam-
ics simulation (MD) is becoming a powerful tool to reveal
the microscopic mechanism of MT. So far, most researches
have focused on temperature-induced martensitic transforma-
tion [12–14], and there is no work done for SIM to our knowl-
edge.

In the present study, a new method for calculating the elastic
constants C′ prior to SIM was proposed. By using molecular
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dynamics simulation, we simulated the precursory stage of a
stress-induced martensitic transformation, and studied the rela-
tionship between C′ and applied stress at different temperature.
To the authors’ knowledge, such work has not been reported
before.

2. Analytical criterion of elastic constants

A solid body changes its shape when subjected to a stress.
Provided the stress is below the elastic limit, the Hooke’s law
for a crystal is written as

σij = Cijklεkl, (1)

where Cijkl is the elastic stiffness, a fourth-rank tensor. In general,
for cubic crystal, the independent number of elastic stiffness
component reduced to three, i.e. C11, C12 and C44.

If uniaxial stress is applied in [0 0 1] direction, we can obtain
the following equations by derivation:

σ11

ε11
= C2

11 + C11C12 − 2C2
12

C11 + C12
, (2)

ε12

ε11
= − C12

C11 + C12
, (3)

whereσ11, ε11 are the stress and strain in [0 0 1] direction, respec-
tively, and ε12 is the corresponding strain in [0 1 0] or [1 0 0]
direction. Eqs. (2) and (3) are the implicit expressions of C11
and C12.

Furthermore, C′ can be expressed as

C′ = C11 − C12

2
. (4)

By combining Eqs. (2)–(4), C′ can be obtained if σ11, ε11
and ε12 are given. In the present paper, a commercial software
named MATLAB5.3 was used to solve Eqs. (2)–(4).

3. Molecular dynamics simulation

3.1. Computational modeling

SIM in the alloy with completely ordered B2 structures is
studied with the help of commercial software named Materials
Explorer2.0, which is based on the Parrinello–Rahman method
[15]. However, for lacking of a proper potential function, this
software cannot simulate the martensitic transformation. In this
work, special 8-4 Lennard–Jones potential Vab, which was pro-
posed by Suzuki and Shimono [16] to describe the interatomic
interaction for binary B2 alloys, was introduced into the soft-
ware to simulate the martensitic transformation. The expression
for Vab can be written as follows:

Vab(r) = eab

{( rab

r

)8 − 2
( rab

r

)4
}

, (5)

Vab is characterized by two parameters eab and rab, which rep-
resent the bond strength between atoms and the atomic size or
molar volume, respectively. To model Ti–Ni, the values of these
parameters are set according to the experimental data on molar

Table 1
Parameters in Eq. (5)

r11 (1E–10 m) 1.0000
r22 (1E–10 m) 0.8494
r12 (1E–10 m) 0.8947
e11 (1E–27 J) 1.13375
e22 (1E–27 J) 1.03387
e12 (1E–27 J) 1.24900

volumes, cohesive energy and heat of formation of Ti, Ni and
B2 phase of Ti–Ni alloy as shown in Table 1.

Although the molecular dynamics study based on the simple
two body potential given by Eq. (5) could not reproduce all
delicate aspects of the martensitic transformation particular in
Ti–Ni alloys as it should be, it had been proved that this potential
has been useful in reproducing the major characteristics of the
martensitic transformation [16].

Furthermore, the isothermal-isobaric ensemble was adopted.
As the perfect crystal structure of the TiNi alloy model has
a B2-type lattice, the initial MD cell was installed in a
cubic box containing 3456 atoms (1728 Ti and 1728 Ni).
To avoid the existence of the free surface in the simulated
MD cell, periodic boundary conditions were acted in three
dimensions.

3.2. Temperature-induced martensitic transformation

To begin with the simulation of SIM, the transformation tem-
peratures of the ensemble should be first determined, i.e., Ms
(martensitic-start temperature upon cooling), Mf (martensitic-
finish temperature upon cooling), As (reverse-transformation-
start temperature upon heating) and Af (reverse-transformation-
finish temperature upon heating). So the simulation of
martensitic transformation during temperature cycles was first
done.

The simulation started with an ensemble of parent phase (B2
structure) at 300 K; after 20 picoseconds (ps) thermal holding,
cooling procedure started and the ensemble was cooled from
300 to 0.1 K in 60 ps. The cooling rate was about 5 × 1012 K/s.
In the subsequent 40 ps, the temperature of the system was
kept at 0.1 K to get the equilibration of the low temperature
phase. Then the ensemble was heated up to 300 K again in
60 ps. The variation of temperature with time was shown in
Fig. 1.

The Parrinello–Rahman cell axis lengths (a, b, c), which are
related to the size and shape of the unit cell of the alloy crystal,
are shown as a function of time in Fig. 1. It can be seen that
the value of lattice constants in three axes keep almost the same
until the temperature (T) reached to 196 K, which means the B2
structure (parent phase) is stable when the temperature is higher
than 196 K.When the system was cooled from 196 to 189 K, the
lattice constants changed abruptly, and B2 structure immediately
transformed into the close-packed structure labeled L1′′

0 [16].
When temperature was further cooled to 0.1 K, the values of
lattice constants changed slightly, this means that L1′′

0 structure
should be stable at this level of temperature. When the system
was heated to 249 K again, the values of lattice constants again
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Fig. 1. The change of the Parrinello–Rahman cell axis lengths (a, b, c) and
temperature are shown as a function of time. The cell is related to the size and
shape of the unit cell of a completely ordered B2 crystal with 3456 atoms.

changed suddenly, and this sudden variation finished at 254 K.
On further heating, value of lattice constants remained stable
and expanded continuously.

As can be seen in Fig. 1, by introducing a proper potential
function, this software can successfully simulate temperature-
induced martensitic transformation. Furthermore, the average
Ms temperature for four runs of the B2 to L1′′

0 transformation
turns out to be 196 K, the corresponding As temperature is 249 K,
while the average Mf temperature is 189 K, and the average Af
temperature is 254 K.

3.3. Uniaxial stress-induced martensitic transformation

Initially the temperatures of the ensemble were cooled from
300 K to a given temperature in 20 ps, which is higher than Ms,
and were “aged” for 20 ps to establish equilibrium. Then an
external compressive stress (−50 MPa) was applied along [0 0 1]
direction every 20 ps. The variations of cell size and external
stress with time were shown in Fig. 2.

As we known, when a martensitic system is loaded over
Ms point, superelasticity occurs. It is clear from Fig. 2 that
the superelasticity was simulated successfully. To facilitate the
descriptions below, the martensitic-transformation-start stress
upon loading is defined as critical stress (σs), which was shown
in Fig. 2.

When a uniaxial compressive stress was applied along [0 0 1]
direction of the ensemble, there is a contraction in the [0 0 1]
direction and an expansion in [0 1 0] and [1 0 0] direction. This
elastic deformation behavior continues until the applied stress
reach to the critical stress, which is 570 MPa at 260 K for the
ensemble in the present study. However, as shown in Fig. 2, the
vibrations of lattice constants prior to SIM are much higher than
that of temperature-induced martensitic transformation, so it is
difficult to obtain the strain (ε11 and ε12) corresponding to the
applied stress directly.

Fig. 2. The change of the Parrinello–Rahman cell axis lengths and the uniaxial
compressive stress (along [0 0 1] direction) as the function of time. The cell is
related to the size and shape of the unit cell of a completely ordered B2 crystal
with 3456 atoms.

In the present MD simulation, a long run of 2000 time steps
was carried out for a given loading. All the parameters (ε11
and ε12) corresponding the applied stress were calculated with
the last 1000 time steps of this run. Furthermore, the follow-
ing methods were used to deduce the scattering of calculation.
Firstly, the elastic deformation behavior in [1 0 0] and [0 1 0]
direction should be the same when a uniaxial stress is applied
in [0 0 1] direction of the ensemble, so the value of ε12 was cal-
culated by averaging the strain in [1 0 0] direction and [0 1 0]
direction. Secondly, a method of 10 data point smoothing was
used to smooth ε11 (ε12) versus time curves. Although the num-
ber of data points chosen for the smoothing affects the absolute
values of ε11 (ε12), experimentation with different number of
smoothing was not found to invalidate the trends of C′ we report
here.

The relationship between elastic constant C′ and external
stress is shown in Fig. 3. It can be seen that C′ exhibit soft-
ening towards critical stress σs, and the softening is non-linear
for different temperatures. This is similar to that of temperature-
induced martensitic transformation.

Furthermore, C′ increase with increasing temperature at
a given applied stress, and C′ at higher temperature shows
higher value in the vicinity of the critical stress σs. This
explains the higher critical stress is needed at higher tempera-
ture, because a lower C′ indicates a smaller resistance to the shear
transformation.

4. Comparison with thermodynamic theory

A thermodynamic method to analyze the effect of stress
on MT temperature is the use of the Clausius–Clapyeyron
relationship, the relation for a uniaxial stress is written as
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Fig. 3. Calculated elastic constant C′ as the function of applied stress.

follows [17]:

dσ

dT
= − �HV

T0(0)�ε
, (6)

where �HV is the enthalpy change of the transformation per unit
volume, σ a uniaxial stress and �ε a transformation strain. T0(0)
is the temperature where �GP→M = 0 (�GP→M is the chem-
ical free energy change per mole for the parent-to-martensitic
transformation). Strictly speaking, this equation applies for the
equilibrium temperatures, but may be applied for the Ms tem-
perature as well, if the critical driving force for the transition is
independent of temperature and stress [17].

Considering the applied stress is zero at Ms point, the solution
of Eq. (6) can be written as:

σ = − �HV

T0(0)�ε
(T − Ms). (7)

For the MD simulation in the present study, Ms = 196 K,
Af = 254 K, Generally speaking, T0(0) can be expressed as
T0(0) = (1/2)(Ms + Af). So T0(0) is 225 K. The transformation

Fig. 4. Comparison between MD simulation and Clausius–Clapeyron equation.

strain from B2 to L1′′
0 is 2.5%. The enthalpy change of phase

transformation can be calculated as �H = �U + P�V, where P
is the atmospheric pressure, �U and �V are the changes of
internal energy and volume per mole of the phase transforma-
tion, respectively, which are 399.36 J/mol and 1.99 mm3/mol,
respectively, in the present ensemble. Furthermore, the equiv-
alent atomic weight of Ti–Ni is 53.3 g/mol, and its equiva-
lent density is 6.73 g/cm3. Based on the above data, �HV of
B2 to L1′′

0 phase transformation in TiNi can be obtained as
−50.33 J/cm3.

By substituting the above constants into Eq. (7), the pre-
dicted σs ∼ T curve is shown in Fig. 4. It can be seen that the
MD result is in good agreement with Eq. (7). The critical stress
for stress-induced martensitic transformation increases linearly
with the increasing temperature for cubic crystal, and obeys the
Clausius–Clapeyron relationship. This also supports the present
MD simulation.

5. Conclusion

(i) After introducing an appropriate atomic potential into
Material Exploer2.0, we simulated for the first time the
superelasticity of the shape memory alloys by using molec-
ular dynamics method.

(ii) A new method for calculating the elastic constant C′ is
proposed, and then the variation of C′ in SIM is simulated. It
is found that elastic constant softening is a common feature
both in temperature-induced and stress-induced martensitic
transformation.

(iii) Elastic constant C′ decreases gradually with increasing
external stress prior to SIM. The critical stress σs increases
linearly with the increasing temperature, following the
Clausius–Clapyeyron relationship.
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