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Abstract
The time evolution of the physical properties of martensite during martensite ageing is
traditionally explained by the symmetry-conforming short-range order (SC-SRO) principle,
which requires the spatial configuration of crystal defects to follow the symmetry change of
the host lattice. In the present study, we show that the volume change of the host lattice also
contributes to the ageing effects in Cu–Al–Ni shape memory alloy besides the symmetry
change. To substantiate this statement the gradual increase of the storage modulus with time at
constant temperature was measured by dynamic mechanical analysis (DMA) and the
experimental results were quantitatively described in the framework of the
symmetry-conforming Landau theory of martensitic transformations in a crystal with defects.
The comparison of experimental and theoretical results confirmed that the time dependence of
the storage modulus is caused by two different physical mechanisms. Evaluations showing that
the first mechanism is driven by the spontaneous symmetry change and the second mechanism
is caused by the volume change after the martensitic transformation was carried out.

(Some figures may appear in colour only in the online journal)

1. Introduction

The drastic dependence of the elastic properties of crystalline
solids on the type, concentration, spatial distribution and
mobility of crystal defects is a matter of common knowledge.
The defects distort the crystal lattice and induce mechanical
stress, which may be referred to as ‘internal stress’, to
emphasize that it can arise even in the absence of external
forces applied on single- and polycrystalline specimens. The
internal stress concept is useful for the description of different
physical phenomena, such as the interaction of hydrogen
atoms with the crystal lattice of metals [1], giant magnetically
induced deformation of twinned ferromagnetic crystals [2–4]

and many others. The stresses produced by the crystal defects
vary with time due to defect diffusion. As a rule, the
characteristic time of diffusion noticeably exceeds the time of
the elastic response of the solid to the externally applied force
and, thus, the deformational and magnetic properties of the
solid slowly evolve even under constant physical conditions
(see e.g. [5, 6] and references therein). The physical effects
caused by the evolution of the defect subsystem are especially
pronounced in the shape memory alloys, because of the
thermodynamic instability of their crystal lattice, which
exhibits itself as a martensitic transformation (MT) of the
thermoelastic type [7, 8]. The cooperative (experimental and
theoretical) study of the unstable crystal lattice interacting
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with the defect subsystem is a challenging scientific problem.
This problem is of practical interest due to the numerous
applications of shape memory alloys.

The MT of the shape memory alloy is a first-order
phase transition from a high-symmetry (cubic) phase to a
low-symmetry (tetragonal, rhombohedral, orthorhombic, etc)
phase. The MT always involves symmetry breaking and
a volume change. Long-term storage of the alloy in its
martensitic state is accompanied by a gradual change of
physical properties with time [9–16]. Such time-dependent
behavior is known as martensite ageing. Since martensite
ageing largely affects the reliability of shape memory devices,
related studies are of practical importance.

Practically important manifestations of martensite ageing
include the increase of reverse MT temperature (martensitic
stabilization) [13, 16–18], the appearance of rubber-like
behavior [9–11] and the noticeable increase of the elastic
modulus [19] with ageing time. Several physical mechanisms
have been proposed to explain martensite ageing, with most
presuming that the property changes during martensite ageing
are caused by a spatial reconfiguration of atoms during
martensite ageing [20] and an appropriate reconfiguration of
the crystal defect subsystem (see [21] and references therein).
In the case of point defects, the reconfiguration process
is governed by the symmetry-conforming short-range order
(SC-SRO) principle [22, 23]. The main idea of this principle
is that the spatial distribution of point defects in the aged alloy
possesses the symmetry of the crystal lattice. After martensitic
transformation, the crystal symmetry is broken. Consequently,
according to this principle, the spatial distribution of point
defects with high symmetry needs to adopt a lower symmetry
after the MT. Thus the reconfiguration of point defects
during martensite ageing is driven by the symmetry mismatch
between the host crystal lattice and the spatial distribution of
point defects.

To fully comprehend martensite ageing, one should take
into account that the reconfiguration of point defects results
in the appearance of slowly variable lattice distortion [24] and
appropriate internal stress on the lattice [25, 26]. The internal
stress concept enables the generalization of the SC-SRO
principle [25, 26]: martensite ageing is accompanied by a slow
reconfiguration of different mobile defects (point defects,
dislocations, stacking faults, incoherent interfaces, etc) and
this reconfiguration results in a slow increase of the absolute
value of the martensitic transformation strain. The ageing
process is accompanied by a decrease in the volume of the
alloy specimen caused by the tendency towards close packing
of atoms [25].

The MT is characterized mainly by shear deformation of
the crystal lattice |εM| ∼ 1–10%. The comparatively small
volume change during MT (|1V/V| ∼ 0.1–1%) is often
considered as a secondary effect, which can be disregarded
when the basic characteristics of MTs and transformational
properties of the shape memory alloys are analyzed. This
view on the role of volume change of the shape memory
alloy is called into question by both experimental studies and
theoretical estimations. In particular, a hydrostatic pressure
of about 1 GPa results in a small volume change but

a noticeable shift of the MT temperature [27, 28]; the
volume magnetostriction of ferromagnetic Ni–Mn–Ga alloy
(1V/V ∼ −0.1%) results in the appearance of a coupled
magnetostructural transformation [29]. The significant role of
the volume change was emphasized also by recent studies of
the thermodynamic and elastic properties of shape memory
alloys with defects [25, 26, 30]. It was shown that the volume
change arising due to the defect reconfiguration noticeably
changes the characteristic MT temperatures [25, 26] and
storage elastic moduli [30] of the alloys.

The necessity for a careful consideration of the volume
change of shape memory alloy can be illustrated by simple
physical considerations. The volume change during MT
results in an energy density change |1F1| ∼ |1V/V|B ∼
0.1–1 GPa (where B ∼ 100 GPa is the bulk elastic modulus).
The spontaneous shear of the crystal lattice during MT results
in an energy density change |1F2| ∼ |εM|C′ ∼ 0.1–1 GPa
(where C′ ∼ 10 GPa is a realistic value of the shear modulus
of the shape memory alloy in the vicinity of the MT
temperature, see below). The energy changes 1F1 and 1F2
are of the same order of magnitude; therefore, the volume
change must be taken into account for a full comprehension of
the transformational and elastic properties of shape memory
alloys.

In the present study, the time evolution of the storage
modulus of Cu–Al–Ni shape memory alloy was measured by
dynamical mechanical analysis (DMA) at different tempera-
tures. The experimental results were quantitatively described
by the symmetry-conforming Landau theory [25, 26],
taking into account both shear deformation and the volume
change of the alloy with defects. Our results show that the
accurate description of the influence of martensite ageing
on storage modulus requires the consideration of both the
symmetry change effect and the volume change effect. Our
studies suggest that the spatial redistribution of crystal defects
during martensite ageing is driven by both the spontaneous
symmetry change and the volume change during MT.

2. Experimental details

We used Cu–13.8Al–4.0Ni polycrystalline alloys. Base ingots
were made by melting 99.99% pure Cu, 99.99% pure Al
and 99.9% pure Ni using an induction furnace with an Ar
atmosphere. After homogenization at 1273 K for 24 h in the
Ar atmosphere, specimens were cut into appropriate sizes for
each measurement. They were solution-treated at 1273 K for
2 h in an Ar atmosphere, followed by quenching in water.

Martensite ageing effects on the dynamic properties
(storage modulus and internal friction (tan δ)) were measured
by DMA in a single cantilever mode. During the DMA
measurement, the specimen was first cooled to the ageing
temperature at a cooling rate of 2 K min−1 and then aged
at this temperature. The dynamic properties as a function
of ageing time were recorded after temperature stabilization.
In order to erase the influence of the martensite ageing
effect at the previous testing temperature on the results
of the next testing temperature, we heated the specimen
to a temperature of 500 K (far above the austenite finish
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Figure 1. Martensitic transformation in Cu–13.8Al–4.0Ni alloy
characterized by (a) internal friction and (b) storage modulus by
dynamic mechanical analysis measurement.

TAF temperature) and maintained there for several minutes
for each testing run. The Cu–13.8Al–4.0Ni alloy was aged
at different temperatures (323/343/363 K) and different
frequencies (0.2/0.4/1/4/10/20 Hz).

Figure 1 shows curves of the storage modulus and
internal friction versus temperature upon cooling and heating
under various frequencies. It is seen that the β1 to γ1
(cubic-to-orthorhombic) MT is characterized by a frequency-
independent storage modulus dip and an internal friction peak,
which result from the elastic softening and the hysteretic
movement of both parent-martensite phase boundaries and
twin boundaries under the ac external stress field during
DMA measurement, respectively. The forward and reverse
MT temperatures (the peak temperature of internal friction on
cooling and heating) are about 385 K and 420 K, respectively.

The dotted points in figure 2 show the experimental
values of storage modulus when the specimen was cooled to
323, 343, 363 K and then held (aged) at these temperatures
for 6 h. The time dependences of storage modulus observed at
these temperatures are illustrated in figure 3. The experimental
results show that the higher the ageing temperature, the
more pronounced is the variation of elastic modulus during
martensite ageing. The solid curves in figures 2 and 3 are
computed using the symmetry-conforming Landau theory, of
which the details of computations are explained below.

3. Theoretical basis

A one-dimensional model for the description of martensite
ageing effects was formulated in [31]. The model dealt
with the martensitic structure formed by two variants of
the martensitic phase. The transformational properties of
this structure were described by two interrelated scalar
parameters. The first one (referred to as ‘strain’) was
considered proportional to the spontaneous deformation of
the crystal lattice in the course of MT and the second one
(called ‘shift’) characterized shuffling of the atomic layers.
It was assumed that the strains immediately respond to the

Figure 2. Experimental (points) and theoretical (lines) temperature
dependences of the storage modulus when the Cu–13.8Al–4.0Ni
alloy is cooled down to 363, 343 and 323 K and aged at these
temperatures. The affect of ageing on the storage modulus is
illustrated by the vertically arranged experimental points and
vertical segments of the lines.

Figure 3. The experimental (points) and theoretical (lines) time
dependences of the storage modulus of the specimen aged at
different temperatures.

mechanical load but the shuffles ‘relax according to some
slower kinetics’ [31]. Only the second-order and bilinear
terms in strain and shift components were included in the
mathematical expression for the free energy. The basic points
of the one-dimensional model were introduced later in the
framework of Landau theory [32, 33] without the binding of
the slowly relaxing parameter to the shuffle mechanism.

The one-dimensional model and its introduction in
the framework of Landau theory provides the qualitative
description of such effects of martensite ageing as the
rubber-like behavior of shape memory alloys and martensite
stabilization. However, this model cannot interrelate the
martensite ageing effects with the strain tensor components,
elastic moduli and volume change, because it neglects (a) the
three-dimensional character of spontaneous deformation of
alloy and correspondent symmetry change; (b) the third-
and fourth-order terms of the equation for the free energy;
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(c) the volume change that accompanies the martensitic
transformation of the alloy. For this reason the time
dependence of elastic moduli was not considered in [31–33].
Below we show that the experimental dependence of the
storage elastic modulus on the ageing time can be explained
only taking into account points (a)–(c).

In this section, we formulated the theoretical model
for the ageing effect on the storage modulus, based on the
symmetry-conforming Landau theory [25, 26]. The order
parameters of the thermoelastic martensitic transformation
are linear combinations of the strain tensor components. The
diagonal and non-diagonal components form the order pa-
rameters of cubic–tetragonal and cubic–rhombohedral MTs,
respectively [34–36]. To describe the cubic–orthorhombic MT
observed in Cu–Al–Ni alloy experimentally, it is convenient
to approximate the orthorhombic unit cell by a tetragonal cell
with the same volume. The cubic–tetragonal MT is described
by the Landau expansion of the Gibbs potential

G(T, t) = 1
2 c1u2

1 +
1
2 c2(T)(u

2
2 + u2

3)+
1
2 a2u1(u

2
2 + u2

3)

+
1
3 a4u3(u

2
3 − 3u2

2)+
1
4 b4(u

2
2 + u2
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2

+
1
2 b7u1u3(u

2
3 − 3u2

2)+ 3P(i)(t)u1

−
1
6 (σ

(i)
2 (t)u2 + σ

(i)
3 (t)u3), (1)

where u1 = (εxx + εyy + εzz)/3, the values

u2 =
√

3(εxx − εyy), u3 = 2εzz − εyy − εxx (2)

are the components of the two-component order parameter
of the cubic–tetragonal MT, where εik are the strain tensor
components [26], the coefficients a2,4, b4,7 and c1,2 are linear
combinations of the second-, third-, and fourth-order elastic
moduli [37], and time-dependent values P(i)(t) and σ (i)2,3(t) are
the isotropic and anisotropic parts of the internal stress arising
during the reconfiguration of crystallographic defects after the
MT [25].

The minimization of the energy equation (1) enables
the description of MTs if the martensitic state obeys the
thermoelastic equilibrium principle (see e.g. [7, 8]). As
is known [8], the tendency to volume conservation is
observed in shape memory alloys, which exhibit thermoelastic
equilibrium. In this case the volume change during the MT is
small in comparison with the shear strain and can be expressed
through the order parameter components using the extremum
condition ∂G/∂u1 = 0, resulting in the equation

1V/V = 3u1 = −
3a2

2c1

(
u2

2 + u2
3

)
−

3b7

2c1
u3

(
u2

3 − 3u2
2

)
−

9P(i)

c1
. (3)

The first and second terms on the right-hand side of
equation (3) express the spontaneous volume change that
arises immediately after the MT, and the third term expresses
the time-dependent part of the volume change that arises
during martensite ageing. The spontaneous volume change is
negative for the majority of alloys, because the MTs show
a tendency to close packing of atoms. The internal pressure
that stabilizes the martensitic phase must make an additional

negative contribution to the volume change. In this case the
inequality P(i) > 0 holds in the martensitic phase.

If the spatial distribution of the crystal defects possesses
the symmetry of the cubic crystal lattice the P(i)(t) and σ (i)2,3(t)
are equal to zero in the completely relaxed cubic phase, while
in the martensitic phase they are expressed as

P(i)(t) = P(i)(∞)
[
1− exp(−t/τ1)

]
,

σ
(i)
2,3(t) = σ

(i)
2,3(∞)

[
1− exp(−t/τ2,3)

]
,

(4)

where P(i)(∞) and σ (i)2,3(∞) are the saturation pressure and
axial stress values, respectively, and the values of τ1 and
τ2,3 are the relaxation times. Equations (4) were obtained in
[25, 26] from the expression for the non-scalar ‘configura-
tional’ order parameter, which describes the adjustment of the
spatial configuration of the defect subsystem to the symmetry
of the crystal lattice in the martensitic phase. It should be
noticed that an equation, similar to equation (4), was obtained
previously for the scalar configurational parameter involved in
the one-dimensional Landau theory [32].

The appearance of an anisotropic part in the internal
stress is stipulated by the SC-SRO principle [21, 23]. Its
contribution to the physical effects that accompany martensite
ageing are considered in [19, 25]. The isotropic part of the
internal stress was considered first in [25, 26] and its role in
the martensite stabilization effect was illustrated.

The substitution of the volume change (equation (3)) into
equation (1) results in the expression

G∗(T, t) = c∗2(T, t)(u2
2 + u2

3)/2+ a∗4(t)u3(u
2
3 − 3u2

2)/3

+ b4(u
2
2 + u2

3)
2/4− (σ (i)2 (t)u2 + σ

(i)
3 (t)u3)/6,

(5)

where

c∗2(T, t) = c2(T)− 3a2P(i)(t)/c1,

a∗4(t) = a4 − 9b7P(i)(t)/2c1,
(6)

are the time-dependent energy coefficients, which are
renormalized by the internal pressure. The renormalized
coefficient of the second-order energy term is related to the
shear modulus as c∗2(T, t) = C′/3 [36, 37].

The temperature and time dependences of the MT strain
can be obtained by minimization of the potential (5). In
the absence of axial stress these dependences are expressed
as [36]

u2 = 0, u3 = u0 in z-domain,

u3 = u2/
√

3 = −u0/2 in y-domain,

u3 = −u2/
√

3 = −u0/2 in x-domain,

(7)

u0(T, t) = −
a∗4(t)

2b4

(
1+

√
1− c∗2(T, t)/c∗t (t)

)
, (8)

where c∗t = (a∗4)
2/4b4. The austenitic phase is stable if

c∗2(T, t) > 0, whereas the martensitic phase is stable for
c∗2(T, t) < c∗t (t) [36]. The equations c∗2(TMS, t) = c∗t (t) and
c∗2(TMF, t) = 0 prescribe the starting and finishing MT
temperatures TMS(t) and TMF(t), respectively. It can be seen
from equation (8) that u0(TMF, t) = −a∗4(t)/b4.
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The thermodynamic system described by the Gibbs
potential undergoes a cubic-to-tetragonal transformation in
a single crystal form and our experimental results are for
a cubic-to-orthorhombic transition in a polycrystal CuAlNi
alloy. To enable a direct comparison of the theoretical model
with experiment we approximated the orthorhombic unit cell
by a tetragonal unit cell with the same volume and adopted
the following assumptions:

(i) the single-crystalline grains are separated by low-angle
boundaries;

(ii) every grain is internally twinned in the martensitic state
and its twin structure is formed by two alternating
variants of the tetragonal lattice;

(iii) the xy-, xz- and yz-twins occupy the same fractional
volumes (x, y and z denote the directions of the principal
crystallographic axes of the twin components).

The orthorhombic unit cell with lattice parameters aexp =

0.4382 nm, bexp = 0.5356 nm and cexp = 0.4222 nm is
replaced by a tetragonal cell with the averaged parameters
a = c = (aexpcexp)

1/2, b = bexp and correct volume a2b =
aexpbexpcexp because the relative difference between a and
aexp (or c and cexp) is close to 2%, while the relative difference
between aexp (or cexp) and bexp is close to 20%.

Three specific assumptions which relate polycrystal
properties to single crystal properties are well adopted. Under
assumption (i) the crystallographic directions 〈100〉 are almost
the same all over the crystal; assumption (ii) provides the
presence of the coherent interfaces, which determine the
specific properties of the martensitic state; according to
assumption (iii) the macroscopic symmetry of the sample
is cubic and the Young’s modulus is expressed as EM =

2C̄′(C̄11 + 2C̄12)/(C̄11 + C̄12) in the martensitic phase. The
values C̄11, C̄12 and C̄′ = (C̄11−C̄12)/2 are the average elastic
moduli of the sample in the martensitic state. It is important
that when the average shear modulus C̄′ is substantially
smaller than the moduli C̄11 and C̄12, the Young’s modulus
is approximately equal to 3C̄′. The expressions for the
elastic moduli of the martensitic structure formed by the two
alternating variants of the tetragonal lattice were obtained
in [36]. Using the results of this work the Young’s modulus
of twinned martensite can be expressed as

EM(T, t) =
−54u0(T, t)(a∗4(t))

2
− 108a∗4(t)b4u2

0(T, t)

b4u0(T, t)− 4a∗4(t)
. (9)

(The volume fractions of the twin components are assumed to
be equal to each other, for more details see [36].)

The order parameter is related to the MT strain as
εM(T, t) = u0(T, t)/3. Due to this equation (9) enables (i) the
determination of the temperature and time dependences of
Young’s modulus from the experimental value EM(TMF, 0)
and the experimental temperature dependence of the MT
strain; (ii) the determination of the temperature and time
dependences of the MT strain from the experimental value
εM(TMF, 0) and the experimental temperature dependence of
Young’s modulus. The solution to problem (i) is presented
in [38] for two Ni–Mn–Ga single crystals with substantially

different MT temperatures. The solution of problem (ii) is
presented below for the polycrystalline Cu–13.8Al–4.0Ni
alloy specimen. The solution of the problem involves three
steps.

First, the value EM(T, 0) must be determined from the
experimental temperature dependence of the storage modulus
(see figure 2).

Second, the values a∗4(0), b4 must be found from the
equations

a∗4(0) = −EM(TMF, 0)/10.8u0(TMF, 0),

b4 = EM(TMF, 0)/10.8u2
0(TMF, 0),

(10)

which were obtained by substituting the value u0(TMF, 0) =
−a∗4(0)/b4 into equation (9).

Third, the temperature and time dependences of the MT
strain can be recovered from the experimental temperature
dependence of the storage modulus and equation (9). The
temperature dependence of the MT strain follows from the
experimental temperature dependence of the elastic modulus,
while its time dependence results from equations (4), (6)
and (9).

The Young’s modulus of the austenitic phase is related to
the shear modulus of the cubic lattice and the coefficient of
the Landau expansion as

EA(T, t) = 3C′ = 9c∗2(T, t). (11)

Both experiment and theory demonstrate that not only
the internal axial stress but also the internal pressure can
contribute to the martensite ageing effects. The symmetry-
conforming internal stress does not reduce the tetragonal
symmetry of martensitic domains; therefore, the equalities
u2 = 0, u3 = u0 and equations (7), (9), (10) hold true even in
the presence of axial stress. At the same time, equation (8),
which was obtained for the unstressed crystal, must be
replaced by the equation

c∗2(T, t)u0 + a∗4(t)u
2
0 + b4u3

0 − σ
(i)
3 (t)/6 = 0, (12)

which expresses the extremum condition ∂G∗/∂u3 = 0 for
the Gibbs potential equation (5) of the axially stressed
crystal. Equation (12) enables the calculation of the time- and
temperature-dependent values of the order parameter u0.

Equations (4), (6) and (8)–(12) form the basis for
the theoretical modeling of ageing effects on the Young’s
modulus.

4. Computations

In this section, we utilize equations (4), (6), (8)–(12) to
quantitatively describe the time and temperature dependences
of the MT strain and storage modulus of martensitic alloy
during ageing. To this end, one must know the values of
the MT temperatures, volume change during MT, u0(TMF, 0)
and the temperature dependence of the storage modulus. As
can be seen from figure 1(a), the values TMS ≈ 405 K and
TMF ≈ 375 K can be accepted for the Cu–13.8Al–4.0Ni
alloy. The orthorhombic unit cell of the martensitic phase

5



J. Phys.: Condens. Matter 25 (2013) 335402 A Kosogor et al

Figure 4. Theoretical dependences of the martensitic
transformation strain computed for fresh (solid lines) and aged
(dashed lines) martensite. Computations were carried out using the
experimental temperature dependences of the storage modulus of
the alloy aged at 363 (a), 343 (b) and 323 K (c).

was approximated by a tetragonal cell with the same
volume. The lattice parameters of the tetragonal unit cell
b = bexp = 0.5356 nm, a = c = (aexpcexp)

1/2
= 0.4301 nm

were calculated using the experimental values of the lattice
parameters reported for the orthorhombic phase of the
Cu–14.2Al–4.3Ni alloy [39]. These lattice parameters result

Table 1. Characteristic times of the internal pressure and axial
stress variation.

T (K) 363 343 323

τ1 (min) 18 45 70
τ3 (min) 180 1050 3000

in a volume change during MT

1V

V
=

2aexpbexpcexp − a3
0

a3
0

=
2a2b− a3

0

a3
0

≈ −3× 10−3 (13)

and the order parameter value u0(TMF, 0) = 3εM(TMF, 0) =
−0.25. These input data enable the evaluation of the
coefficients involved in equations (5), (6) and (12), seen
in [37, 38].

The MT strains εM(T, t) computed from equation (12) for
ageing times t = 0 and 360 min are shown in figure 4 as solid
and dashed lines, respectively.

The results presented in figure 4 prove that it is
possible to reconstruct the temperature dependence of the MT
strain from the temperature dependence of Young’s modulus
measured for the spatially inhomogeneous martensitic state.
So, the temperature dependence of the MT strain of the
aged martensite was reconstructed from the experimental
temperature dependence of the storage modulus of fresh
martensite. To illustrate the accuracy of the theoretical
evaluation of the energy coefficients and MT strain, the
inverse problem was resolved, that is, the Young’s modulus
was computed from equations (9)–(11) using the εM(T)
functions shown in figure 4. The obtained results are presented
in figure 2 as solid lines. The excellent fit of the lines
to experimental points illustrates only the high accuracy
of the previously computed εM(T) values. However, the
resolution of the inverse problem is of significance in its own
right, because it shows that the temperature dependence of
the Young’s modulus can be determined if the temperature
dependences of lattice parameters are known.

The theoretical time dependence of Young’s modulus
of Cu–13.8Al–4.0Ni alloy is shown in figure 3. The lines
in figure 3 are computed for three constant temperatures
under the assumption that the ageing is accompanied
by two physical processes: one is characterized by the
internal pressure P(i)(∞) = 0.4 GPa and the other is
characterized by the internal axial stress σ

(i)
3 (∞) =

2σ (i)zz (∞) = −27 MPa. These values and the characteristic
times of these processes were determined by fitting the
theoretical time dependences of the storage modulus to
experimental ones (see figure 3 and table 1). It should be
noted that these dependences cannot be determined from
the one-dimensional theories [31–33], because each of these
theories involves only one slowly variable parameter that
characterizes the defect reconfiguration/relaxation.

Table 1 demonstrates the dependence of the characteristic
times on the ageing temperature reported by many authors
(see [15, 16, 19] and references therein). Table 1 also
shows that the isotropic component of internal stress rises
substantially quicker than the anisotropic one. This feature of
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the martensite stabilization process can be explained by the
noticeable difference in the values of the bulk elastic modulus
and the shear elastic modulus of shape memory alloys. Indeed,
the martensitic transformation is accompanied by both a
volume change and a shear deformation of the crystal lattice.
The defects slow the achievement of the optimal volume and
shape of the crystal. As such the energy difference between
the optimal and instant states of the lattice with defects arises
immediately after the martensitic transformation. Due to the
large value of the bulk elastic modulus, the deviation from
the optimal volume induces large elastic forces acting on
defects. Therefore, the characteristic time of the approach to
the equilibrium volume value is small. The shear modulus is
smaller by an order of magnitude than the bulk modulus; thus,
the elastic forces which cause the defect reconfiguration are
also small and need more time for a crystal with defects to
approach the equilibrium shape.

5. Discussion and conclusions

In the present study, in situ DMA measurements were carried
out to obtain the temperature and time dependences of the
storage modulus of Cu–Al–Ni shape memory alloy. The
theoretical analysis showed that the experimentally observed
gradual increase of storage modulus during martensite
ageing cannot be described solely by the time-dependent
axial stress (as it is seen in figure 5(a)). A quantitative
theoretical treatment of experimental data further shows that
the experimental time dependence of the storage modulus can
be satisfactorily described using two exponential functions
with different exponents. The first function describes the time
dependence of the axial internal stress, which is explicitly
present in equation (12) and used for the computation of
Young’s modulus. Distinct from this, the second function
describes the time dependence of the internal pressure and
implicitly affects the time dependence of Young’s modulus
through the renormalization of the energy coefficients
(equation (6)) involved in equation (12). The time-dependent
axial stress responds to the symmetry breakdown caused by
the MT while the internal pressure responds to the volume
change during the MT. As shown in figure 5(b), these two
mechanisms of defect reconfiguration contribute noticeably to
the time dependence of the storage modulus. The combination
of the two mechanisms of defect reconfiguration with different
rates gives rise to the accurate time-dependent behavior of the
alloy (see figure 3).

Comparing the contributions of isotropic internal
pressure and axial stress to the time dependence of Young’s
modulus (figure 5(b)) we can verify the idea concerning the
influence of the volume change during MT on the elastic
properties of the shape memory alloy. To this end, the product
of the bulk elastic modulus and the volume change should
be compared with the product of the storage modulus and
the MT strain, because these products characterize the energy
changes estimated in section 1. For the Cu–14Al–4.1Ni alloy
studied in [40] the bulk modulus is B ≈ 130 GPa. The values
E = 14 GPa (figure 2), 1V/V = −3 × 10−3 (equation (13))
and εM = −0.085 (figure 4) result in the energy changes

Figure 5. Exponential fits to the initial and final fragments of the
experimental time dependence of the storage modulus, (a). The
contributions of isotropic internal pressure and axial stress to the
time dependence of Young’s modulus are shown in (b).

(1V/V)B ≈ −0.39 GPa and EεM ≈ −1.19 GPa. The ratio
of these values is approximately equal to 0.33. Figure 5(b)
shows that the ratio of values [E(900) − E(0)]/E(0) caused
by the isotropic internal pressure and axial internal stress
(see two-sided arrows) is approximately equal to 0.35. The
proximity of the two estimated ratios suggests that the time
variation of the storage modulus is controlled by the elastic
energy differences between the instant and optimal states
of the crystal lattice with defects. It opens up a prospect
for evaluating internal stresses by means of first-principles
calculations (see [41] and references therein).

From the above analysis, it can be seen that the
symmetry-conforming Landau theory does not fully agree
with the basic points of the SC-SRO principle [21, 22]. The
latter relates the reconfiguration of the defect subsystem and
the concomitant physical effects only to the symmetry change
caused by the MT. Here, our computation on the experimental
results shows that the energy of the defect subsystem depends
on the volume of the alloy specimen as well. Therefore, both
symmetry and volume changes during MT provoke the defect
reconfiguration.
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It should also be noticed that the knowledge of the
experimental temperature dependence of Young’s modulus
of the spatially inhomogeneous martensitic state enables the
evaluation of the coefficients of the symmetry-conforming
Landau expansion for the Gibbs potential. Due to this, the
symmetry-conforming Landau theory can be used for a
quantitative description of the temperature/time dependences
of the storage modulus, martensitic transformation strains and
relevant properties of shape memory alloys.
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