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1. Introduction

The dynamics of ferroelastic domain formation and strain-
induced de-twinning [1–7] often produce crackling noise [8,  9].  
This characteristic sound stems from the displacement dis-
continuities of propagating domain boundaries, which dissi-
pate energy over a wide range of domain sizes [8, 10, 11] and 
frequencies. Crackling noise is common in nature. A piece 
of paper crackles when crumpled, the Earth emits inter-
mittent noise in earthquakes, and so on. Similar behavior 

is observed in magnetic systems when the magnetization 
evolves through steps under an applied magnetic field, 
which generates so-called Barkhausen noise [12–14] when 
the movement is jerky.

The study of the crackling noise in ferroelastic materials 
is of wider importance. For geologists, it is highly relevant 
for the deformation of rocks. Many minerals are ferroelastic, 
they make up more than 30% of the Earth’s crust and most 
of the Earth’s mantle. In earthquakes, fore-shocks and after-
shocks are commonly observed [15, 16]. The correlations 
between avalanches and fore-shocks open up the possibility 
of being able to predict major collapses [17, 18]. For materi-
als scientists, the emerging field of ‘domain boundary engi-
neering’ has generated great interest due to the functionalities 
of the domain boundary in ferroelastic materials [19–21]. The 
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Abstract
The evolution of ferroelastic microstructures under external shear is determined by large-scale 
molecular dynamics simulations in two and three dimensions. Ferroelastic pattern formation 
was found to be almost identical in two and three dimensions, with only the ferroelastic 
transition temperature changing. The twin patterns generated by shear deformation depend 
strongly on temperature, with high wall densities nucleating under optimized temperature 
conditions. The dynamical tweed and mobile kink movement inside the twin walls is 
continuous and thermally activated at high temperatures, and becomes jerky and athermal 
at low temperatures. With decreasing temperature, the statistical distributions of dynamical 
tweed and kinks vary from a Vogel–Fulcher law  ~ P E E T T( ) exp-( /( - ))VF  to an athermal 
power-law distribution  ~  εP E E( ) - . During the yield event, the nucleation of needles and 
kinks is always jerky, and the energy of the jerks is power-law distributed. Low-temperature 
yield proceeds via one large avalanche. With increasing temperature, the large avalanche is 
thermally broken up into a multitude of small segments. The power-law exponents reflect the 
changes in temperature, even in the athermal regime.
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domain boundaries can be superconducting [22–24], multi-
ferroic [25, 26] and so on. Such properties can be exclusively 
contained in the twin boundaries and do not exist in the bulk. 
The application of unique properties requires not only the 
functionality of the domain boundaries, but also a high den-
sity of domain boundaries. Domain boundaries are usually 
created by fast-temperature quench or low-temperature shear 
strain [27, 28]. Quench and low-temperature shear lead to 
dynamic processes of domain evolution and can be optimized 
to maximize the density of domain boundaries. Ferroelastic 
materials also play an important role in multiferroic devices 
[29, 30] as templates for twin structures.

Experimentally, ‘crackling noise’ is generated by rapid 
changes in microstructures [1–7, 30], and is often measured 
via the acoustic emission under shear deformation or tem-
perature changes [5]. Another experimental technique is 
the direct calorimetric observation of heat fluxes, thermal 
expansion and the non-smooth temperature evolution of the 
elastic moduli [1, 31]. The energy spectra are often a super-
position of jerky and smooth components, depending on the 
time evolution of twin patterns. Energy jerks often stem from 
abrupt pinning/de-pinning events (e.g. domain walls interact 
with external defects or are jammed by other twin walls). 
Smooth behavior relates to the unpinned movement of twin 
walls. Both acoustic emission and heat-flux measurements 
typically show the jerky energy spectra, with power-law 
scaling of the jerk distribution. The power-law exponents, 
ε, are found in the range between 1.3 and 2.3 [1, 31–33]. 
Nevertheless, it is not easy to obtain a direct link between 
microstructural changes and energy emissions. Simplified 
theoretical works, such as Bak’s sand-pile model [34–37], 
the random field Ising model [11, 38] and renormalization 
group methods [39], provided a first attempt to understand 
avalanche behavior and estimate the energy exponents, but 
they cannot help decipher the underlying physical processes 
of changing microstructures.

During recent years, large-scale molecular dynamics 
(MD) simulations became possible and have contributed to 
the analysis of avalanches and jerks. The evolution of domain 
structures during shear deformation has already been simu-
lated in some detail [40, 41], and it was shown that pinning/
de-pinning events often exist without external defects but are 
a consequence of domain jamming. The main result was that 
athermal avalanches dominate at low temperatures, while 
thermally activated ones were found at high temperatures 
(Vogel–Fulcher behavior) [40, 41].

In this paper, we report on how high-resolution statistical 
analysis of such models confirms the previous conclusions 
and sheds new light on the underlying mechanisms. For this 
purpose, we use almost the same model parameters as in [40] 
but increase the atomic mass to reduce the temperature of 
the ferroelastic phase transition. This allows us to scale the 
temperature relative to the transition temperature, TC. Twin 
pattern nucleation was found predominantly at the center of 
the sample, so boundary effects (open boundary conditions) 
are not relevant in our simulations. We find that the previ-
ous restriction to two-dimensional models is not significant 

because we observe almost the same transition behavior 
and pattern formation when we extend the model to three 
dimensions.

This paper is organized as follows. In section 2, we briefly 
introduce the model and methods for our MD simulations. 
Section 3 focuses on the results of the MD simulations. We 
first check the difference two-dimensional and three-dimen-
sional model. The origin of the power law and exponential 
behaviors is shown from the analysis of the simulated jerk 
excitations. Then we compare the evolution of the microstruc-
ture under applied shear and the jerk energy statistics in differ-
ent deformation stages where different mechanisms dominate 
the dynamical behavior. In section 4, we discuss the tempera-
ture effect on jerky behavior for different strain regimes.

2. Computer simulation

Our model is constructed to be generic for all ferroelastic 
materials by choosing a typical spontaneous strain that leads 
to ferroelastic twinning. This twinning and the mobility of 
the twin walls define ferroelasticity. The large-scale MD sim-
ulations are performed based on the interatomic potentials, 
by which the elementary steps leading to the needle domain 
movement and kink propagation are well reproduced. Force-
field simulations are not adopted since many atomic details 
would be averaged and cannot be analyzed. The potential 
consists of three interactions [42–44] in a monoatomic lattice, 
which are (1) harmonic nearest-neighbor interactions (elastic 
springs), = −U r r( ) 20( 1)2, (the black springs in figure 1); 
(2) double well potentials between the next-nearest-neigh-
bors (the red springs in the diagonal directions in figure 1), 

= − − + −U r r r( ) 10( 2 ) 2000( 2 )
2 4

; and (3) fourth-order 
interactions (springs) between the third-nearest-neighbors, 

= − −U r r( ) ( 2)4 (long green lines), where r is the distance 
vector (figure 1). The double well potentials between the 
next-nearest-neighbors were designed using inspiration from 

Figure 1. A simulation box for ferroelastic microstructures. The 
interatomic potentials involve nearest-neighbor (black springs), 
next-nearest-neighbor (red springs) and third-nearest-neighbor 
(green dashed arrows) interactions. The black and green springs 
are harmonic and set the length scale of the interfaces, while the 
red springs represent the double well potentials (Landau springs) 
described in [42–44].
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the Landau potentials to form a 4° shear angle. The shear 
angles of ferroelastic oxide materials are typically below 4°, 
while many metallic martensites have larger shear angles. We 
constructed the model so that the shear angle was fixed to 4°, 
which is a good compromise for metallic as well as oxide 
materials. The model potential mimics the ferroelastic 
phase transition in SrTiO3 [45]. For three-dimensional mod-
els, we add potentials between adjacent layers: the interac-
tion between the first-nearest-neighbors is the same as that 
in the plane, with harmonic springs adopted for the next-
nearest-neighbors, = −U r r( ) 10( 2 )

2
. These interactions 

lead to a monoclinic structure that allows strain-compatible 
twinning.

We use this potential to simulate the shear instability in 
two and three dimensions with more than 1 million particles. 
Compared with our previous works [40, 41], we increased the 
mass of particles from 1 to 1000 to rescale the simulation tem-
perature to approach the phase transition temperature, TC [46]. 
The initial configuration has a two-dimensional sandwich con-
figuration with two pre-existing horizontal domain boundaries. 
We then anneal each configuration at a given temperature for 
5 × 105 time steps. After this relaxation, two buffer layers at 
the top and bottom of the two-dimensional sheet are sheared 
by the prescribed shear strain (hard boundary conditions). The 
shear is performed over 2 × 107 time steps, which stabilizes one 
domain orientation (–4°) and destabilizes the other (+4°). Free 
boundary conditions are adopted to allow the needle domains 
to nucleate from the free surface. The LAMMPS computer 

Figure 2. (a) The square of the shear angles (proportional to the spontaneous strain) vary linearly with temperature for two-dimensional 
(black) and three-dimensional (red) models. The open circles represent the macroscopic shear angle, while the triangles are the average of 
all the local shear angles. The strain disappears at the transition point TC=160 K in two dimensions and TC=130 K for three dimensions. 
(b) The Fourier transform of the dynamic atomic displacements in real time space shows a peak at the characteristic ‘phonon frequency’ at 
0.077 ps-1.

Figure 4. The energy filtering of jerks in a small strain interval: 
only jerks (blue) with maxima inside the energy window (yellow) 
contribute to the statistical ensemble.

Figure 3. Potential energy (Pe) versus applied strain (e) at T=1 K 
(6.25 × 10-3TC). Four regimes are indicated: regime (I) represents 
the initial elastic deformation, regime (II) the strong elastic defor-
mation near the yield point (regime (III)) and regime (IV) covers 
the plastic de-twinning regime.

J. Phys.: Condens. Matter 26 (2014) 142201
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code was used with an NVT ensemble, and the temperature of 
the sample was held constant by the Nosé–Hoover thermostat.

3. Results

The domain structures after molecular dynamic relaxations 
were analyzed at temperatures in two and three dimensions. 
For a three-dimensional model, the sample of 1.3 million par-
ticles contained 32 layers perpendicular to the plane, in which 

strain-compatible twinning is allowed by symmetry. The mac-
roscopic shear angle and the averaged shear angles (propor-
tional to the spontaneous strain) show the same decrease with 
increasing temperature (their squared values decrease linearly 
with T in figure 2(a)). The extrapolated transition temperature 
is TC = 130 K for the three-dimensional model. To evaluate 
the effect of the thickness of the sample, we reduced the sam-
ple to one layer. The temperature evolution of the strain is very 
similar to the thick sample, and the transition temperature, TC, 
is around 160 K.

Figure 5. Decomposed jerk distributions. The relation between the sub-distributions reveals the origin of the power law and exponential 
distribution. (a) The relation between the decomposed distributions in the plastic regime at high temperature (10 K, 6.25 × 10-2TC) is 
 exponential. (b) The decomposed distributions in the yield regime at 1 K approximately show a power-law relation. The black line indicates 
the integrated power-law exponent, and the energy windows in each case are shown in the legends.

Figure 6. Domain structure evolution at T=1 K (6.25 × 10-3TC). (a) The dynamical tweed in the elastic regime, (b) the needle domain 
 nucleation, (c) the needle domain multiplication, and (d) kink movement in the plastic de-twinning regime. Moving kinks can be seen in 
two black rectangles. The color scheme represents the local shear angle from the underlying bulk structure ( Θ Θ| |     + - 4vertical

o
horizontal)  

(for details, see [40]).
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Figure 7. The temperature effect on twin nucleation near the yield point for six different temperatures. (a) No complex twin pattern occurs 
at very low temperatures. With increasing temperature, the complexity of the twin pattern increases from (b) to (d) and decreases from (d) 
to (f). The color scheme represents the local shear angle from the underlying bulk structure ( Θ Θ| |     + - 4vertical

o
horizontal) (for details, see [40]). 

The most complex patterns (highest number of junctions) occur at 1 and 10 K.

Figure 8. The jerk spectra of three microstructural regimes at 10 K (a). (b) shows the expanded green rectangle region in (a),  depicting the 
jerky energy signal profiles during yield events, while relatively smooth profiles occur in the early elastic and plastic regimes.

J. Phys.: Condens. Matter 26 (2014) 142201
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Time renormalization relates all the time scales to the pho-
non frequency of our model. The phonon frequencies were 
measured using the dissipation–fluctuation theorem by the 
Fourier transform of the displacement patterns in two and 
three dimensions (figure 2(b)). Phonon resonances appear at 
0.077 ps-1, so the phonon time is 13 ps. The phonon time does 
not depend significantly on the dimension of the sample. As 
the results in two and three dimensions are closely related, we 
make use of the higher number of particles in the plane of the 
twin boundaries and focus on two-dimensional simulations.

The evolution of the potential energy (Pe) with strain is 
shown for constant strain rate in figure 3. We measure the 
energy of the jerks in units of  = J e e( ) (dPe/d )2. The derivative 
of the potential energy Pe with respect to strain e, ( =v e dPe/d ),  
reflects the velocity of the energy change. The energy of 
the jerks can be visualized as the kinetic energy (~v2) of the 
dynamic process [31, 47]. The energy spectra are evaluated 
with high time resolution from the potential energy of the 
system measured at every simulation step. In the spectrum, 
jerks start at strain ei when the J(e) signal crosses a fixed 

threshold and finishes at ej, when the signal remains below 
the threshold (red line in figure 4). The thresholds are set to 
be J0.1 , where J  is the average over all jerk energies in 
any given spectrum. The integral of the normalized energy sig-
nal (J J/ ) for the duration (  ~ e ei j) of the event describes the 
jerk energy E dissipated by jerks. The probability functions 
P(E) are the numbers of jerks in an energy interval between 
E and +E Ed . The waiting time between adjacent jerks, using 
the same threshold, is calculated by converting +e e-i j1  into units 
of time. We analyze the jerk distribution by amplitude filter-
ing. We define the energy windows and count the number of 
jerk peaks inside each window (figure 4). The distribution 
contains cut-off energies as upper and lower window ener-
gies. In power-law distributions, the relative change in the 
probability ε = P E P E E Ed ( )/ ( ) - d /  is proportional to the rela-
tive change in energy and does not depend on any intrinsic 
energy scale. For thermally active processes, the probability 
is  ~ P E E k T T( ) exp-( / ( - ))VF , where TVF denotes the threshold 
of the thermal activation. The different statistics are clearly 
seen in figure 5, where the intervals in the plastic regime at 

Figure 9. Jerk distributions for yield regimes at four different temperatures. All the low-temperature distributions (a), (c) show the onset of 
avalanches and their continuation over an extended strain interval. These represent large-scale avalanches, while the thermal activations at 
10 and 20 K (b), (d) show the collapse of jerks to zero energy between events. The ‘avalanches’ exist only over very small strain intervals 
and represent the advance of individual needle domains rather than collective avalanches, which are composed of large numbers of needle 
domains [2].

J. Phys.: Condens. Matter 26 (2014) 142201
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high temperature follow Vogel–Fulcher statistics, while all 
other distributions (e.g. in figure 5(b)) show the scale-invar-
iant, asymmetric distribution where the higher energies are 

suppressed and the lower energies enhanced. The envelope of 
the distributions is complemented by the black line with the 
integrated energy exponents indicated in the graph.

Figure 10. The probability distribution of the jerk energy P(E) and waiting time P(twaiting) in four regimes at 1 and 10 K. The black open 
circles and blue open squares represent 1 K and 10 K data, respectively. (a) Power-law–Vogel–Fulcher transitions of P(E) are shown in the 
elastic and plastic regimes. Their waiting times are exponentially distributed (b). (e) The P(E) in the yield regimes follows a power-law 
distribution, and the data at 0.5 and 20 K show the variations in the power-law exponent. (f) The waiting times are power-law distributed, 
with an exponent around 2.4. (c) The distributions of P(E) in regime (II) are power law, while their waiting times show transitions from 
 exponential to stretched exponential under cooling (d).

J. Phys.: Condens. Matter 26 (2014) 142201
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The raw data of the jerk spectra are shown for two tem-
peratures, and two different structural regimes are collected 
in figure 5. The microstructural regimes are defined in figure 3, 
where the change in the potential energy of the sample is 
shown as a function of the applied shear strain. The initial 
elastic regime (I) leads to a regime with some nucleation 
of kinks in the interfaces between the sandwich layers (II), 
and finally to the yield regime (III) where the main pattern 
formation takes place. After yield, de-twinning occurs first 
for unstable needle domains, and then de-twinning proceeds 
essentially via the propagation of kinks in the twin walls 
(IV) until a single domain sample is recovered. Snapshots 
of the structural states in the various regimes are shown in 
figures 6 and 7.

The jerks in the various regimes differ in amplitude and pro-
file. In figure 8, we compare the jerks in the elastic, the yield, 
and the plastic regime. Figure 8(a) shows that the amplitude 
of jerks is highest in the yield regime (black). The weak jerks 
are found in the elastic and plastic regime, where virtually all 
excitations are phononic. A surprising difference between the 
yield regime and the other regimes is that the individual jerks 
are smooth functions of the applied strain outside the yield 
regime. During yield, all the jerks are rugged with ‘sub-jerks’ 
inside them. This observation places emphasis on the scale 
invariance of jerks during yield: jerks represent avalanches, 
whereby each avalanche contains sub-avalanches that follow 
each other without the main avalanche coming to rest. This 
effect is even more obvious in the case of low-temperature 
avalanches in the yield regime. In figure 9, we show that the 
jerk distribution at low temperatures (0.5 and 1 K) has a clear 
onset for small strains and remains active for very large strain 
intervals. This clearly demonstrates that the individual jerks 
are part of a large, collective avalanche and not a collection 
of uncorrelated jerks. Such collective jerks also occur in the 
early elastic regime, which contains the low-temperature 
tweed dynamics. The jerks become smooth and uncorrelated 
at higher temperatures, when the elastic regime is dominated 

by both tweed dynamics and some front propagation of the 
twin boundaries. Such individual, uncorrelated jerks dominate 
at high temperatures at all conditions outside the yield regime.

The integrated distributions for the given regimes are sum-
marized in figure 10. Jerks related to the extended avalanches 
are always power-law distributed, with an energy exponent  
ε =1.30 at T=10 K and ε =1.7 at T=1 K. The waiting time 
correlation follows a power law with an exponent of 2.0 at 
1 K and a larger exponent at 10 K. The yield behavior is hence 
essentially athermal and scale-invariant, but shows different 
inter-jerk correlations with power-law distributed waiting 
times between the jerks.

Increasing the temperature from 1 to 10 K does not fun-
damentally change the avalanche mechanism (although the 
energy exponent changes slightly). The main difference is that 
the large avalanche at 1 K is broken up at 10 K into smaller 
segments. The increase in the energy exponent at higher 
temperatures appears empirically to be related to this break-
up. The waiting time distributions show strong correlations 
between the individual jerks, similar to the results for the col-
lapse of porous materials and earthquakes. The exponent of 
the waiting time power-law distribution is 2.4.

The effect of temperature is strong outside the yield 
regime. Thermal excitations, and hence the appearance of 
an energy scale, are very pronounced in the elastic and the 
plastic regimes, where we find that exponential distribu-
tions apply for jerks and for the waiting times between jerks. 
The only power-law distribution occurs just before the yield 
regime with a characteristically larger energy exponent and 
a strong exponential tail at high energies. At low tempera-
tures, we find power-law distributions for jerks in all regimes 
besides the near-yield regime, where stretched exponentials 
characterize the crossover between the power law and the 
exponential regime.

4. Discussion

The discovery of a temperature-generated crossover between 
thermal and athermal regimes [40] is confirmed by our sim-
ulations. The origin of the crossover is related to the strain 
regimes outside the yield regime. These elastic and plastic 
regimes are thermally activated at high temperatures, while 
such activations are frozen out at sufficiently low tempera-
tures. The spectra of the jerks show quasi-continuous profiles 
for each jerk, which relates to the continuous movement of 
kinks and needle domains under the applied strain field. These 
movements are thermally activated at sufficiently high tem-
peratures. At low temperatures, we find that domain boundary 
freezing is in close agreement with the experimental observa-
tions [48, 49]. The Vogel–Fulcher temperature is similar to 
that observed during a domain freezing process.

Domain freezing is much less important during yield 
events with energies much larger than the thermal energy. 
Domain nucleation during yield is scale-invariant and not 
thermally activated. The initial nucleation is a runaway pro-
cess at low temperatures (0.5 and 1 K), so it only exhausts 
itself when the final number of domains has been produced. 

Figure 11. The statistical jerk profiles in the early elastic, yield and 
plastic  regimes. All the individual jerks are normalized in width, 
and the integration over all jerks results in the statistical jerk pro-
files shown in this figure. The normalized statistical jerk profiles in 
the early elastic and plastic regimes show Gaussian distributions, 
while the jerk profiles in the yield regime are parabolic.

J. Phys.: Condens. Matter 26 (2014) 142201
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This process is hence geometrically one big avalanche, while 
all the other events are jerks with very weak correlations. It is 
therefore crucial to distinguish between jerks related to ava-
lanches (during the yield event) and all other jerks, which can 
be thermally induced and do not lead to extended avalanches.

We now analyze the jerk profiles to identify a way to dis-
tinguish between the two types of jerk. Averaged jerk pro-
files were defined by summing over the interpolated profiles 
where the number of data points per jerk varies dramatically. 
We interpolated linearly between the data points within each 
jerk profile. The normalized profiles for the various regimes 
and temperatures are shown in figure 11. Subtle changes in 
the profiles show parabolic distributions in the yield regime 
(large-scale avalanches), while Gaussian distributions occur 
for cases where the excitation is mainly related to phonons in 
the plastic regime.

The temperature dependence of the yield effect causes 
a slight change in the energy exponent, but also has a very 
strong effect on the resulting microstructure (figure 7) . Sparse 
microstructures are found at low temperatures (front propa-
gation) and high temperatures (thermal excitations), while 
the densest microstructure occurs at 1 and 10 K. The energy 
exponent changes accordingly from 1.88 (0.5 K), 1.66 (1 K) to 
mean field values near 1.35 at higher temperatures.
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