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Microstructural patterns of twin boundaries and tweed in ferroe-
lastic materials display typical aspects of glasses. The patterns
are complex, their dynamics follows Vogel–Fulcher statistics
and their field cooling–non-field cooling hysteresis is similar to
those described in this issue as ‘strain glasses’. The difference is
that domain glasses do not need extrinsic defects to form. In the
paraelastic phase, an intrinsic tweed pattern dominates the high
temperature precursor regime. Experimentally, massive elastic
precursor softening is related to polar standing waves, which are

attributed to the glassy relaxation of the tweed pattern. In the
ferroelastic phase we find a complex twin pattern when the sam-
ple is strained with a constant strain rate. The dynamics of the
pattern formation is a-thermal at low temperatures and follows
Vogel–Fulcher statistics at moderately high temperatures. It is
argued that domain boundary patterns can hence evolve glass-
like states while the underlying matrix remains fully crystalline
without any defect induced disorder.

1 Introduction Non-ergodic, glass like structures are
commonly observed whenever the degree of disorder in a
structural phase transition is large. Non-ergodicity is the
defining quantity in relaxor materials [1–3] but it is not
known how the breaking of ergodicity occurs in the limiting
case of weakly disordered systems. Decreasing the strength
of the random field in a ferroic phase transition will make
the transition increasingly more ergodic and one may be
tempted to assume that the fully ordered system undergoes
a ‘classic’ phase transition without any ergodicity breaking.
It is not clear whether the transition between relaxor-type,
non-ergodic behaviour and an ergodic, ferroic transition
mechanism is stepwise or continuous. Ren and collaborators
[4] have argued that an abrupt transition exists between the
long range ordered state and the non-ergodic glass state. Nev-
ertheless, even for weak disorder, the ferroic state contains
significant fluctuations of the order parameter and relaxor
type behaviour cannot be excluded. Lloveras et al. [5] have
shown that spatially heterogeneous states that occur in ferroe-
lastic transitions depend crucially on the elastic anisotropy
with tweed type microstructures for anisotropic interactions
and mottled structures with almost spherical nano domains
for isotropic interactions (e.g. in NiTi). They argue that such
microstructures lead to structural disorder that gives rise to
a distribution of energy barriers that, when overcoming a
well-defined threshold, screen the long-range interactions

and suppress the structural phase transition. They clearly
identified the thermal precursor interval at temperatures just
above the transition point as the key thermal regime where
disorder based features can be identified most clearly.

In this paper, we follow a similar argument. We address
an extreme situation where the amount of extrinsic disorder
is vanishingly small compared with the local disorder
generated by intrinsic fluctuations of the order parameter.
In other words, we are dealing with defect free systems
(in computer simulations) or with materials that contain
no or a very small defect concentration (experimentally).
We could expect such systems to be fully ergodic but find
experimentally some glass-like features. The glassiness is
not related to the structural matrix, however, but entirely
to ferroelastic or ferroelectric microstructures. In this sense
we extend the concept of domain boundary engineering
[6, 7] to show that the subsystem of domain boundaries and
their precursors can themselves form glass states while the
underlying matrix remains fully crystalline.

Previous experimental studies that inspired this idea
include Potassium Tantalate Niobate (KTN) with high Nb
content where the transition is expected to follow the clas-
sic ferroelectric transition mechanism. Dielectric relaxations
were found not to be (fully) ergodic, however, and jump cor-
relations were found in dielectric spectroscopy [8]. Similarly,
elastic relaxations in ferroelastic LaAlO3 show low frequency
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resonances which are highly broadened with a stretching
exponent of the Cole–Cole relaxation of μ ≈ 0.6 [9]. Such
exponents measure the deviation from a Debye relaxation
(μ = 1) and have been linked to the appearance of broken
ergodicity [10]. Recent work on PbSc0.5Ta0.5O3 (PST) has
shown that the ferroelectric transition has all the hallmarks
of a classic ferroelectric and/or ferroelastic phase transition
together with huge precursor polarity that exists in the nomi-
nally cubic phase at temperatures just above the ferroelectric
transition point [11]. Glassiness in nominally defect free
materials was previously observed in single crystals of C60

and similar compounds [12].
The decay of ergodicity of ferroelastic phase transitions

near the clean limit is somewhat akin to the plateau effect
of chemical mixing [13]. Mixed systems show no effect of
mixing on the averaged transition temperature of a displacive
phase transition for small defect concentrations (while the
transition may smear out and local field effects may become
important). Large concentrations of dopant atoms can lead to
ideal chemical mixing, and paradoxically a ‘clean’ transition
occurs when long range strain effects dominate the transition
mechanism. The transition temperature is now dependent
on the dopant concentration while a temperature plateau is
observed when the dopant concentration is small. The edge
of the plateau indicates the threshold level of dopant con-
centration that is needed to homogenize the doping effect
[14–17].

The average distance between the dopants at this point
gives an estimate for the interaction length between the
dopants, which can vary between a few nm and some 100 nm.
We argue in this paper that no extrinsic dopants are required
in the case of glassy precursor behaviour of ferroelastic mate-
rials and in jammed domain structures so that the glassiness
(and weak or broken ergodicity) can be an intrinsic feature of
a ferroelastic phase transition. In our experiments and simula-
tions we remain firmly inside the plateau regime of chemical
mixing.

2 Glassy precursor effects in improper ferroe-
lastics and polarity in a non-polar matrix Improper
ferroelastics are defined as ferroelastic materials where the
order parameter of the transition is neither the strain (which
would be a proper ferroelastic) nor is there a bi-linear
coupling between the order parameter and the strain (which
would be a pseudo-proper ferroelastic). An improper
ferroelastic shows no elastic softening in the precursor
regime related to fluctuations of the order parameter and are
hence ideal for the investigation of softening mechanisms
that are unrelated to fluctuations of the order parameter [18].
The same argument is true for co-elastic materials [19] and
the first experimental observation of unexpected precursor
softening in co-elastic quartz dates back to 1970 [20]. Axe
and Shirane correctly argued that the elastic anomaly is
related to a low frequency Raman-active mode in the high
temperature phase, which is not the structural soft mode.
This argument was formalized and extended by Carpenter
and Salje [18] who showed that any low frequency mode

ω(k), where k is a wave vector in reciprocal space, would
dynamically soften elastic moduli even though this mode is
not itself the structural soft mode. The key argument here is
that the precursor softening �C depends on the dispersion of
the phonon branch. As the integral over the dispersion curve
needs to extend only over the phonon branches with small
values of ω(k) one finds that the precursor effect depends
crucially on the dimensionality of the k-integration. With a
parabolic dispersion relation ω2(k) = ε2(1 + ∑

i=x,y,z
c2

i
k2

i
),

where ε and c are proportionality constants, the integral
depends on the dimension, d, of the soft phonon branch. The
most common cases are three one-dimensional low-lying
branches with d = 3 and two-dimensional branches with
d = 2. If a temperature scaling of ε is assumed to be similar
to a non-critical soft mode, ε2 = ε2

min + A|T − Tc|, where A

is a constant and Tc is a critical temperature, (taking ε ∝ 1/c)
the temperature evolution of the precursor softening for
the elastic constant C is given by �C ∝ |T − Tc|−0.5 for 3
low-lying branches in three dimensions, �C ∝ |T − Tc|−1

for 2 low-lying branches in a plane and �C ∝ |T − Tc|−1.5

for a single low frequency branch. The exponents are usually
called κ with κ = −0.5, κ = −1, κ = −1.5, respectively. In
quartz one expects by symmetry a planar degeneracy and,
indeed, a value of κ = −1 was observed [20]. Similarly, the
symmetry reduction from cubic to rhombohedral in LaAlO3

also may involve planar degeneracy and a value of κ close
to unity was reported in Ref. [21]. In most other cases of
phase transitions in ferroelastic perovskite structures such
as BaTiO3 and SrTiO3, the transition from the cubic to the
tetragonal structure involves 3 soft branches with a best fit of
the experimental data to κ = −0.5. Large precursor softening
in KMnF3 with κ = −0.5 was reported in Refs. [22, 23].

The magnitude of the elastic precursor softening varies
largely between compounds with relatively little precursor
softening in LaAlO3 [21] and SrTiO3 [24]. The other extreme
case is observed in BaTiO3 where a massive precursor soft-
ening occurs in the cubic phase with some 25% reduction
of the modulus [25]. The massive softening extends over a
temperature range of ca. 200 K. It is hard to understand why
so large precursor effects exist in BaTiO3 while the effect
remains very small in structurally closely related SrTiO3.
The solution to this riddle may be related to the observation
that the precursor phase in BaTiO3 is much more complex
than in the other materials: the phase is polar [26] while the
cubic symmetry Pm3m disallows any such polar behaviour.
In addition, we find that an equally good (or even better)
fit of the observed temperature evolution of the moduli can
be obtained with a thermally activated Vogel–Fulcher pro-
cess with �C ∝ exp (Ea/|T − TVF|) [25]. In this equation,
the Vogel–Fulcher temperature, TVF, is below the transition
temperature and the activation energy, Ea, corresponds to the
typical hopping energy of local ‘defects’ such as disordered
Ti positions which are slightly shifted from the midpoints
of the TiO6 octahedra in BaTiO3. Large (precursor) elastic
softening was also observed in PST [11] where polar pre-
cursors were again observed in the cubic paraelastic phase.
The temperature evolution of the precursor softening in PST
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Figure 1 Simulation of a tweed diffraction pattern for Co-doped YBa2Cu3O7 in the upper panel is shown as four-armed starfish
and clearly indicates the elastically soft directions where fluctuations are largest (after [32]. Copyright (2012), AIP Publishing LLC).
Lower panel shows transmission electron micrographs of tweed (left 2) and twin (right 2) patterns observed in Co-doped YBa2Cu3O7

above and below the transition point, respectively (after Ref. [31], reprinted by permission of the publisher: Taylor & Francis Ltd,
http://www.tandf.co.uk/journals. The scale bar in the transmission electron microscope images is 100 nm.

complies both with the power law scaling (κ = −0.5) and
the Vogel–Fulcher law. No attempt was made by Salje and
Zhang to compare the precursor softening in KMnF3 with a
Vogel–Fulcher equation but the close similarity between the
power law fit and the exponential function over a limited tem-
perature interval makes it likely that both approaches would
yield equally good results. The large amplitude of the soft-
ening was also related to the existence of local defects in
KMnF3 with migration activation energies in the range of
0.17–0.23 eV [23].

The empirical observation is hence that large precursor
softening is a fingerprint for Vogel–Fulcher processes while
weak softening may be related to phonon coupling between
low frequency phonons and the elastic moduli. Both interpre-
tations have in common that the elastic moduli couple with
dynamic excitations. The difference between the two pro-
cesses is the nature of the coupled excitations: they are either
vibrational with relatively high frequencies or relaxational
with much lower frequencies. The relaxational processes and
their Vogel–Fulcher dynamics imply the glass dynamics of
the elastic softening and we will now discuss how such glass
states may be modelled. Let us start with a model where the
local dynamical variable is a spin-type variable Si such as the
off-centring of Ti inside the ith oxygen cage in BaTiO3 [27].
The interaction between the Si is twofold: close neighbours
can interact directly while others will interact elastically. In
the cubic phase we have no spontaneous deformation of the
sample so that all interactions are related to local displace-
ments in the cubic lattice. The Gibbs free energy of the
cubic phase can then be derived from a local Hamiltonian

which was introduced in the 1990s [28–31] to describe the
effect of non-local strain interactions in Ising models. The
entropy of the system is mainly related to the spin variable
while the interactions are strain related. The superposition
of these two effects leads to microstructures of a fine mesh
of deformations which are named ‘tweed’. Typical tweed
structures (the structure factor and the real image) are shown
in Fig. 1. Note that the tweed structure is dynamic in the
absence of defect pinning in the paraelastic phase while the
image in Fig. 1 relates to a pinned tweed structure in Co-
doped YBa2Cu3O7 [31]. Twin structures (right two images)
of Co-doped YBa2Cu3O7 that occur below the transition tem-
perature are also shown in Fig. 1b (right two images) for
comparison.

The tweed pattern in the paraelastic phase stems from
the fluctuations of the order parameter Qi: Sk = 〈QkQ−k〉
with k being the position in reciprocal space and Qk is
the Fourier transform of the local state parameter Q(R)
at position R which in our example measures the devia-
tion of the order/disorder component from its zero value
at T � Tc (e.g. the off-centring of Ti in an oxygen octa-
hedron). Using the tweed Hamiltonian in the Bratkovsky,
Heine and Salje, BHS, model [33] one can show that the
intrinsic elastic moduli do not change by tweed formation in
the harmonic approximation. On the other hand, the tweed
becomes more accentuated when the temperature approaches
the transition temperature from above as Sk increases with
decreasing temperature as Sk = kBT/(kBT − Jk) where the
exchange interaction scales as J k = d(n) − g(n)k2, where
n = k/k is a directional unit vector. The functions d and g

www.pss-b.com © 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2064 E. K. H. Salje et al.: Domain glass

depend only on angular functions and can be derived from
the symmetry of the interactions. The functional form of Jk is
usually a fourfold clover as shown in the diffraction pattern
in Fig. 1 [32].

The reduction of the elastic moduli in the precursor
regime due to the tweed formation requires interactions that
go beyond the BHS model. Two mechanisms are plausible.
First, the regions of vanishing order parameters of the tweed
(equivalent to regions of high spatial gradients and hence
flexoelectric effects) will display reduced moduli. This idea
was explored in Ref. [34] and it was shown that twin bound-
aries in CaTiO3 compress under stress by some 2% more
than the equivalent bulk material. The size of the effect in
the actual tweed regime is not known but can be expected
to be of a similar magnitude as in twin microstructures. This
effect appears to be too small to account for the observed
massive elastic precursor softening. The second and larger
effect is expected to stem from the relaxation of the tweed
pattern and relates directly to its glass-like behaviour. Com-
puter simulations of a simple model have shown that tweed
microstructures occur under weak shear stress and result in
local relaxations that reduce the elastic stiffness of the system
[35].

Comparing the results in Ref. [35] (their Fig. 4) with
the quadratic increase of the local potential energy with
increasing strain (the curvature is the appropriate elastic mod-
ulus) shows that the elastic energy is significantly reduced
at high temperatures and that strain relaxations follow a
Vogel–Fulcher statistics rather than a power law as seen at
low temperatures [32]. Vogel–Fulcher statistics and stretched
exponential laws are also commonly observed in dynamically
strained ferroelastics in their elastic regime [36, 37]. The
proposed physical process leading to a massive elastic precur-
sor in ferroelastic, martensitic, and ferroelectric materials is
hence related to the formation of precursor tweed microstruc-
tures. These tweed structures have glass-like, non-ergodic
features and show softening due to relaxational modes, which
are absent in the low temperature ferroic phase. Glass like fea-
tures in materials with massive precursor softening are well
observed at temperatures above the transition point while
their existence does not imply that the ferroic phase itself is
non-ergodic or glassy.

3 Jamming and glassy behaviour in strained
ferroelastics We now consider ferroic materials in their
ferroic state. The stress-free material defines a thermody-
namic ground state and, in the case of ferroelastics, their
physical behaviour can be derived to an excellent approxi-
mation by Landau theory. The microstructural ground state
is the single crystal if no forces or specific boundary con-
ditions (e.g. clamping) are applied. The energy of a twin
boundary [6] is similar to that of a surface layer in the order
of 0.1 J m−2. This situation changes fundamentally when the
material is sheared. Increasing shear will lead to a yield
point collapse at which the sample is shattered into a mul-
titude of domain states while the macroscopic integrity of
the sample (usually) remains intact. If no further strains are

Figure 2 Interatomic potential for a generic ferroelastic model.
The model contains nearest-neighbour (black springs), next-
nearest-neighbour (red springs), and third-nearest-neighbour (green
lines) interactions. See text for description of the model (after
Ref. [41]. Copyright (2013), AIP Publishing LLC).

applied we find that the microstructures remain ‘stranded’
which means that they will not change even if other param-
eters do. This is the reason why such microstructures are
so important in mineralogy: once a microstructure has been
formed in geological history they will remain constant over
geological times. Some of these microstructures are known
to have survived more than one billion years in the geological
environment although the microstructure does not repre-
sent an energy minimum under free boundary conditions
[38]. In the context of device applications, the application
of domain boundaries my equally generate domain patterns
which are long lived and which allow the functionality of the
device [39].

Glass-like structures are generated when the driving
forces are very large. A typical example is the stress induced
twinning at low temperatures. These twin patterns involve
a very high number of twin intersections and are dis-
tinctly different from stripe patterns which are generated
under weak strain fields when the sample is cooled slowly
through the ferroelastic transition point. Field cooling and
non-field cooling give very different pattern formation. We
will now discuss how the complexity and glass dynamics
of a strained pattern can lead to states, which have all the
hallmarks of weak ergodicity. A simple model Hamilto-
nian for the creation of domain structures was introduced
in Ref. [35] and is depicted in Fig. 2. Nearest-neighbour
(black springs), next-nearest-neighbour (red springs), and
third-nearest-neighbour (green lines) interactions included in
the model ensures a spontaneous shear of the unit cells. The
springs between the nearest-neighbours and third-nearest
neighbours define the elastic background and define the
thickness of interfaces. The red Landau springs (interac-
tion between next-nearest neighbours) define the double well
potential of the ferroelastic phase transition (see Ref. [35]).
They define a second order phase transition inspired by the
transition of SrTiO3 (Ref. [40]). The interatomic interaction
of this potential is listed as follows: Vhard(r) = 20(r − 1)2

© 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com
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Figure 3 Microstructure under shear above the yield point in the
model system in Fig. 2. The potential corresponds to a soft sys-
tem; hard systems show slightly more dilute twin structures (after
Ref. [32]. Copyright (2012), AIP Publishing LLC).

and Vsoft(r) = 10(r − 1)2 (0.8 < r < 1.2), V (r) = −10(r −
2)2 + 2000(r − 2)4 (1.207 < r < 1.621), V (r) = −(r − 2)4

(1.8 < r < 2.2).
Using this model, it has been shown that the ensuing

domain patterns are size dependent when the sample com-
prises less than 200 particles in one direction [41]. Samples
with > 1 million particles in two-dimensional simulations
showed no such size dependence and can be analyzed as a
characteristic twin pattern under strain at conditions far from
equilibrium, an example of which is presented in Fig. 3 for a
soft system (YBa2Cu3O7) [32]. A simulated diffraction pat-
tern of twins for such a soft system is shown in Fig. 4 [32].

Figure 4 Simulated diffraction pattern of a strain induced twin pat-
tern at T < Tc. The colour scheme refers to the amplitude of the
structure factor (after Ref. [32]. Copyright (2012), AIP Publishing
LLC).
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Figure 5 Time evolution under constant shear rate for the
microstructure in Fig. 3. The increase of elastic energy below
the yield point A is reduced with respect to the initial parabolic
increase. This regime represents the formation of pre-yield tweed
structures. The high twin boundary regime beyond the lower yield
point B shows serration and an overall constant potential energy.
This regime refers to the domain glass. The evolution is partially
smooth and partially jerky. The jerks are extracted from the poten-
tial energy Pe by differentiation. The curve is taken at a temperature
of 1.25 TVF and we see that the unstable domain in the elastic
regime collapses into a multitude of twinned nanodomains over
a very small strain regime (from point A to B). When the applied
strain reaches point C the detwinning process is almost complete,
and finally the system changes to a perfect single domain crystal
after point D (after Ref. [37], with permission from Springer Science
and Business Media).

The shape of the diffraction pattern is similar to that depicted
in Fig. 1 but contains more highly confined diffraction max-
ima along the elastically soft directions. The complexity of
the underlying pattern is comparable to that of tweed while
thermal excitations are much reduced.

The time evolution of the potential energy for the twin
pattern at constant strain rates is shown in Fig. 5 [37].
Changes of the microstructure occur by small jerks when
needle domains retract and kinks inside walls propagate.
These movements generate energy ‘jerks’ which correspond
in non-equilibrium thermodynamics to ‘avalanches’. The
glass state is now defined by the statistical distribution of the
jerk dynamics: continuous propagation of twin boundaries
under weak fields leads to no jerks. The domain dynamics can
become very slow near the transition point and at low tem-
peratures and domain freezing becomes possible. Athermal
nucleation of twinning and their elimination at low temper-
atures corresponds to a power law statistics of the avalanche
distribution. At higher temperatures, thermal excitations lead
to a Vogel–Fulcher distribution of avalanches and this regime
corresponds to a ‘domain-glass’ in the sense that the domain
sub-system displays glassy behaviour. The phase diagram of
the domain formation was derived by Ref. [35]. We propose
hence that domain-glass states exist in regime (c) in Fig. 6.
Further work is planned to confirm this idea.

www.pss-b.com © 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2066 E. K. H. Salje et al.: Domain glass

Figure 6 Phase diagram of the jerk distribution statistics. A cross-
over between a power law statistics (low temperatures phase b)
and a Vogel–Fulcher regime (c) occurs at 1.2 TVF where the tem-
perature difference with the Vogel–Fulcher temperature increases
linearly (after Ref. [35]. Copyright (2011) by the American Physical
Society).

Acknowledgements E.K.H.S. is grateful to EPSRC
(RG66344) and the Leverhulme Foundation (RG66640) for finan-
cial support.

References

[1] L. Cross, in: Piezoelectricity, Springer Series in Materi-
als Science, Vol. 114 (Springer, Berlin/Heidelberg, 2008),
pp. 131–155.

[2] J. Hemberger, P. Lunkenheimer, R. Fichtl, H. A. K. von Nidda,
V. Tsurkan, and A. Loidl, Nature 434(7031), 364 (2005).

[3] W. Kleemann, J. Mater. Sci. 41(1), 129 (2006).
[4] D. Wang, Y. Wang, Z. Zhang, and X. Ren, Phys. Rev. Lett.

105, 205702 (2010).
[5] P. Lloveras, T. Castán, A. Planes, and A. Saxena, in: Disor-

der and Strain-Induced Complexity in Functional Materials,
edited by T. Kakeshita, T. Fukuda, A. Saxena, and A. Planes,
Springer Series in Materials Science Vol. 148 (Springer,
Berlin/Heidelberg, 2012), pp. 227–247.

[6] E. K. H. Salje, ChemPhysChem 11, 940 (2010).
[7] E. Salje and H. Zhang, Phase Transit. 82, 452 (2009).
[8] S. E. Lerner, M. Mierzwa, M. Paluch, Y. Feldman, and P. B.

Ishai, J. Chem. Phys. 138, 204501 (2013).
[9] R. J. Harrison, S. A. T. Redfern, and E. K. H. Salje, Phys. Rev.

B 69, 144101 (2004).
[10] W. T. Coffey, Y. P. Kalmykov, and S. V. Titov, in: Fractional

Rotational Diffusion and Anomalous Dielectric Relaxation
in Dipole Systems (John Wiley & Sons, Inc., 2006),
pp. 285–437.

[11] O. Aktas, E. K. H. Salje, S. Crossley, G. I. Lampronti, R. W.
Whatmore, N. D. Mathur, and M. A. Carpenter, Phys. Rev. B
88, 174112 (2013).

[12] W. Schranz, A. Fuith, P. Dolinar, H. Warhanek, M. Haluska,
and H. Kuzmany, Phys. Rev. Lett. 71, 1561 (1993).

[13] E. Salje, U. Bismayer, B. Wruck, and J. Hensler, Phase Tran-
sit. 35, 61 (1991).

[14] H. Xu, P. J. Heaney, and G. H. Beall, Am. Mineral. 85, 971
(2000).

[15] M. A. Carpenter, R. E. A. McKnight, C. J. Howard, Q. Zhou,
B. J. Kennedy, and K. S. Knight, Phys. Rev. B 80, 214101
(2009).

[16] S. N. Achary, R. Mishra, O. D. Jayakumar, S. K. Kulshreshtha,
and A. K. Tyagi, J. Solid State Chem. 180(1), 84 (2007).

[17] S. Qin, A. I. Becerro, F. Seifert, J. Gottsmann, and J. Jiang, J.
Mater. Chem. 10, 1609 (2000).

[18] M. A. Carpenter and E. K. H. Salje, Eur. J. Mineral. 10(4),
693 (1998).

[19] E. K. H. Salje, Annu. Rev. Mater. Res. 42, 265 (2012).
[20] J. D. Axe and G. Shirane, Phys. Rev. B 1, 342 (1970).
[21] M. A. Carpenter, A. Buckley, P. A. Taylor, R. E. A. McK-

night, and T. W. Darling, J. Phys.: Condens. Matter 22, 035406
(2010).

[22] W. Cao and G. R. Barsch, Phys. Rev. B 38, 7947 (1988).
[23] E. K. H. Salje and H. Zhang, J. Phys.: Condens. Matter 21,

035901 (2009).
[24] J. F. Scott, E. K. H. Salje, and M. A. Carpenter, Phys. Rev.

Lett. 109, 187601 (2012).
[25] E. K. H. Salje, M. A. Carpenter, G. F. Nataf, G. Picht, K.

Webber, J. Weerasinghe, S. Lisenkov, and L. Bellaiche, Phys.
Rev. B 87, 014106 (2013).

[26] O. Aktas, M. A. Carpenter, and E. K. H. Salje, Appl. Phys.
Lett. 103, 142902 (2013).

[27] R. Pirc and R. Blinc, Phys. Rev. B 70, 134107 (2004).
[28] S. Marais, V. Heine, C. Nex, and E. Salje, Phys. Rev. Lett. 66,

2480 (1991).
[29] K. Parlinski, V. Heine, and E. K. H. Salje, J. Phys.: Condens.

Matter 5, 497 (1993).
[30] E. Salje and K. Parlinski, Supercond. Sci. Technol. 4, 93

(1991).
[31] W. W. Schmahl, A. Putnis, E. Salje, P. Freeman, A. Graeme-

Barber, R. Jones, K. K. Singh, J. Blunt, P. P. Edwards, J.
Loram, and K. Mirza, Philos. Mag. Lett. 60, 241 (1989).

[32] E. K. H. Salje, X. Ding, Z. Zhao, and T. Lookman, Appl. Phys.
Lett. 100, 222905 (2012).

[33] A. M. Bratkovsky, V. Heine, and E. K. H. Salje, Philos. Trans.
R. Soc. A 354, 2875 (1996).

[34] L. Goncalves-Ferreira, S. A. T. Redfern, E. Atacho, and E. K.
H. Salje, Appl. Phys. Lett. 94, 081903 (2009).

[35] E. K. H. Salje, X. Ding, Z. Zhao, T. Lookman, and A. Saxena,
Phys. Rev. B 83, 104109 (2011).

[36] X. Ding, T. Lookman, Z. Zhao, A. Saxena, J. Sun, and E. K.
H. Salje, Phys. Rev. B 87, 094109 (2013).

[37] X. Ding, T. Lookman, E. Salje, and A. Saxena, JOM 65, 401
(2013).

[38] E. Salje, Phys. Rep. 215, 49 (1992).
[39] A. L. Roytburd, J. Appl. Phys. 83, 239 (1998).
[40] E. K. H. Salje, M. C. Gallardo, J. Jiménez, F. J. Romero, and

J. del Cerro, J. Phys.: Condens. Matter 10, 5535 (1998).
[41] E. K. H. Salje, X. Ding, and Z. Zhao, Appl. Phys. Lett. 102,

152909 (2013).

© 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com


