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Ferroics include a range of materials classes with functionalities
such as magnetism, polarization, and strain. We review
coexistence and glassy behavior, as studied over the last decade,

in systems such as perovskite manganites, ferroelectrics, and
martensites to distil a common theme that includes the interplay
of long-range interactions, disorder, and cooperative behavior.
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1 Introduction It is well known that a system of
strongly interacting, largely via elastic strain fields, phase
separated regions undergoes a “dynamic” to a “static”
transition reflected in several functional degrees of freedom
such as magnetism, lattice, charge, or polarization [1–3]. In
analogy with the slow kinetics, relative to the Arrhenius
law, observed in glass-forming matter comprised of atoms,
molecules, polymers, etc., we have started to refer to
materials undergoing such behavior as ferroic glasses. In
structural glasses the deviations from thermal activation arise
from the increase in cooperative behavior of the molecular
constituents when approaching the glass transition [4].
Atomistic simulations are beginning to give us clues on the
nature of the cooperativity (e.g., “string” like motions in the
freezing of a fluid at the glass transition) and the growth of the
correlation length scales. Recently, experiments have started
to probe this self-organization in glass forming liquids, such
as glycerol via nonlinear susceptibility measurements, which
are related to higher-order correlation functions that encode
aspects of the cooperative behavior [4]. Such experiments
show that the number of correlated molecules or elements
grows rapidly as the glass transition is approached. A
comparable level of measurements and understanding in
ferroic glasses, especially on aspects related to the nature of
the cooperative behavior, is so far lacking. Thus, one of the
challenges in the field is to move beyond simplified notions
of “frozen” defects or states involving spins, dipoles or
martensite variants in a matrix, in terms of which we are
accustomed to thinking because of spin glass-like ideas, to
probing cooperative, structural organization which appears at

the heart of understanding glassy behavior in a wide class of
materials. Our purpose here is to review and relate ideas
that span glass physics: from structural glasses and gels
and colloids to manganites, ferroelectrics and martensites,
and distill a common theme to suggest that glassiness in
martensites is likely related to a form of cooperative behavior.

2 Perovskite manganites The importance of long-
range strain fields in mediating glassy physics in ferroics
has been well recognized in the perovskite manganites
where the interplay between spin, charge, and the lattice
gives rise to coexisting regions of insulating, charge-ordered
(CO) and metallic, ferromagnetic (FM) phases [1–3, 5].
The phase diagram for the perovskite manganese oxide,
La0.215Pr0.41Ca3/8MnO3 (LPCMO), obtained in Ref. [1] is
shown in Fig. 1. A CO phase leads to a coexistence of CO/
FM domains that can be up to micron size, which on further
cooling give rise to a glass state. The phase boundaries were
determined by resistivity, magnetization, and resonant
ultrasound measurements and the onset of the glass transition
was also characterized by deviation of the zero-field-cooled
magetization and susceptibility from the field-cooled result.
The authors of Ref. [1] introduced the term/concept of a
“strain liquid” for the CO/FM phase to signify its dynamic,
fluctuating character and “strain glass” for the kinetically
frozen, static glass phase below the glass transition. The
transition is a freezing of large fluctuations in resistivity,
magnetism and internal friction from a dynamic to a static
phase where there is a marked drop in magnetic relaxation.
Whether the glass phase is a cluster glass in which
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magnetization clusters in the CO matrix essentially freeze as
individual spins below the glass transition, is an interesting
question. This is what is expected to occur in magnetic alloys
such as CuMn. However, such spin glass-like behavior has
also been observed in many collosal magnetoresistance
(CMR) materials with the assumption that the magnetic
domains or clusters behave as in cluster glasses. We now
know that this picture is not accurate. Rather, the volume
fraction of FM clusters substantially decreases in the glass
state. In the case of a spin or cluster glass individual spins or
clusters are frustrated in their orientation without exhibiting
any long-range order. Here, in addition to that possible
freezing, there is the magnetic relaxation due to the change in
FM volume fraction, and as this magnetic relaxation drops,
the phase separation is dynamic above and static below the
glass transition temperature. Since the coexistence of CO/
FM involves interfaces between orthorhombic and pseudo-
cubic distortions, results on dissipation from resonant
ultrasound measurements indicate that these interfaces are
highly fluctuating in the strain liquid region and become
kinetically hindered below a glass transition. The overall
geometrical morphology of these interfaces is an interesting
question. The development of novel high-resolution
spectroscopies are beginning to throw light on the details

of the metal-insulator transition. For example, “stripe-like”
domains have been imaged recently in VO2 [6] that are not
pinned by defects so that their spatial arrangement can
fluctuate. This suggests a form of cooperative behavior. The
role of chemical randomness competing with electronic
phase separation has also been discussed in detail [7] with
the use of models based on the random field Ising model
(RFIM). However, such approaches do not capture the
elastic interactions appropriately. In addition, the inhomo-
geneous features generated from such modified RFIMs are
the result of assuming that the metallic and insulating states
(modeled as spin up and down states) have exactly the
same energy in the average field, which is an inadequate
assumption for the inhomogeneity in manganites due to
the lack of symmetry between metallic and insulating states.
It has been shown that the correction to this in the modified
RFIM leads to a homogeneous phase [8]. A number of
studies over the last decade have also emphasized the role of
martensitic-like accommodation in inducing long-range
strain interactions and giving rise to inhomogeneity and
intrinsic self-organization (without the need to add disorder)
that result in CMR effects and glassy morphologies [5].
These include Landau-like descriptions for nanoscale
texturing with coupled functionalities [9]. We therefore
next consider the origin of glassy behavior in martensitic
alloys where strains/shuffles act as order parameters. This
allows us to isolate competing aspects such as the influence
of the long-range elastic interaction and the degree of doping
or disorder, without additional functionalities or fields.

3 Martensite glass There has been renewed interest
in understanding the slow kinetics and glass-like behavior in
martensitic and shape memory alloys. Recent experiments
on ferroelastic alloys have shown that by introducing
disorder by doping above a critical value an abnormal glass-
like state, interpreted as a frozen state of local strain order,
can be generated below a transition temperature [10, 11].
This so called “strain glass,” perhaps better termed
“martensite glass” in this case, is of interest not only from
a theoretical perspective but it has been shown to display
superelasticity and shape memory effects, which are
typically seen in austenite and martensite [12, 13]. However,
the nature of the glass behavior, in terms of its relationship to
the glass physics seen in other ferroics or structural materials,
is far from clear. As for the perovskite manganites, the
experimental diagnostics have largely relied on signatures
for ergodicity breaking, such as FC-ZFC behavior and
frequency dispersion of dynamic properties. Structural
analysis via high-resolution electron microscopy (HREM)
has so far not been refined enough to test hypotheses.
Theoretically, the tweed phase was the subject of several
early studies that interpreted and mapped it as a spin
glass phase [14]. However, experiments on alloys such as
Ti50Ni47Fe3 have shown no frequency dispersion or changes
in moduli in the premartensitic tweed regime [11, 15]. Care
needs to be exercised in using diagnostics such as ZFC/FC
magnetization or the frequency dependence of the AC

Figure 1 Phase diagram for La0.215Pr0.41Ca3/8MnO3 reproduced
from Ref. [1] showing phases (CO, charge ordered; FM,
ferromagnetic metallic) and their coexistence. There is a transition
characterized by a freezing from a “dynamic” phase with large
fluctuations in resistivity, magnetism, and internal friction to a
“static” glass phase. Inset from Ref. [2] shows signature of magnetic
irreversibility such as the reduced magnetism in ZFC/FC curves.
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susceptibility as similar signatures of glass behavior can be
seen in mechanically alloyed ferromagnetics such as
Fe61Re30Cr9 [16]. Even Ti50Ni47Fe3 shows deviation
between the ZFC/FC curves that gets greater at temperature
T<As, the austenite start temperature. This is interpreted as
a signature for breakdown of ergodicity but this is a normal
martensite and not a glass at low temperatures.

3.1 Models Although the importance of the elastic
long-range interaction and disorder via chemical inhomo-
genetity or compositional fluctuations was well recognized
in the context of manganites, ferroelectrics and martensites,
recent experiments on martensite glass have generated a
number of studies attempting to predict the glass state. These
essentially are of two types: (i) those that solve a relaxation
dynamics equation based on a continuum Landau free
energy approach and include elastic energy terms and added
disorder [17, 18], and (ii) those that map the continuum
Landau description into a discrete model so that the tools of
statistical mechanics that have been used to study spin glass
behavior, may be readily employed [19–22]. Our focus here
will be on approach (ii) as it provides predictive results
because an order parameter that identifies the glass phase can
be defined and mean-field theory and renormalization group
approaches can be utilized to predict it. Simulations probing
glass behavior often require special consideration and these
have been developed to a greater degree using Monte
Carlo methods applied to discrete models. We consider for
simplicity the 2D square to rectangle transformation driven
by the deviatoric shear (see Fig. 2) which serves as an order
parameter. This transition is a 2D analog of a cubic to
tetragonal or tetragonal to orthorhombic transformation and
is one of the simplest that illustrates the salient physics. The
strains are defined in terms of the lattice displacements, u,
by Eq. (1):

eij ¼ @ui=@rj þ @uj=@ri
2

; ð1Þ

fromwhich the strain tensor components, exx the longitudinal
strain, eyy, the transverse strain and the simple shear strain,
exy, as well as their symmetrized components e1, e2, e3 are

defined. As there are only two displacements in 2D, the three
strain components are related through the compatibility
condition,

ð@xx þ @yyÞe1 � ð@xx � @yyÞe2 �
ffiffiffi
8

p
@xye3 ¼ 0; ð2Þ

being derivatives of the same underlying displacement field.
From a computational point, a key difference between our
approach [19] and that typically used in the phase field
approach is that we eliminate the displacements using
equation (2), as distinct from satisfying mechanical
equilibrium and solving for the displacements [22]. Figure 2
and the left panel of Fig. 3 show the essential model with a
free energy for a first-order transition so that at high
temperature there is minimum corresponding to the austenite
phase and below the martensitic transition temperature, Tc,
there are two minima corresponding to the two martensite
variants or homogeneous states. At the transition the minima
are degenerate in energy. Variations in the order parameter
(OP) strain are incorporated in a gradient term which is zero
in the homogenous or bulk variants and its strength is related
to the energy cost of creating interfaces between variants. It
is commonly assumed that this term, which controls the
width of domain walls between variants, is phenomenologi-
cally added. However, this can be derived systematically by
considering strain and short wavelength distortion modes
which become important as one probes the discreteness of
the lattice at nanoscales [5]. Finally, the anisotropic long-
range repulsive interaction between the OP strains in 2D is
a consequence of eliminating the displacements in the
compression-shear energy. This model and its variations
have been applied to study how intrinsic inhomogeneities
arise, including when coupled to magnetization and
charge [9], and the continuum descriptions have been very
successful in elucidating and simulating microstructure
evolution. Disorder has also been added to affect the
transition temperatures and drive the system to a martensite
glass [17, 18]. In these studies the glass behavior is
monitored largely by the deviation in ZFC/FC curves (as in
experiment) and/or “glass like” morphology. The difficulty
with this is that it is not so straightforward to identify a
glass. Thus, the models tend not to be particularly predictive
as none of these studies attempt to evaluate a glass or spin-
glass OP.

Figure 2 Principal strain modes for square with e2 as the order
parameter (OP) for the square to rectangle transformation. Free
energy curves as a function of temperature showing the first order
transition at temperature Tc.

Figure 3 Mapping from a continuum Landau model for square to
rectangle transformation to a discrete, “pseudo” spin model when
strain e2 is replaced by discrete “spin” values, S¼ 0, �1.
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3.2 Glassy behavior using a discrete model An
alternative, yet complementary approach is to formulate a
discrete “pseudo spin” model for martensites to which we
can add quenched disorder of varying strengths and use the
methods of statistical mechanics to allow us to identify and
distinguish the different phases [19]. For example, the
Renormalization Group (RG) approach integrates out
microscopic degrees of freedom so that the attractive basins
characterize the physics at large scales. The values of the
interaction strength and strength of disorder uniquely
characterize the different phases, including the glassy state,
thereby allowing the phase diagram in terms of temperature
and disorder to be predicted. If we replace the OP strain, e2,
for the square to rectangle transformation by the discrete
variable, S, using e2 ! e2j jS;where S¼ 0,þ1,�1 tracks the
minima of the free energy representing austenite and the two
martensite variants, then the nonlinear Landau free energy
(right panel Fig. 2) collapses to the linear crystal-field formw
(T)S2 as S2¼ S4¼ S6, where the coefficient, w, is some
function of temperature. Similarly, the gradient or interaction
energy term g

2 re2j j2
.

may be written in terms of the
product SiSj involving discrete S values on neighboring sites
<i,j> by using the finite difference definition of gradient.
Thus, the energy of the original square to rectangle problem
(Fig. 3) now transforms to

H ¼ �
X
<i;j>

JijðTÞSiSj þ wðTÞ
X
i

S2i þ A1

X
i;j

SiUijSj;

with Si¼ 0, �1, and where U is the long-range anisotropic
elastic interaction with strength A1. This is the well known
spin-1 model with long-range interactions [21, 22]. The
constant J is related to the interface energy, g, and the
minimum energy configuration or ground state of H gives
the characteristic twin microstructure in 2D and 3D for a
cubic to tetragonal transformation [24]. Such models, despite
their simplicity, capture the salient physics of the continuum
description and have the advantage of being amenable to
study by methods used for spin glasses. However, such a
model is an effective model that can predict generic,

universal features, such as the topology of the phase diagram
rather than quantitative comparisons to experiments.

In analogy with usual spin glasses for ferromagnetics,
we can add disorder to mimic the effects of changing
composition in the alloys or fluctuations. Starting from the
above disorder-free Hamiltonian, without the long-range
interaction, we take the nearest neighbor couplings to be
quenched independent random variables Jij drawn from
the distribution P(Jij) with mean J(T) and variance, sJ that is
a measure of the quenched disorder in the system. The form
of the distribution is quite irrelevant to the topology of the
phase diagram, which emphasizes that our approach is an
attempt to distill salient, universal features. The phase
diagram obtained by using a real-space RG approach is
shown in Fig. 4a. We have found this approach to be simpler
and more reliable than the replica/mean-field approach for
this model because in addition to the glass phase, it does
predict a tweed precursor phase, consistent with our Monte
Carlo simulations. The martensite (ferroelastic) phase
corresponds to the usual ordered ferromagnetic phase and
in terms of order parameters (OPs) used in mean field theory
and replica calculations (see e.g., Ref [22]), this phase is
characterized by a non-zero magnetization m ¼ Sih i 6¼ 0,
where the bar represents average over the disorder and the
brackets average with respect to Boltzmann weights. We find
two paraelastic disordered phases with one favoring S¼ 0,
and the other interpreted as tweed with the OP “martensite
volume fraction” p ¼ S2i

� �
that allows to distinguish

between both phases. We find the tweed precursor to be
ergodic and non-glassy, consistent with recent experi-
ments [15]. The last phase corresponds to a spin/strain glass
with “infinite randomness.” The effective Hamiltonian
describing the system at large scales has favors variants
S¼�1 and this phase is also characterized by the Edward–
Anderson order parameter q ¼ S2i

� �
which in the replica

language corresponds to the overlap between two replicas
q ¼ S1i S

2
i

� �
of the system. In the absence of disorder

(sJ¼ 0), we find a first order phase transition between the
austenite and martensite phase with t� 1, as expected. As
one increases the disorder, an intermediate tweed phase

Figure 4 The predicted phase diagram (normalized temperature vs. strength of disorder) from the discrete model compared to that for
Ti50Pd50�xCrx [19]. The arrow indicates the formation of martensite from the glass phase.
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arises before it transforms into a low temperature phase
(either martensite or glass). For large enough disorder and
low temperature, we find a spin glass phase that we interpret
as martensite glass. Interestingly, when the disorder of the
system is in the intermediate regime (1.3< sJ< 2.3 in our
model), we predict a spontaneous phase transition from glass
to martensite for a given concentration. This has been
confirmed in studies on the phase transformation behavior
as function of temperature T and concentration x for
Ti50(Pd50�xCrx) alloys (Fig. 4b). For low Cr-concentrations
(x< 8), the system undergoes a B2!B19 martensitic
transformation. For high Cr-concentrations (x> 12), the
glass transition takes place. For the crossover regime
(9< x< 12) between martensite and glass, the alloys
experience the parent phase, tweed, glass as well as
martensite upon cooling and the spontaneous transformation
from the glass to martensite (9R) takes place.

3.3 Interplay between long-range elastic intera-
ction and disorder The analytical phase diagram obtained
above does not include the long-range interaction and does
emphasize that disorder in the interactions is enough to capture
the salient features in the experimental phase diagram shown in
Fig. 4. However, Monte Carlo simulations in the presence of
the long-range interactions, although not predictive, do provide
a consistency check. Figure 5(1a)–(1d) shows typical micro-
structures obtained in different regions of the phase diagram
on a 256� 256 lattice, with the strength of the long-range term
of A1¼ 4. These textures are fully consistent with what is
observed in continuum GL theories and in experiments. In
particular, we find the usual cross-hatched pattern for the
tweed phase. Nevertheless, our RG approach provides a clear
meaning to the tweed phase, even in the absence of long-range
interactions. We also show in Fig. 5(2) FC/ZFC curves that are
usually used in both numerical studies and experiments to test
for breaking of ergodicity and glassiness. These curves were
obtained by averaging over 1000 disordered configurations on
64� 64 lattices, other lattice sizes were tested without much

difference. The curves shown in Fig. 5(2)may be interpreted as
a signature of history dependence or ergodicity breaking.
There are subtle issues of whether the 2D version of the
Hamiltonian strictly has a spin-glass phase, these are discussed
in [19]. Finally, the main features of our phase diagram in
Fig. 4 persist even in the presence of the long-range
interactions. The competition between the elastic long-range
interaction and disorder on the austenite/tweed and tweed/glass
transition temperatures is shown schematically in Fig. 6. For
no disorder (sJ¼ 0), the austenite/martensite transition
temperature is shifted to lower temperatures with increasing
A1. Figure 6 has implications in the study of colossal magneto-
resistance (CMR) materials where the interplay of disorder
and long-range strain mediated interactions has a bearing on
phase separation of coexisting insulating and conducting
phases.

As discussed in Section 2, the effects of quenched
disorder have been studied in manganites, where a first-order
transition separates the charge-ordered and the competing
ferromagnetic phase [7]. Monte Carlo simulations on the
RFIM show that as the strength of the disorder increases, a
glass phase appears with nanoscale inhomogeneities. These
results may not be too surprising as the strain-based spin
model for a first-order structural transition presented here has
a glass phase with increasing strength of disorder. It would
therefore be very interesting to explore and predict the
effects of competing interactions and OPs (i.e., magnetism
and strain) in the presence of disorder, within the context of
the discrete model as compared to the continuum disorder
(sJ¼ 0), the austenite/martensite transition temperature
decreases linearly with A1, as included phenomenologically
within Landau theory. All the transition temperatures
decrease with A1, in particular the glass transition is shifted
to lower temperatures because the long-range interactions

Figure 5 (1a–1d) Typical microstructures obtained in different
regions of the phase diagram on a 256� 256 lattice, with the
strength of the long-range term of A1¼ 4. (2) FC and ZFC curves
for testing the breaking of ergodicity and glassiness, obtained by
averaging over 1000 disordered configurations on 64� 64 lattices.

Figure 6 “Phase diagram” with normalized temperature (t)
emphasizing the interplay of the strength of the elastic long-range
interaction (A1) and strength of disorder (sJ). The long-range
interaction shifts the glass transition to lower temperatures [19].
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compete with the randomness. In the asymptotic limit
A1!1, the disorder becomes irrelevant and only the
austenite phase remains; we therefore conjecture that the
phase diagram is [25].

4 Relaxor ferroelectrics and martensites as
network glasses The behavior of relaxor ferroelectrics
has been traditionally construed as the appearance of polar
regions in a non-polar matrix at the Burns temperature [26].
These regions or clusters can increase in size on further
cooling until the system begins to kinetically freeze where it
displays Vogel–Fulcher behavior. This so-called random
field (RF) scenario [27–30] invokes quenched random fields
that act to create the polar domains. The RFIM, that we have
already discussed in connection with manganites, and which
has already been used for martensites [20–22], serves as the
theoretical lynchpin for this scenario, which certain
experiments lend support to [29, 30]. The other scenario
involves the notion of cooperative interactions between
polar regions that are responsible for the increasing
deviation from Curie–Weiss behavior at lower temper-
atures [31]. This “clustering” scenario (also referred/related
to dipolar glass [32]) has been further developed recently in
a network description from suggestions from experiments
and simulations [33]. This considers the relaxor transition to
be accompanied by anisotropic nanoscale correlations
of the in-phase cation motions. The correlations (via the
associated displacements) form a network, analogous to the
network of highly anisotropic hydrogen bonds in water.
There is thus a network of dipoles that acquires unique
properties accompanied by extremely slow relaxation. This
is a departure from the concept of localized polar clusters in
an inert matrix, as well as finite clusters, as these clusters can
become larger and percolate. Similar cooperative behavior
is seen in glass formers, such as glycerol and propylene
carbonate as the glass transition is approached [4]. Here the
number of correlated molecules increases and is the cause of
the slowing down and departure from Arrhenius behavior
in the vicinity of the transition. However, in the case
of relaxors there is clearly a need for high-resolution
spectroscopy measurements to directly probe network
features.

The current, prevalent picture of martensite glass that we
have described in Section 3 is that of kinetically frozen
localized variants in a matrix of the parent phase, and the
models utilize the elastic long-range and disorder to capture
aspects of the phase diagram and non-ergodic behavior.
However, in analogy with the scenario described above for
ferroelectric relaxors, it is tantalizing to speculate whether
martensite glass can show similar cooperative, network-like
behavior. Our unpublished theoretical and experimental
work suggest a network of strain correlations in the glass
phase that determine its properties, as distinct from that of
the matrix [34]. This picture is appealing as it is also
consistent with glassy behavior due to network formation
in glass formers, colloidal glasses and phase separating
amorphous alloys such as Cu50Nb50 [35], where the glass

transition is accompanied by the formation of a mechanically
stiff, percolating network.

An even broader question relates to the description of the
glassy state itself in terms of whether the domain/droplet
model [36], in contrast to the free energy landscape
hierarchical model [37], is appropriate for ferroics in the
glass state. Rejuvenation and memory experiments on spin
glasses have previously suggested a hierarchical picture [38]
of a free energy landscape where the metastable minima split
into further minima as the temperature is lowered. More
recent experiments on rejuvenation and memory in spin
glasses show a symmetrical response on cooling as well as
on heating [39]. The situation for relaxors is also not
completely clear with several studies favoring the hierarchi-
cal picture valid only for the cooling protocol [40] and others
showing symmetric behavior irrespective of heating or
cooling [41]. Such rejuvenation and memory experiments
for martensite alloys, which we are currently undertaking,
will aid in unlocking the nature of its glassy state.

5 Summary We have attempted to distil the role of the
long-range elastic interaction and disorder in determining
glass-like behavior in ferroics that include perovskite
manganites, martensites, and ferroelectrics. The role of
cooperative behavior and correlations has been well studied
in structural glasses and has been emphasized in perovskite
manganites and in relaxor ferroelectrics. How these latter
ideas relate to the problem of martensite glass, or other
ferroics such as magnetoelectrics, is an interesting question
for further study.
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