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The martensitic transformation serves as the basis for applications of shape memory alloys (SMAs). The
ability to make rapid and accurate predictions of the transformation temperature of SMAs is therefore of
much practical importance. In this study, we demonstrate that a statistical learning approach using three
features or material descriptors related to the chemical bonding and atomic radii of the elements in the
alloys, provides a means to predict transformation temperatures. Together with an adaptive design
framework, we show that iteratively learning and improving the statistical model can accelerate the
search for SMAs with targeted transformation temperatures. The possible mechanisms underlying the
dependence of the transformation temperature on these features is discussed based on a Landau-type
phenomenological model.

© 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Martensitic transformations are solid-to-solid displacive tran-
sitions characterized by a spontaneous strain accompanying a rapid
change of crystal structure at the transformation temperature [1].
Shape-memory alloys (SMAs), undergoing reversible martensitic
phase transformations, are widely used in applications ranging
from sensors, actuators, eco-friendly refrigerators to energy con-
version devices [2e6]. Most SMA based devices utilize either the
temperature-induced or stress-induced martensitic trans-
formation, so that the transformation temperature determines the
temperature window for device use [7e10] and is thus critical to
applications of SMAs [1].

The transformation temperatures of SMAs are also strongly
affected by their chemical composition [1,8e13]. As a result, the
most common approach to tuning the transformation temperature
for high or low temperature applications is to introduce elements to
change the composition [14]. A number of studies have focused on
echanical Behavior of Mate-
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adding ternary elements to commercially used Ti50.0 Ni50.0 to
modify its transformation temperature and have identified specific
elements that can elevate or lower the transformation temperature
[14]. Alloying elements, such as Fe, Cr, V, Mn and Co lower the
transformation temperature [15,16], whereas Au, Pd, Pt, Zr and Hf,
increase the temperature [12,14]. Moreover, the dependence of the
martensitic transformation temperature on the concentration var-
ies with the type of point defect. For example, in ternary alloys a
1.0 at% of Cr replacing Ni in Ti50.0 Ni50.0 lowers the transformation
temperature by more than 150 K, whereas for Co one needs more
than 7.0 at% to decrease the transformation temperature by 150 K
[14,17].

However, in many cases ternary alloys are unable to satisfy the
application requirements and so quaternary or even multi-
component alloys need to be considered for desired properties
[18,19]. The increase in the number of elements is a serious
impediment to developing SMAs with desired transformation
temperatures as the chemical search space increases exponentially
in size and complexity with alloying elements [19]. For Ti50.0Ni50.0
based alloys, the number of allowed candidate alloys can be as large
as 106 if three elements, whose concentrations are measured to
0.1%, can replace Ni. This is too vast a space to search experimen-
tally. A method which allows us to effectively explore the complex
search space to reduce time and costs is thus crucially important.
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From a practical point of view, desired are rapid and accurate
predictions of the transformation temperatures based on different
alloying elements and their concentrations.

Recently, there is growing interest in accelerating the materials
discovery process of finding materials with targeted properties by
reducing the number of costly and time-consuming trial and error
experiments [19e26]. To this end, data-based statistical learning
approaches are gradually making inroads into materials science.
Some recent examples of informatics-driven design of new mate-
rials include predictions of molecular properties, transition states,
structure classification of alloys, dielectric and piezoelectric prop-
erties and predictions of band gaps [19e26].

In the present work, we explore a data-drivenmethodology that
involves applying statistical learning tools to analyze correlations
between transformation temperatures in SMAs and several scalar
descriptors or features of electronic and crystal structure parame-
ters in the constrained pseudo-quaternary system, Ti50 (Ni50�x�y�z
Cux Fey Pdz). We have previously used this system to identify x,y,z in
compounds with very low thermal hysteresis [19]. Our focus here is
on developing a predictive data-driven capability to estimate the
transformation temperature of unknown samples and to find alloys
with targeted transformation temperatures in an accelerated
manner. We find that a simple polynomial model, using three pre-
selected material features or descriptors that capture chemical
bonding and atomic size, works exceedingly well in describing the
data. In this model, the transformation temperature depends lin-
early on theweighted average of the valence electron number (ven),
Pauling electronegativity (en) and quadratically onWaber-Cromer's
pseudopotential radius(dor) of the constituents of the alloys. Based
on this relationship, we propose a simplified Landau-type model to
understand the mechanism controlling the transformation tem-
peratures in NiTi-based alloys. Using the statistical learning model
together with an adaptive design framework, we show that itera-
tively learning and improving the model accelerates the search for
SMAs with targeted high transformation temperatures. In partic-
ular, we show how our design strategy predicts that Ti50 Ni25 Pd25
has the highest transition temperature of 189.56 �C in our restricted
search space. Our experimental work validates this finding with a
measured transformation temperature of 182.89 �C. Our method-
ology can be generalized to optimize other properties in multi-
component SMAs.

Our paper is organized as follows. In Sec. 2 and 3, we introduce
the experimental methods, our target property and dataset. Sec. 4
describes how we choose the most relevant features to make a
prediction. Sec. 5 compares different regression models and iden-
tifies the best one. In Sec. 6, we show how the adaptive design
framework utilizes the regression model to accelerate the search
for alloys with targeted transformation temperatures. And finally in
Sec. 7, we discuss the underlying physics of the dependence of the
transformation temperature on the pre-selected features, which
relate to the chemical bonding and atomic radii of the alloying
elements.
Fig. 1. Definition of the property. The endothermic peak of the differential scanning
calorimetry (DSC) curve, Tp , is our targeted property to optimize. The typical DSC result
shown is from Ti50(Ni44.2 Cu0.9 Fe3.8 Pd0.1), one of our alloys in the training data.
2. Experiments

In the present study, we focus on the effects of chemical
composition of NiTi-based alloys on the martensitic transformation
temperature.We synthesized samples under identical conditions to
avoid the effects of microstructural parameters such as grain size,
precipitates and dislocations on the transformation temperature.
The base ingot for the Ti50(Ni50�x�y�z Cux Fey Pdz) alloy was made
by arc melting from pure 99.9% Ti, 99.9% Ni, 99.9% Cu, 99.9% Fe and
99.9% Pd in an argon atmosphere. The ingot was hot-rolled into a
1.0 mm thick plate, the specimens for measurements were spark-
cut from the plate and then solution-treated at 1273 K for 1 h in
an evacuated quartz tube, followed by water quenching. Differen-
tial scanning calorimetry (DSC) measurements were made with a
cooling/heating rate of 10 K min�1 to determine the martensitic
transformation temperatures using exothermal/endothermic
peaks.
3. Dataset

An input training data set is needed in order to build a quanti-
tative statistical learning model for the NiTi-based systems. Each
material we are interested must be characterized or labelled via a
representation in terms of one or more material descriptors or
features, X. They represent aspects of structure, chemistry, bonding.
Our machine learning method then learns a map or model con-
necting features X to a specific objective or material property Y
(transformation temperature here), that is, Y¼ f(X). Thus, twomain
ingredients of the machine learning approach are the empirical
model, f and the features, X. The learning algorithm to estimate f
must be trained and cross validated using a training dataset, which
includes the measured targeted material property. The set of un-
explored, possible materials whose targeted material properties
have not been measured from the virtual dataset, onwhich fwill be
applied to predict or estimate the targeted property.

As shown in Fig. 1, we define an endothermic peak temperature,
Tp, of the differential scanning calorimetry (DSC) curve as our target
property for the transformation temperature. Other definitions
such as Ms and Mf, the start and finish temperatures for the
martensitic transformation, and As and Af, the start and finish
temperatures for the reverse transformation, could have also been
adopted. We chose Tp for simplicity and accuracy. We considered
Ti50(Ni50�x�y�z Cux Fey Pdz) alloys with x, y and z compositions,
which can vary in steps of 0.1% with constraints
50� x� y� z � 25%, x � 20%, y � 7% and z � 25%. This gives us
1,652,470 possibilities in all. Of these, we synthesized 53 and
measured their Tp to form our training dataset, ensuring that the
processing conditions were identical to minimize variability due to
processing and microstructural effects. It is well known that
changes in processing conditions affect microstructure (e.g. cast
versus wrought gives rise to different microstructures in the case of
the SMAUraniumNiobium). We tried to minimize this dependence
onprocessing conditions so that themicrostructural features would
not vary as much across our samples and could be neglected as a
first order effect. The remaining unexplored search space



Table 1
List of features used.
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constitutes the virtual dataset, that is, 1,652,417 potential alloys
with unknown transformation temperatures.
Abbreviation Description Ref.

Numa number of elements
Cs Pettifor chemical scale [29]
Arc Clementi's atomic radii [31]
En Pauling electronegativity [27]
Ven Valence electron numbers [32]
Mr metallic radius [30]
dor Waber-Cromer's pseudopotential radii [28]
anum atomic number
mass atomic mass
ccs average concentration of cs
carc average concentration of arc
cmr average concentration of mr
cen average concentration of en
cven average concentration of ven
cdor average concentration of dor
cmass average concentration of mass
4. Feature selection

We discuss here how we choose the relevant features that form
the input to the statistical learning model. A physical understand-
ing of how the transformation temperature depends on composi-
tion has been the basis to intuitively screen the search space of SMA
alloys and has beenwidely discussed in the literature [8e11,13]. For
example, it is known that strong elastic softening, i.e., the decrease
in elastic constant with temperature, occurs prior to themartensitic
transformation and there is a critical value of the elastic constant at
the transformation temperature [10]. Ren and Otsuka pointed out
that the critical elastic constant is composition insensitive [11].
Therefore, the critical elastic constant can be reached at higher
temperatures for softer materials and at lower temperatures for
stiffer materials by tuning the composition. However, a direct
mapping between the composition and the elastic properties is not
available. Zarinejad and Liu subsequently associated the weighted
average valence electron number (ven) with the elastic properties
of SMAs and rationalized that the transformation temperature and
ven are strongly correlated [8]. Frenzel et al. recently pointed out
that the elastic constant is not sufficient by itself to predict the
behavior of NiTi-based SMAs and suggested two factors controlling
the transformation temperature: 1) a geometrical contribution as
the result of changes in bonding by alloying elements; and 2) an
intrinsic instability of the parent phase, which is related to the
electronic structure [9].

Thus, the features we used comprised the set: Pauling electro-
negativity (en), metallic radius (mr), valence electron number (ven),
Waber-Cromer's pseudopotential radii (dor), Clementi's atomic
radii (arc), and Pettifor chemical scale (cs) [27e32]. These features
represent a coarse-grained analogue of electronic, bonding and
radii properties in SMAs and provide a relatively simple physical
basis for modeling structure-property relationship for the trans-
formation temperature. Another consideration is that the material
descriptors or features should be easily accessible for all possible
materials, irrespective of the desired properties. The features, X, for
each Ti50(Ni50�x�y�z Cux Fey Pdz) alloy in our composition space
were uniquely described as a weighted fraction of the elemental
features, that is,

X ¼ fTiX
Ti þ fNiX

Ni þ fCuX
Cu þ fFeX

Fe þ fPdX
Pd; (1)

where fTi, fNi, fCu, fFe and fPd are the atomic fractions of each element,

XTi, XNi, XCu, XFe and XPd are the corresponding features of each
element. Furthermore, Zarinejad and Liu also associated the
transformation temperatures of SMAs with the average concen-
tration of valence electrons which can be defined as the ratio of the
number of valence electrons to the total number of electrons of the
alloy (the atomic number) [8]. They observed a clear linear corre-
lation between the transformation temperature and the average
concentration of valence electrons [8]. Thus, we also define the
ratio of each feature X to the atomic number for each alloy to yield a
new feature given by

cX ¼ fTiX
Ti þ fNiX

Ni þ fCuX
Cu þ fFeX

Fe þ fPdX
Pd

fTiZTi þ fNiZNi þ fCuZCu þ fFeZFe þ fPdZPd
; (2)

where ZTi, ZNi, ZCu, ZFe and ZPd are the atomic numbers of each
element. Table 1 lists all the features we used in the present study.

It is often the case that some or many of the features used in
statistical learning models are not directly associated with the
targeted property. Usually, including such features increases the
dimensionality of the feature space and leads to unnecessary
complexity in the resulting model. By removing these features, we
are usually left with a simpler model, the results of which are then
easier to interpret. Initially, features which are themselves highly
correlated can be considered to contain essentially similar infor-
mation. Therefore, we subject these features to a correlation filter
to remove those that are uncorrelated to them. The Pearson cor-
relation map is very useful for this purpose and is presented in
Fig. 2. It is calculated using the training data of 53 measurements
with blue and red colors indicating positive and negative correla-
tions, respectively. The lighter the tone, the less significant is the
corresponding correlation. In the upper-right half, the filled frac-
tion of circles in each of the pie charts corresponds to the absolute
value of the associated Pearson correlation coefficient. Two clusters
of data can be identified from the correlation map. In the right-
bottom corner, ccs, carc, cmr, cen, cven, cmass and cdor are highly
correlated. Thus we choose ccs to be typical of the information from
this set of features. Another cluster present is that with mr, en, arc,
anum, mass and dor. As they are all correlated, we selected mr, en
and dor as representative of these features. Thus, after the corre-
lation filter to down select features, we retain a subset of seven
features that includes numa, cs, mr, en, ven, dor and ccs. Our pref-
erence for choosing mr, en and dor was dictated by the fact that
these features are more specific and physically meaningful in terms
of their influence on SMA properties than just anum, mass and arc.
The latter are rather general and some of them (e.g the radii) are
essentially captured by other features in the set. Also, ven and cs
directly influence electronic properties whereas cmass and cdor are
less specific in terms of their impact. Also, the clustering appears to
reflect aspects of the training data primarily characterized by the
different radii or electronic structure properties. However, the exact
cause of this clustering is difficult to decipher frommerely this type
of analysis.

To further screen the features, we utilized the so-called subset
selection method, which identifies a subset of the features that are
mostly related to the targeted property [33]. If we have p features,
we fitted a separate least squares regression model for each
possible combination of those features. For example, we can fit p
models which contain only one feature, and can fit pðp� 1Þ=2
models which contain two features, and so forth. We then
compared the performance of all the resulting models and identi-
fied the best one. The application of best subset selection to our
problem is shown in Fig. 3. Each plotted point corresponds to a least
squares regressionmodel fit using a different subset of the 7 features
and the x-axis denotes the number of features used to fit themodel.



Fig. 2. Pearson correlation map for features. A graphical representation of the Pearson correlation matrix for the initial features. Blue and red colors indicate positive and negative
correlations, respectively. The lighter the tone used, the less significant is the corresponding correlation. The filled fraction of the circle in each of the pie charts corresponds to the
absolute value of the associated Pearson correlations coefficient. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. The mean squared error (MSEtrain) and R2 of each possible linear model
containing a subset of the seven features in our training data. The red frontier
tracks the best model for a given number of features, according toMSEtrain and R2. Both
MSEtrain and R2 show little improvement beyond 3 features. Thus, the subset of 3
features we employ includes en, ven and dor. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3 shows the mean squared error (MSE) and R2 statistics for each
model as a function of the number of features used to fit the model.
The MSE captures the difference between the model predicted
value, (byi) and measured value (yi), and is given by,

MSEtrain ¼ 1
n

Xn
i¼1

ðyi � byiÞ2: (3)

The smaller the MSEtrain, the better we expect the model per-
formance to be. The R2 is an alternative measure of the perfor-
mance and is given by

R2 ¼ 1�
Pn

i¼1ðyi � byiÞPn
i¼1ðyi � yÞ ; (4)

where y is the mean value of yi. The R2 value lies between 0 and 1,
with 1 signifying excellent fits. In Fig. 3, the red frontier lines
connect the best models for each model size, according to MSEtrain

and R2 andwe see that the two quantities improve as the number of
features increases. However, there is little improvement inMSEtrain

and R2 beyond the use of 3 features, hence we limit ourselves to
three in the subsequent statistical learning process. The best subset
of 3 features includes en, ven and dor, and we use them to estimate
the statistical learning models f for Tp ¼ f ðen; ven; dorÞ. Our full
training data set including features and known transition temper-
atures are given in Appendix A and B.
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5. Regression models

Our objective is to learn a quantitative relationship between a
material property, (Y, transformation temperature) and the fea-
tures characterizing the material (X), i.e. Y ¼ f ðXÞ. In general f is
unknown but statistical inference provides a means to estimate f. In
the following, we estimate f by using regression methods including
linear (LIN) and polynomial regression (POLY), support vector
regression with a linear kernel (SVR.lin), polynomial kernel
(SVR.poly) and radial basis function kernel (SVR.rbf). These ap-
proaches identify how the response Tp varies with en, ven, and dor.
As the set of features, en, ven, and dor are readily available, our
learning approaches can yield accurate predictions for the targeted
property, Tp, for all the unexplored data, as well as a way to un-
derstand how Tp is affected by en, ven, and dor.
5.1. Statistical learning models

Estimating f by linear regression (LIN) is a straightforward
method for establishing a linear relationship between X and Y. For
our problem, we can write this relationship as

Tp ¼ b0 þ b1enþ b2dor þ b3ven; (5)

where bi are the coefficients for different features, which can be
estimated by the method of least squares. The performance of the
model can be evaluated by comparing Tp measured and Tp pre-
dicted for the data in the training set. In Fig. 4(a), the predicted Tp is
plotted as a function of measured Tp. For a perfect model, the
predicted Tp will be exactly the same as the measured Tp and all the
data points will fall along the 45� diagonal line in our plot. In
practice, there will be variations which are desirable so that we do
not overfit the data. Thus, the training error (MSEtrain), which can be
calculated from Equation (3), is used to evaluate the performance of
Fig. 4. The performance of the machine learning inference models on the training da
measured Tp values. If the model is perfect, the predicted Tp will be exactly the same as the m
the mean (m) and standard deviation (s) of the predicted value from the inference model, o
regression (LIN); (b) polynomial regression (POLY); (c) Support vector regression with ra
(SVR.lin); and (e) Support vector regression with polynomial kernel (SVR.poly).
our model on the training data.
In general, howwell the model works on the training data is not

crucial. Rather, we are interested in the accuracy of the predictions
that we obtain when we apply our model to unexplored virtual
data. There are various methods to estimate the test error, which
can be used to select the best model. Resampling methods
repeatedly draw samples from a training data set and refit a model
of interest on each sample to obtain additional information about
the fitted model, for example, information to evaluate the perfor-
mance of the model on unseen or test data.

Bootstrap resampling is commonly used to evaluate how robust a
model is by assigning measures of accuracy to sample estimates. It
relies on sampling with replacement and we utilize it to quantify
the uncertainty associated with prediction from the statistical
learning on the training data, i.e., to obtain the mean (m) and
standard error (s) associated with the outcome of the model. Our
training set contained n ¼ 53 observations, from which we
randomly selected n observations to produce a bootstrap data set.
The sampling is performed with replacement, which means that
the same observation can occur more than once in the bootstrap
dataset. We trained a new LIN model on this bootstrap dataset, and
made predictions for all the data points in the training dataset. We
repeated this procedure 1000 times and obtained 1000 sets of
predictions for the data in the training set for the mean (m) and
standard error (s). The bootstrap results for our LIN model are
shown in the inset to Fig. 4 (a). The predicted Tp of y axis is the m and
error bar is the s. To estimate the test error, we replaced the pre-
dicted value byi with the mean value mi in Equation (3) to define a
MSEboots given by,

MSEboots ¼ 1
n

Xn
i¼1

ðyi � miÞ2: (6)

Such an MSEboots in some sense represents the test error of the
taset. The predicted Tp values from the inference model are plotted as a function of
easured Tp and all the data points will align along the 45� diagonal line. The insets plot
btained by bootstrap resampling from the initial 53 data points 1000 times. (a) linear
dial basis function kernel (SVR.rbf); (d) Support vector regression with linear kernel
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model.
Cross-validation is used to assess the predictive capabilities of

the model on unseen or test data. We typically hold-out a subset of
the training observations from the fitting process and then apply
the statistical learning model to the held-out observations. For our
training set containing n¼ 53 observations, we fit the LIN model on
n �1 training observations, and the trained LIN model was used to
predict bym for the excluded observation (LOO, Leave One Out). Since
the left out data point was not used in the fitting process, the
squared error between this and the predicted value

(MSE ¼ ðym � bymÞ2) provides an approximate unbiased estimate
for the test error. Repeating this approach n times on all the data
points in turn, produces n squared errors and CVerror, the average of
those errors, is given by

CVerror ¼ 1
n

Xn
m¼1

ðym � bymÞ2 (7)

In the following, we train several models and compute their
MSEtrain, MSEboots, and CVerror.

5.2. Model selection

Polynomial regression extends the linear model to higher

powers in the features (e.g. cubic regression includes X, X2 , and

X3), and provides a simplified approach for non-linear fits to the
data. To order d in the features en, ven and dor, we have

Tp¼b0þben1 enþbdor1 dorþbven1 venþ…þbend endþbdord dordþbvend vend.

The coefficients beni , bveni , and bdori can be easily estimated using
least squares regression. We tried different values of d for en, dor
and ven, respectively, and each combination of d values for the
three features corresponds to a polynomial model and determines
its complexity. We used the cross-validation error, CVerror, to select
the specific polynomial function for our targeted property, Tp. Fig. 5
shows the cross-validation error of each polynomial model as a
function of the model complexity in terms of the sum of orders
(
P

di;i¼ en, dor and ven). The red curve connects the best poly-
nomial models for given complexity and CVerror decreases as the
Fig. 5. Cross validation error for different polynomial models (filled circles) using
the three features en, ven and dor. The x axis is the sum of the orders of the terms in
the polynomial models (e.g. the linear model has terms of order 1 for the three fea-
tures, thus the sum is 3.) and is a measure of the model complexity. Small cross
validation error indicates goodness of the model. The higher the sum of orders, the
more complex is the polynomial model. The red front tracks the best polynomial
model for a given sum. We chose the best model for the sum of 4, to balance the trade-
off between the goodness and model complexity. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
order of the polynomial increases, revealing that the quality of the
model improves. However, from the sum 6 onwards, there is little
increase in CVerror. Given that we have a finite data size, we will
clearly suffer from overfitting as the model complexity increases.
There is thus a trade-off between retaining model simplicity and
overfitting. As CVerror does not decrease appreciably from values of
4 onwards, and certainly increases from 6, we select the polynomial
model corresponding to the sum of orders ¼ 4.That is,

Tp ¼ b0 þ ben1 enþ bdor1 dor þ bven1 venþ bdor2 dor2; (8)

which adds to the LIN model a quadratic term in dor. (This model
has the lowest CVerror compared to the other possibilities with sum
of orders ¼ 4.) Later we will show that the quadratic term is
important in predicting the transformation temperature Tp.
Fig. 4(b) shows the predicted Tp as a function of measured Tp,
indicating a much improved model. The means and errors from
bootstrapped samples in the inset to Fig. 4(b) indicate that POLY is
an improvement in terms of test error when compared to LIN.

Support vector regressors (SVRs) are kernel-based statistical
learning approaches that are widely used in pattern recognition
and imaging [34,35]. They use an implicit mapping F of the input
data into a high-dimensional feature space defined by a kernel
function, i.e., a function returning the inner product <FðxÞ;Fðx0Þ>
between the images of two data points x, x0 in the feature space.
The learning then takes place in the feature space, and the data
points only appear inside dot products with other points. We uti-
lized SVR with a linear kernel (SVR.lin), radial basis function
Fig. 6. Performance of different models on our training data in terms of MSEtrain ,
MSEboots , and CVerror. (a) MSEtrain , calculated using Equation (3), gives the training
error for the inference model. (b) MSEboots and (c) CVerror, computed by Equations (6)
and (7), provide estimates of the test error. Form (a) to (c), SVR.rbf performs better
than the others, POLY is next best.



Table 2
Coefficients of the POLY model on initial training dataset and updated training
dataset.

Initial Updated

Estimate Error Estimate Error

b0 �7.76 1.97 �4.23 1.93

ben1 1819.54 139.21 2738.32 207.39

bdor1
�1676.79 132.68 �2495.48 202.57

bdor2
64.31 14.61 141.49 14.89

bven1 �184.36 30.53 �184.59 30.21
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(SVR.rbf) kernel, and polynomial kernel (SVR.poly). The meta-
parameters for the SVR implementations were found using cross
validation. Fig. 4 (c) - (e) show the performance of SVR.rbf, SVR.lin
and SVR.poly models on our data. The SVR.rbf model performs very
well on the data compared to SVR.lin or POLY; SVR.poly is the worst
performer.

We computed the training and test errors for the above models,
i.e., MSEtrain, MSEboots, and CVerror, using Equations (3), (6), (7).
Fig. 6(a) shows MSEtrain for five different models. It is clear that
SVR.rbf out-performs all the other models, followed by POLY.
Fig. 6(b) and (c) show MSEboots and CVerror estimates for the test
errors with SVR.rbf out-performing all the other models with POLY
next best. However, the outcome from SVR.rbf is not often easy to
interpret and so to glean some understanding of the physics un-
derlying the transformation temperature for SMAs, we will use the
POLY model in the following.

5.3. Validation

Our training dataset is rather small and the estimates from
MSEboots and CVerror of the test error for the training dataset may
not accurately represent the full range of transformation temper-
atures. In addition, even though our machine learning models were
built on the weighted atomic features, en, ven and dor for
Ti50(Ni50�x�y�z Cux Fey Pdz), they are not restricted to those
particular alloying elements and we can apply them to predict
transformation temperatures of other alloying elements.

We therefore collected 23 data points from Frenzel et al. [9],
who published a high precision dataset on the transformation
temperatures of NiTi-based SMAs, with the constraint of Ti%¼ 50 as
we are focusing on replacing Ni in the present study. Fig. 7(a)e(e)
show how our model behaves on this 23 test data set. It appears
that the LIN, POLY and SVR.lin perform fairly well for trans-
formation temperatures below 100 �C. SVR.rbf behaves well only
for about 8 data points, even though it is the best performingmodel
based onMSEboots and CVerror. Although SVR.poly predicts well the
Fig. 7. The performance of the machine learning inference models on our test dataset.
measured Tp values. The red points are from our test dataset and the blue points are from o
dataset, suggesting the POLY is the best performing model. (For interpretation of the refer
article.)
high temperature data points, it is the POLY model that is quite
predictive for thewhole temperature range. Fig. 7 (f) shows theMSE
error calculated from Equation (3) for the five models, indicating
that the POLY model has the lowest error for the test data. The
coefficients of the POLY model are shown in the first column of
Table 2. Whether the same POLY model or one that is slightly
different would apply to situations of varying Ti% is difficult to
predict. However, we expect the features to be essentially the same.

Although we have an adequate model, such as POLY, a key
question is what is the optimal design strategy for finding SMA
alloys with targeted transformation temperatures ?
6. Adaptive design

We address this design problem by setting the goal of finding
the highest transformation temperature alloy in our virtual dataset
of unexplored alloys. We employed an adaptive design loop which
uses a trade-off between exploration and exploitation of the results
from our regressor model to guide the next experiment that needs
to be performed [19e21]. The strategy we used is illustrated in
Fig. 8 and it can be exercised using the following steps.

Steps 1 and 2 have already been discussed in Sections 2e5,
where POLY is determined to be the inference model of choice. To
find the highest Tp within our virtual dataset, we applied POLY to
(a)e(e) The predicted Tp values from the inference model are plotted as a function of
ur training dataset. (f) Comparison of different models in terms of the MSE on the test
ences to colour in this figure legend, the reader is referred to the web version of this



Fig. 8. Adaptive design loop. (i) An initial experimental data set of 53 NiTi-based SMAs with known transformation temperature, and features (tabulated in Appendix) serves as
input to the inference model. (ii) The model is trained and cross-validated with the initial alloy data. The trained model in (ii) is applied to a data set of unexplored alloys, defined as
our virtual dataset. (iii) The design chooses the best candidate for synthesis and characterization. (iv) The measured transformation temperature augments the initial data set to
further improve the inference and design.

1. Establish training and virtual datasets with features.
2. Learn an inference model for the relationship between features and the material property that we wish to optimize. It is important to consider uncertainties in the

predicted properties.
3. Apply the trained inference model to the virtual dataset to predict property values with uncertainties of unexplored compounds.
4. Use a (selector) for design to suggest the next candidate material for experiment by balancing the trade-off between exploitation (choosing the material with the best

predicted property) and exploration (using the predicted uncertainties to study regions of search space where the model is less accurate).
5. Improve iteratively the inference model by feeding back the measurement results from experiments.
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estimate Tp for all 1,652,417 potential alloys (Step3). The mean (m)
and standard deviation (s) of the predicted values were obtained by
using bootstrap resampling, which considers representative random
samples of some underlying distribution. The selectors choose or
recommend the experiments which need to be performed next. In
particular, the material to be synthesized next is selected to
maximize the Expected Improvement, EIðm; sÞ. Several selectors, all
based on this concept, may be defined as follows:

� Max: EIðm; sÞ ¼ m: Greedily chooses the material with maximum
predicted value.

� EGO (efficient global optimization): Maximizes the “expected
improvement” EIðm; sÞ ¼ s½fðzÞ þ zFðzÞ�, where z ¼ ðm� m�Þ=s
and m� is the maximum value observed so far in the training set.
fðzÞ and FðzÞ are the standard normal density and distribution
functions, respectively.

� KG (knowledge gradient): EIðm; sÞ ¼ s½fðzÞ þ zFðzÞ�, where
z ¼ ðm� m��Þ=s, where m�� is the maximum value of either m� or
m0; m0 is the maximum predicted value in the virtual set.
Table 3
Comparison of the performance of POLY model on initial training dataset and updated tra

Data Model: POLY Selector: MAX

MSE MSE CVerror Alloy Mean

Initial 13.7 15.7 356.2 Ti50 Ni49.9 Cu0.1 81.2
Updated 13.5 15.0 224.0 Ti50 Ni25 Pd25 125.5
We used these three selectors to choose the highest Tp alloy from
our virtual dataset (Step4). The results are shown in Table 3. The
selector Max chose Ti50 Ni49.9 Cu0.1 as the best candidate, whereas
selectors EGO and KG found that Ti50 Ni25 Pd25 has the highest ex-
pected improvement and is the alloy to be synthesized next. The
selection of EGO and KG is physically meaningful as it is known that
adding Pd will increase the transformation temperature. The Ti50
Ni25 Pd25 was then synthesized and its Tp was determined to be
182.89 �C. Our POLY model predicted a value of 189.56 �C, which is
in good agreement. The new compound was added to our training
dataset, which then contained 54 data points (Step5) and the POLY
model was subsequently retrained on the updated training dataset.
The coefficients of the updated POLY model are shown in the
”updated” column of Table 2.

As seen in Table 3, the POLY model subsequently improved in
terms of MSEtrain, MSEboots and CVerror after it was retrained with
the new data. The three selectors, Max, EGO and KG then all
converged to the same selection Ti50 Ni25 Pd25, indicating no further
room for improvement of Tp within the virtual dataset. The
ining dataset and the predictions from initial POLY model and updated POLY model.

Selector: EGO Selector: KG Prediction

Alloy EI Alloy EI Ti50 Ni25 Pd25

Ti50 Ni25 Pd25 258.5 Ti50 Ni25 Pd25 258.5 189.56
Ti50 Ni25 Pd25 113.5 Ti50 Ni25 Pd25 113.5 183.41
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predicted value from POLY model was 183.41 �C, an improvement
on the previous value. In summary, we executed two iterations of
the adaptive design iterative loop and the convergence suggests
high efficiency of the design loop. Thus the adaptive design
framework here can be used to accelerate the search for SMAs with
targeted transformation temperatures.
Ti Ni Cu Fe Pd en ven dor Tp

50.0 45.2 1.0 3.8 0.0 1.7219 6.9340 0.4084 �25.44
50.0 44.4 2.0 3.6 0.0 1.7219 6.9480 0.4082 �33.92
50.0 42.8 4.0 3.2 0.0 1.7220 6.9760 0.4078 �41.59
50.0 43.6 3.0 3.4 0.0 1.7220 6.9620 0.4080 �31.27
50.0 46.0 0.0 4.0 0.0 1.7218 6.9200 0.4086 �39.10
50.0 44.5 1.5 3.0 1.0 1.7254 6.9550 0.4104 �50.27
50.0 34.0 13.0 0.0 3.0 1.7324 7.1300 0.4126 25.90
50.0 34.0 10.0 0.0 6.0 1.7414 7.1000 0.4202 30.20
7. Discussion and summary

As shown above, the POLYmodel reproduces the behavior of the
transformation temperature in NiTi-based SMAs. It is then inter-
esting to understand why the transformation temperature changes
with the selected features and consequently with the alloying el-
ements and concentration. We next consider a simple Landau-type
model to reveal the reasons behind the influence of these features
on the martensitic transformation temperature.

In general, the alloying elements have different atomic sizes
from the host alloy elements. Therefore, we expect the doped ele-
ments with different sizes to give rise to local lattice strains. Such
local strains contribute to the total free energy of the system, and
we can model the effects of induced strain by alloying elements on
the transformation temperature in terms of a Landau model. The
one dimensional Landau-free energy for shape memory alloys can
be written in the form [36].

FðT ; εÞ ¼ 1
2
A
�
T � Tp

�
ε
2 þ 1

4
Bε4 þ 1

6
Cε6; (9)

where A, B and C are elastic moduli of the materials (the later two
are higher order moduli), Tp is the transformation temperature, and
ε is the order parameter. When dopants replace the host atoms, a
local strain ed will be induced and will contribute to the total free
energy by

FðT ; εÞ ¼ 1
2
A
�
T � Tp

�
ε
2 þ 1

4
Bε4 þ 1

6
Cε6 þ ae2d þ bεed; (10)

where a and b are coefficients associated with local strain induced
by doping. At equilibrium, vF

ved
¼ 0, which gives,

ed ¼ � b

2a
ε: (11)

As a result, the effective free energy is,

FðT ; εÞ ¼ 1
2
A
�
T � T�p

�
ε
2 þ 1

4
ε
4 þ 1

6
ε
6; (12)

where the T�
p is the effective transformation temperature when

doped with defects, and is given by

T�p ¼ Tp þ b2

2Aa
: (13)

From Equation (13), it is clear that b
2

2Aa is the transformation
temperature change due to the dopant. Therefore, this change
controlling the SMA transformation temperature is influenced by
the modulus A and the local strains due to the effects of the atomic
radii of the doped and host elements represented by b and a,
respectively.

According to our POLY model, the transformation temperature
linearly depends on the Pauling electronegativity (en) and valence
electron number (ven) but quadratically depends on the d-orbital
radii (dor). We selected dor to represent the atomic radii and thus
this captures one aspect of the transformation temperature varia-
tion for different dopants. Moreover, the quadratic dependence of
transformation temperature on dor suggests that atomic radii may
have even a stronger influence on the change in transformation
temperature.

In our choice of features, the en and ven capture the chemical
bonding properties. It is known that the strong bonding gives rise
to large resistance to shape/volume change, and consequently re-
sults in high bulk and shear moduli. As the elastic modulus softens
and reaches a constant critical value before transformation upon
cooling, the elastic modulus of the parent phase influences the
transformation temperature. If the elastic modulus of the parent
phase is large, cooling should continue to lower temperatures
before the critical point is reached; hence the transformation
temperature is decreased. On the contrary, if the alloying elements
lower the elastic modulus of the parent phase, the critical point can
be reached at higher temperatures and the transformation tem-
perature should increase. Thus, the introduction of alloying ele-
ments in NiTi is accompanied by a change in the elastic modulus as
the interatomic metallic bonding is affected, which is captured by
the features en and ven.

Various chemical and microstructural factors can affect the
transformation temperature of SMAs, however, in the present
study, we consider only compositional changes of the alloy. Other
factors, including aging, precipitation, point defects, dislocations
and degree of order, which are also critical in determining the
transformation temperature, are closely related with processing
conditions. We expect that the same machine learning strategy we
have discussed here can be utilized to model the influence of
processing conditions, to understand how they determine the
transformation and how to control the transformation temperature
with them.

In summary, we have demonstrated a systematic learning and
adaptive design framework to guide the synthesis and discovery of
new alloys with targeted transformation temperatures. The same
strategy can be used to discover new materials with other desired
properties.
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Appendix A. Training data for the present study with features
en, ven and dor and transition temperature Tp. The last sample
is the new sample with highest transformation temperature.



(continued )

Ti Ni Cu Fe Pd en ven dor Tp

50.0 34.0 12.0 0.0 4.0 1.7354 7.1200 0.4151 37.60
50.0 42.0 5.0 3.0 0.0 1.7221 6.9900 0.4076 �46.59
50.0 35.0 12.0 0.0 3.0 1.7325 7.1200 0.4127 47.70
50.0 40.0 0.0 0.0 10.0 1.7540 7.0000 0.4312 5.77
50.0 34.0 14.0 0.0 2.0 1.7294 7.1400 0.4100 45.65
50.0 34.0 16.0 0.0 0.0 1.7234 7.1600 0.4049 60.10
50.0 44.0 1.0 1.0 4.0 1.7357 6.9900 0.4170 �34.13
50.0 34.0 0.0 0.0 16.0 1.7714 7.0000 0.4457 58.18
50.0 36.4 12.0 1.6 0.0 1.7225 7.0880 0.4061 13.24
50.0 41.2 6.0 2.8 0.0 1.7222 7.0040 0.4073 �53.50
50.0 38.0 10.0 2.0 0.0 1.7224 7.0600 0.4065 0.68
50.0 34.8 14.0 1.2 0.0 1.7226 7.1160 0.4057 �1.59
50.0 39.6 8.0 2.4 0.0 1.7223 7.0320 0.4069 �15.30
50.0 50.0 0.0 0.0 0.0 1.7250 7.0000 0.4070 90.85
50.0 44.0 2.0 4.0 0.0 1.7216 6.9400 0.4083 �53.33
50.0 44.5 2.1 3.4 0.0 1.7221 6.9530 0.4081 �25.11
50.0 44.0 2.3 3.6 0.1 1.7222 6.9510 0.4084 �32.05
50.0 40.4 4.6 1.0 4.0 1.7353 7.0260 0.4165 �3.33
50.0 45.7 0.0 4.3 0.0 1.7216 6.9140 0.4087 �42.17
50.0 45.8 0.0 4.2 0.0 1.7216 6.9160 0.4087 �38.83
50.0 42.8 3.6 2.8 0.8 1.7247 6.9800 0.4096 �39.05
50.0 43.9 2.1 4.0 0.0 1.7216 6.9410 0.4083 �40.34
50.0 44.5 1.7 3.7 0.1 1.7222 6.9430 0.4085 �28.04
50.0 45.7 1.2 3.0 0.1 1.7228 6.9520 0.4083 �9.08
50.0 44.0 2.3 3.7 0.0 1.7218 6.9490 0.4082 �39.36
50.0 45.1 1.4 3.5 0.0 1.7221 6.9440 0.4082 �25.31
50.0 44.6 1.9 3.4 0.1 1.7224 6.9510 0.4084 �23.08
50.0 43.8 2.6 3.6 0.0 1.7219 6.9540 0.4081 �33.57
50.0 43.9 1.5 4.6 0.0 1.7212 6.9230 0.4086 �44.91
50.0 44.5 1.9 3.4 0.2 1.7227 6.9510 0.4086 �30.05
50.0 46.0 1.1 2.8 0.1 1.7229 6.9550 0.4082 �12.22
50.0 43.8 2.0 4.1 0.1 1.7218 6.9380 0.4086 �42.23
50.0 43.9 2.0 4.0 0.1 1.7219 6.9400 0.4086 �41.48
50.0 46.8 0.9 2.0 0.3 1.7242 6.9690 0.4084 16.80
50.0 44.2 1.9 3.8 0.1 1.7221 6.9430 0.4085 �29.72
50.0 46.7 0.8 2.3 0.2 1.7237 6.9620 0.4083 8.62
50.0 44.2 1.9 3.9 0.0 1.7217 6.9410 0.4083 �31.29
50.0 48.1 0.2 1.5 0.2 1.7244 6.9720 0.4081 28.71
50.0 44.5 1.6 3.7 0.2 1.7225 6.9420 0.4088 �28.87
50.0 48.2 0.6 0.9 0.3 1.7251 6.9880 0.4080 47.19
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Appendix B. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.actamat.2016.12.009.
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