nShield: A Noninvasive NFC Security System for Mobile Devices

Ruogu Zhou
Michigan State University
zhouruog@msu.edu

Guoliang Xing
Michigan State University
glxing@msu.edu

ABSTRACT
The Near Field Communication (NFC) technology is gaining increasing popularity among mobile users. However, as a relatively new and developing technology, NFC may also introduce security threats that make mobile devices vulnerable to various malicious attacks. This work presents the first system study on the feasibility of and defense against NFC eavesdropping. Our experiments show that commodity NFC-enabled devices can be eavesdropped from up to 240 cm away, which is at least an order of magnitude of the intended NFC communication distance. This finding challenges the general perception that NFC is largely immune to eavesdropping because of its short working range. We then present the design of a hardware security system called nShield. With a small form factor, nShield can be attached to the back of mobile devices to attenuate the signal strength against eavesdropping. As the same time, the absorbed RF energy is scavenged by nShield for its perpetual operation. nShield intelligently determines the right attenuation level that is just enough to sustain reliable data communication. We implement a prototype of nShield, and evaluate its performance via extensive experiments. Our results show that nShield has low power consumption (23 μW), high energy harvesting efficiency (55 mW), and can adaptively attenuate the signal strength of NFC in a variety of realistic settings, while only introducing insignificant delay (up to 2.2 s).

1. INTRODUCTION
In recent years, the Near Field Communication (NFC) technology is increasingly available on the new generation of smartphones, tablets, and smart accessories. It is estimated that more than 200 million NFC-enabled smartphones will be shipped in 2013 [6]. And over 50% of the smart devices to be shipped in 2015 will have NFC support [4]. The growing popularity of NFC has enabled a range of applications, from contactless payment [5] and ticketing [16] to device pairing [15] for ad hoc data exchange.

A major trait of NFC is its short communication range (usually within 10 cm), which is the result of the fast decaying magnetic induction between the antennas of NFC transmitter and receiver. The short communication range is favored by many security-sensitive applications, such as contactless payment, since it provides a natural, physical protection against various attacks, particularly malicious eavesdropping. Unfortunately, NFC is still a relatively new and developing technology, and its implementation on mobile devices often have design flaws [29], which may be exploited to compromise application security [29]. In particular, our experimental study described in this work shows that, current NFC radios emit significantly more RF energy than intended. With a specially designed portable NFC sniffer, we are able to eavesdrop NFC transmissions from up to 240 cm away, which is at least an order of magnitude further than the intended NFC communication distance. These findings raise a major concern on the physical security of NFC. Moreover, this issue is aggravated by the fact that current NFC chipsets adopt fixed transmission power, which cannot be adjusted to mitigate the potential risks of eavesdropping.

Existing efforts on NFC security can be classified into two basic categories. Several solutions attend to secure NFC by adding more security elements, such as additional secret keys, to the native OS of mobile devices [23]. However, the mobile device would become vulnerable if the security of the OS is compromised (e.g., after being rooted). The second category employs additional hardware devices to secure NFC [30][11]. However, these security devices are bulky and power-hungry, which are ill-suited for mobile applications. In a recent work [21], a hardware security device is developed to harvest energy from NFC transmissions and jam malicious interactions. However, due to the low energy harvesting efficiency, the system may not provide uninterrupted protection. The above approaches are designed to prevent content-based malicious attacks, and none of them is designed to protect NFC from eavesdropping attacks.

In this paper, we propose a novel, noninvasive NFC security system called nShield to protect NFC against eavesdropping. nShield is a credit card-sized thin pad that can be easily stuck on the back of mobile devices (see Fig. 6). nShield dynamically attenuates the signal
In this paper.

Existing mobile devices with security against eavesdropping. Lastly, the small form factor, self-sustainability, and transparency to OS, makes nShield an attractive solution to retrofit existing mobile devices with security against eavesdropping.

In summary, we make the following key contributions in this paper.

1. We conduct an experimental study on the feasibility of NFC eavesdropping, with a specially designed inexpensive NFC sniffer. We show that commodity NFC-enabled devices can be eavesdropped from up to 240 cm away, which is at least an order of magnitude further than the intended NFC communication distance. Moreover, although external signal attenuation is effective in reducing NFC transmission power, the desired attenuation level that can still sustain data communication is highly dependent on the NFC hardware, tags sensitivity, and the physical distance. To our best knowledge, this is the first empirical study on NFC eavesdropping in practical settings.

2. We design an NFC security system called nShield to protect NFC from eavesdropping attacks. As a key novelty, nShield absorbs the excessive RF energy of NFC to attenuate the signal strength against eavesdropping, while the absorbed RF energy is scavenged for its perpetual operation. By exploiting the NFC target discovery process, nShield intelligently determines the right attenuation level that is just enough to sustain reliable data communication. As a result, it can promptly and precisely controls the signal strength of NFC transmissions, mitigating the risk of eavesdropping.

3. We carefully analyze the factors that affect the NFC energy harvesting efficiency, and apply several design techniques to the antenna and hardware of nShield, which include quality factor analysis, voltage matching, and tag emulation. As a result, nShield can harvest significantly more power (1.7X and 3.1X) than the two state-of-the-art NFC energy harvesting systems. This capability enables nShield to provide the host uninterrupted protections against eavesdropping attacks.

4. We implement a prototype of nShield, and evaluate its performance via extensive experiments. Our results show that nShield has extremely low power consumption, high energy harvesting efficiency, and can adaptively attenuate the signal strength of NFC transmissions in a variety of realistic settings, while only introducing insignificant delay.

2. RELATED WORK

Near Field Communication (NFC) is a new short-range wireless communication standard evolved from HF RFID technology. Several studies have been conducted on the distance of eavesdropping RFID proximity cards. In [22], the authors measure the eavesdropping distance of the communication between a commercial reader and a Philips Mifare card using a wide band sniffer. The results show that the possible eavesdropping distance is more than 4 m [22]. In [23], the authors analyze the security of NFC and estimate the eavesdropping distance of NFC to be about 10m. However, this result is not experimentally validated. In [26], the maximum eavesdropping distance of NFC is empirically measured to be 30cm using Mifare tags and an oscilloscope. However, the antennas of Mifare tags used in their experiments are not optimized for eavesdropping. To our best knowledge, our work is the first empirical study on the practical NFC eavesdropping distance under realistic experimental settings. We have designed and implemented a prototype NFC sniffer. Its small form factor and high sensitivity demonstrated the feasibility of launching passive eavesdropping attack from distance. In particular, we are able to achieve a 2.4 m eavesdropping distance with our portable NFC sniffer (see Sec. 4).

Several approaches have been proposed to protect NFC from malicious attacks. A common approach is to modify the OS of mobile devices [23] to enhance the security of NFC. However, the mobile device would become vulnerable if the security of the OS is compromised (e.g., by rooting the device). To address this issue, several systems adopt additional hardware security devices. RFID guardian [30] provides protection by actively jamming suspicious NFC transactions. However, its bulky size and high power consumption significantly limits its applications. Proxmark III [11] is a widely used RFID/NFC software defined radio that is capable of detecting an attack, and generating jam signals. However, it has to be plugged in due to its high power consumption (about several hundred milliwatts).

NFC is ideal for energy harvesting, due to the condensed RF field strength generated by its high transmission power and short communication range. Energy harvesting enables a mobile device to replenish its energy in the presence of NFC RF field. In the NFC Dis-
cover kit [13] from ST, a sensor board can be wirelessly powered by nearby NFC initiators. NFC-WISP [19][9] is a software defined passive tag platform, which is capable of conducting simple sensing and computational tasks using the energy harvested from NFC transmissions. A key difference between the energy harvesting component of nShield and the above two systems is the amount of power harvested. With extensive optimizations to harvesting antenna and energy management circuit, nShield can harvest a power of about 55 mW, compared to mere 10.2 mW and 17.7 mW of NFC Discover kit and NFC-WISP, respectively. The significant improvement on the energy harvesting efficiency enables nShield to power additional components and perform sophisticated operations to ensure system security.

To date the most relevant work to ours is Engarde [21]. Engarde is a hardware NFC security protection device that jams ongoing malicious NFC transactions. Different from RFID guardian and Proxmark III, Engarde is optimized for mobile devices and is powered by the harvested energy from NFC transmissions. However, Engarde protects NFC by censoring the content of NFC transactions, and hence cannot defend against eavesdropping attacks. Moreover, with limited amount of power harvested (33 mW), Engarde will stop the protection when its energy reservoir is depleted, leading to possible security breach. In contrast, nShield can provide uninterrupted protection from eavesdropping attacks, thanks to its high energy harvesting efficiency and low power design. Furthermore, as a software-defined NFC platform, nShield can also be configured to offer protection against malicious content.

3. BACKGROUND

NFC employs the fast decaying magnetic induction between the antennas of transmitter and receiver for communication in close distance. The typical working distance of NFC using compact antenna coils (with the size of a credit card) is a few centimeters. An NFC communication process involves an initiator and a target. Initiator devices are usually smartphones, tablets, and POS terminals, which initiate the NFC communication with the target. The target devices can either be those devices or proximity cards. NFC has two working modes, i.e., passive mode and active mode. The passive mode employs the same communication techniques as those used by the proximity card, in which the target device is powered by the RF field emitted by the initiator, and transmits by modulating the RF field. In the active mode, both initiator and target are powered by their own energy sources. ASK and PSK modulation schemes are employed by NFC to support a number of data rates (106 kbps, 212 kbps and 424 kbps).

A NFC communication process always begins with target discovery, in which the NFC initiators discover the nearby NFC targets and learn the capability of the discovered targets. The initial phase of discover process is probing, in which the initiator broadcasts discovery messages periodically to find nearby target devices. An NFC target device (smartphones, passive tags, and etc.) responds after it hears the probe. The initiator and the target then exchange a few parameters back and forth to learn the capabilities of each other, before the start of the real data communication. On Android platforms with NFC enabled, when the screen of the phone is unlocked, the NFC radio is activated and the discovery process starts automatically and continues until a target device is discovered. During this process, the discovery probes are broadcast at a frequency of about 1.4 Hz. Using NFC antennas, a device can harvest energy from the RF field generated by NFC initiators within close proximity (a few centimeters). However, the amount of energy that can be harvested during the probing is usually very limited, as NFC radios usually have a low duty-cycle (10%) during the probing phase.

Passive eavesdropping attacks are harmful to wireless communications in several aspects. They could not only compromise the privacy/security of the system, but also serve as the early steps of other more damaging attacks [31], e.g., man-in-the-middle attacks [31]. Another reason that makes eavesdropping attacks especially harmful is that they are hard to detect, as they do not actively transmit any data and are usually launched from distance. As an emerging wireless communication technology, NFC is generally considered as a secured wireless technology against eavesdropping, due to its short communication range. However, current NFC implementations often emit significantly more RF power than intended. Our study shows that, with specially designed NFC sniffers, NFC signals can be eavesdropped from as far as 2.4 m away, which is much further than the intended NFC working distance. This poses a serious concern for security/privacy-sensitive NFC applications such as contactless payment.

4. A MEASUREMENT STUDY

In this section we experimentally study the eavesdropping distance on NFC transmissions. Specifically, we measure the physical distance at which the signals from initiators and targets can be successfully decoded, i.e., eavesdropped. Moreover, we study the impact of transmission power attenuation on the eavesdropping distance of different NFC devices. The results provide important motivation for the design of nShield.

We note that the actual eavesdropping distance depends on many factors, such as initiator implementation, initiator position, NFC working mode (active or passive), and environmental factors (e.g., background noise). Our measurements are conducted in typical settings, and an exhaustive evaluation of all these factors.
is beyond the scope of this paper. Nevertheless, our results raise serious concerns about the physical security of NFC due to the significant discrepancies between the actual and intended working distances, and shed lights on possible defense mechanisms.

4.1 Experimental Setup

Commercial off-the-shelf NFC transceivers do not make good sniffers since they are optimized for working in close distance with the target. We have designed an NFC sniffer for our experiments. Fig. 1 shows the block diagram of the sniffer, which consists of a 30 cm by 23 cm antenna, a pre-amplifier, and an ADC that is connected to a PC via USB to upload the collected samples. The NFC signal overheard by the antenna is amplified and demodulated by the pre-amplifier and the AM demodulator, respectively. The signal is then digitized by ADC and transmitted to PC for decoding. Our sniffer has a size of a tablet and average power consumption of 120 mW. Therefore, it can be easily connected to a mobile device via the micro USB interface to form a mobile sniffer. The NFC initiator devices used in this study include a Google Nexus 7 tablet, two smartphones (Google Galaxy Nexus and Samsung Galaxy Note 2), and an Adafruit PN532 NFC breakboard [1]. The NXP PN532 NFC chipset is adopted by the NFC breakboard, while all the other devices employ the NXP PN544 NFC chipset. These two chipsets are currently the most popular NFC chipsets used on commercial off-the-shelf mobile devices. Both use fixed transmission power which cannot be configured by software [10]. We use an NXP Mifare Classic tag as target.

![Block diagram of the NFC sniffer used in measurement study.](image)

4.2 Results

In the first experiment, we measure the eavesdropping distance without attenuating the RF field radiated by the initiator. We place the initiators on a desk, with the antennas of the devices facing forward. We activate one initiator at a time. The Mifare tag is placed in parallel and 2 cm from the antenna of the activated initiator. We place the sniffer near the initiator, and gradually move it away from the initiator.

Fig. 2 shows the received signal strength of the initiators at different distances. As expected, the signal strength reported by the sniffer decreases over distance. We can see that the signal is capped when the initiator-sniffer distance is short, as the output voltage of the sniffer cannot exceed the voltage of its battery. We implemented a Miller decoder in Matlab to decode these samples. We find that the signal can be decoded if its strength is above 100 mV. When the strength is lower, the signal to noise ratio (SNR) is too low for successful decoding. As shown in Fig. 2, the 100 mV signal strength corresponds to physical distances of 152 cm, 131 cm, 116 cm, and 244 cm, respectively, when Nexus 7, Note 2, Galaxy Nexus, and Adafruit NFC breakboard are used as initiators. We are also able to decode the signal transmitted by the tag at maximum distances of 91 cm with Nexus 7, 85 cm with Note 2, 67 cm with Galaxy Nexus, and 121 cm with Adafruit NFC breakboard. We acknowledge that better hardware design and more advanced signal processing techniques could achieve even longer eavesdropping distances. Nevertheless, our results are already sufficient to demonstrate that the current NFC implementations on smartphone and tablet platforms are subject to eavesdropping from a distance at least an order of magnitude longer than the intended NFC communication range.

A possible approach to defending against eavesdropping is to reduce the transmission power of the initiator. However, the current NFC chipsets adopt fixed transmission power, which leaves attenuating the signal externally the only choice. However, two questions must be answered: 1) what is the maximum attenuation level that could be applied without sacrificing the reliability of data communication, and 2) what is the resulted eavesdropping distance. We investigate these questions in the second experiment. We adopt the same experimental setting as in the first experiment, except that we cover the initiators with thin aluminum foils to attenuate the emitted RF field. The thickness and the area of the aluminum foil are adjusted to create different RF field strength, while the maximum eavesdropping distances are measured with our sniffer. We use a loop antenna connecting with an Agilent oscilloscope to measure the RF field strength after attenuation.

Fig. 3 shows that, as expected, for all 4 tested initiators, the eavesdropping distances decrease when the attenuation level increases. When the strength of the NFC RF field is just enough to support reliable communication, our sniffer can only achieve a maximum eavesdropping distance of around 80 cm, which is 67% (NFC Breakboard), 48% (Nexus 7), 39% (Note 2), and 31% (Galaxy Nexus) shorter than those without attenuation. With such a short sniffing distance, the eavesdropping attack becomes significantly more difficult. However, the optimal attenuation level varies significantly for d-
different initiators. Specifically, Fig. 3 shows that, to reduce the signal power to a undecodable level for sniffers, the NFC signal needs to be attenuated by 9.8 dB (NFC Breakboard), 5.9 dB (Nexus 7), 4.2 dB (Note 2), and 2.2 dB (Galaxy Nexus), respectively. Such significant diversity is caused by the differences in initiator implementations, such as the size of antenna.

We now show that, for a given initiator, the maximum allowed attenuation level also varies significantly across targets. We measure the maximum communication distances between the NFC breakboard and two passive tags, Mifare Classic and Mifare Ultralight, with different attenuation levels applied to the RF field. Fig. 4 shows that the communication distances decrease when the attenuation level increases. However, the Mifare Classic can tolerate a maximum attenuation level of about 9 dB, while Mifare Ultralight can only tolerate about 3 dB. This huge difference is the result of the diverse receiving sensitivities of tags.

4.3 Discussion

We now summarize the results of our experimental study. First, current NFC implementations emit significantly more RF power than intended. As a result, the eavesdropping distance is at least an order of magnitude of the intended NFC communication range. This issue greatly increases the NFC user’s risk of being eavesdropped. Second, the NFC RF field strength can be effectively attenuated externally to increase the security of NFC without sacrificing the communication reliability. However, the desired attenuation level varies significantly with the specific working conditions, including initiator transmission power, target reception sensitivity, initiator-target distance, and etc. Therefore, simple solutions such as an external signal attenuator with fixed amount of power reduction would not work for all scenarios.

These results have several important implications for the security of NFC systems. First, due to the communication proximity, NFC is usually considered more “physically secure” than other RF interfaces like Bluetooth and Wi-Fi. As a result, many upper-layer protocols of today’s NFC applications do not implement encryption or only adopt short keys in encryption algorithms, such as DES [3]. With an eavesdropping distance up to 244 cm as shown in our study, these systems hence are exposed to malicious attacks. For instance, the leakage of pairing code during NFC-based Bluetooth pairing could lead to possible eavesdropping or even man-in-the-middle attack on the following data communications. Second, the feasibility of NFC eavesdropping attack renders encryption the last line of defense against attacks. Unfortunately, with the rapid advance of decryption techniques, many once considered “safe” encryption protocols, including WEP [18], DES [3], and RSA [12], have been demonstrated vulnerable when sufficient encrypted data is observed through eavesdropping.

5. OVERVIEW OF nShield

5.1 Design Objectives and Challenges

It is shown in Sec. 4 that current NFC initiator implementations emit significantly more RF power than intended, which greatly increases the user’s risk of being eavesdropped. This result motivates us to develop an NFC security protection device called nShield that dynamically regulates the strength of the RF field radiated by NFC initiators. nShield regulates the RF strength by absorbing the excessive RF power with its own antenna. nShield can be easily stuck on the back of mobile devices, and is solely powered by the absorbed RF energy, thus eliminating offline charging. Specifically, we have the following design objectives.

Adaptive RF field strength regulation. Today’s NFC devices yield significant diversity in terms of initiator transmission power and the receiver sensitivity. nShield must be able to dynamically adjust the amount of absorbed power to ensure that the remaining RF power is just enough to sustain successful NFC communications. As nShield has no prior knowledge about the receiving sensitivity of the target, a “trial and error” approach is needed to determine whether NFC communications can be sustained at a particular power level. However, trying all possible attenuation levels incurs high delay due to the wide attenuation range and the low frequency of NFC transmissions.

Noninvasive operation. The operation of nShield
should not rely on either initiator nor target. In other words, it should work in a standalone manner with no physical connections to neither initiator nor target. This requires nShield to be a self-sustained, self-powered device which has its own CPU and power source. Moreover, it should be transparent to the host, without the need to communicate with the host or modify the NFC protocols. The noninvasive and transparent nature of nShield enables it to easily retrofit the existing NFC devices with security protection. However, a key challenge presented by this design is that, as nShield cannot interact with either initiator or target, it has to determine the right transmission power solely based on the overheard transmissions.

Uninterrupted protection. nShield should provide the host mobile devices uninterrupted protection against eavesdropping. In particular, the down time of protection caused by battery depletion should be minimized. As discussed in Sec. 3, nShield scavenges energy from the NFC RF field, which is available only when the host device is active (e.g., when the screen of a smartphone is unlocked). When energy harvesting is not possible, nShield has to survive using the energy scavenged previously. Moreover, to keep the small form factor, nShield cannot adopt bulky high capacity batteries. Due to these challenges, nShield must minimize its power consumption as well as maximize the amount of power harvested from the host device. However, wireless charging is inherently inefficient [27], especially for peripherals like nShield that has tight cost budget and form factor constraints.

5.2 System Overview

nShield is composed of two major components, a software-defined passive NFC radio platform and an adaptive NFC field attenuation algorithm. The software-defined platform is capable of receiving data from and transmitting data to NFC initiators, attenuating the NFC RF field using its antenna, and harvesting energy from the RF field. The adaptive attenuation algorithm dynamically determines the highest attenuation level that can still ensure communication reliability, according to the overheard NFC traffic. Fig. 5 shows the system architecture of nShield. An on-board MCU runs signal processing tasks such as encoding/decoding. nShield has two tuned loop antennas. The larger antenna is used for harvesting energy from NFC initiators, as well as transmitting data to the initiators. The smaller antenna is responsible for overhearing data from the initiator. Such a dual antenna configuration differs from existing NFC sensing platforms [19][9][14]. We show in Sec. 6 that, this configuration is essential for maximizing the energy harvesting efficient without sacrificing the receiving performance, as the receiving antenna and the harvesting antenna require fundamentally different tuning methods.

![Figure 5: Block Diagram of nShield.](image-url)

The harvesting antenna is connected with an RF bridge rectifier, which rectifies the RF signal to a DC voltage. The DC voltage is then regulated to provide power to the system and charge a 20 mAh on-board battery. In Sec. 6 we show that the voltage matching between the harvesting antenna and the battery plays a critical role in maximizing the amount of power harvested by the system. The load modulator is connected with the rectifier, which alters the load of the harvesting antenna to transmit data to the NFC initiator. Since the load modulation-based communication scheme adopted by NFC standard requires strict timing, nShield employs a hardware TX control circuit to accurately generate the clock used by the load modulation and precisely synchronize the data to be transmitted. The TX control circuit can generate different clock frequencies according to the data rates of the modulation schemes. nShield reduces the risk of eavesdropping by absorbing the excessive RF power radiated by the initiator with an adjustable attenuator, which is multiplexed with the load modulator.

The receiving antenna is connected to a peak detector, which removes the AM carrier from the RF signal. The hardware-based demodulator on the MCU demodulates the baseband signal, from which the raw data is retrieved. A key novelty in the design of nShield is to exploit the hand-shake mechanism in the target discovery process to determine the optimal transmission power of the initiator. Specifically, nShield infers whether the previous messages are successfully received by examining the logical relationship between consecutive initiator messages. To reduce the delay of determining the optimal attenuation level, nShield adopts a binary search algorithm to accelerate the search. nShield falls asleep to conserve energy when no NFC signal is present. A low-power wakeup circuit connected with the peak detector generates an interrupt signal to wake up the system once NFC RF field is present.

Fig. 6 shows a prototype system of nShield. The size of the circuit board and the antenna is 5.5 cm by 5.3 cm and 9.6 cm by 9.6 cm, respectively. We note that this
antenna is specially designed for Nexus 7 tablet. The size of antenna can be reduced for smartphones, without sacrificing the energy harvesting efficiency and attenuation performance. The size of the prototype circuit board can be shrunk significantly by removing unnecessary components like debug port, buttons and LEDs. As a result, nShield can be easily fit on diminutive thin-film circuit boards, which could be stuck to the back of small-size mobile devices. The total component cost of our prototype implementation is under $20, and could be further reduced when nShield is mass-manufactured.

![Block Diagram of energy management circuit on nShield.](image)

6. OPTIMIZING ENERGY HARVESTING

nShield is powered solely by the energy harvested from NFC transmissions. The capability of harvesting a large amount of power not only enables the uninterrupted protection of nShield, but also helps increase the attenuation range of the host’s NFC transmission power. Fig. 7 shows the block diagram of the energy harvesting subsystem of nShield, which comprises a harvesting antenna and an energy management circuit. We show that the design of these two components has a significant impact on the amount of power that can be harvested.

\[
Q = \frac{\omega L}{R} = \frac{27.12 \pi L}{R} 10^6 \tag{1}
\]

where \(\omega\) is the working frequency of the antenna, and \(L\) and \(R\) are the inductance and the series resistance of the antenna, respectively. The Q factors of the transmitter antenna and the harvesting antenna largely determine the energy transfer efficiency between antennas. Given the Q factors of transmitter antenna, \(Q_t\), and the harvesting antenna, \(Q_h\), the maximum energy transfer efficiency of the NFC antenna pairs can be expressed as [25]:

\[
\Pi_{\text{max}} = \frac{U^2}{(1 + \sqrt{1 + U^2})^2} \tag{2}
\]

\[
U = k\sqrt{Q_t Q_h} \tag{3}
\]

where \(k\) is the coupling coefficient, with 0 being completely uncoupled and 1 being perfectly coupled. Since the NFC communication pairs are always placed in proximity, \(k\) is usually close to 1 [25]. It can be seen that, given Q factor of the transmitting antenna, \(Q_t\), the energy transferring efficiency is determined by the Q factor of the harvesting antenna, \(Q_h\). A high energy transfer efficiency can thus be achieved by using harvesting antennas with high Q factors (above several hundreds). This analysis indicates that, to ensure a high energy transfer efficiency, the energy harvesting circuit cannot share the antenna with the NFC receiver, which must have a low Q factor (around 15 [17]) to achieve a sufficient reception bandwidth (about 1.8 MHz [7]).

According to (1), to improve Q factor of an NFC antenna, we can either increase its inductance or decrease its series resistance. In our harvesting antenna design shown in Fig. 6, we use wide antenna tracks to decrease the series resistance, and closely couple the antenna tracks to increase the inductance. The resulted high Q factor ensures that, when the transmitter antenna and the harvesting antenna are closely coupled, the harvesting antenna can receive most of the radiated energy. The implementation details of the harvesting antenna are given in Sec. 8.

6.1 Harvesting Antenna

When the communication between an NFC initiator and a target device commences, energy transfers from the transmitting antenna to the harvesting antenna via resonant inductive coupling [25] through air. The NFC antennas are essentially inductors, which have inductance as well as series resistance. The radiation efficiency of NFC antennas can be quantified using quality factor (or Q factor), which is the ratio of the inductive reactance to the series resistance of the antenna at 13.56 MHz:
Another major factor that affects the amount of power harvested is the design of the energy management circuit. The energy received by the harvesting antenna has to be transferred to the energy storage components in the system, e.g., batteries or super capacitors. A common practice for maximizing power transfer is to match the output impedance of the antenna with the input impedance of the load [24]. The maximum power that can be transferred, P_{load}, can be expressed as:

$$P_{\text{load}} = \left(\frac{U_{\text{ant--open}}}{R_{\text{ant}} + R_{\text{load}}} \right)^2 R_{\text{load}} = \frac{U_{\text{ant}}^2}{4R_{\text{ant}}} = 0.25P_{\text{max}}$$

(4)

where $U_{\text{ant--open}}$ is the open-circuit root mean square voltage inducted on the harvesting antenna, R_{ant} and R_{load} are the impedance of the antenna and the load, respectively, and P_{max} is the maximum power that the harvesting antenna can receive. We can see that P_{load} equals a quarter of P_{max}, when and only when $R_{\text{load}} = R_{\text{ant}}$. If the maximum transmission power of the initiator is 300 mW, then at most 75 mW can be delivered to the system.

However, the perfect impedance matching is impossible for energy harvesting systems, since the input impedance of the energy management circuit, R_{load}, varies with the system load. Instead of matching impedance, nShield employs “voltage matching”. Since R_{ant} and R_{load} are in series, when $R_{\text{ant}} = R_{\text{load}}$, the voltage across R_{ant} and R_{load}, denoted as U_{ant} and U_{load}, respectively, are also identical, i.e., $U_{\text{ant}} = U_{\text{load}} = 0.5U_{\text{ant--open}}$. Therefore, an alternative way to achieve the maximum power transfer is to match U_{load} to $0.5U_{\text{ant--open}}$. Since $U_{\text{ant--open}}$ is a constant value when the harvesting antenna is attached to the initiator, maximum power transfer can be achieved by letting $U_{\text{load}} = 0.5U_{\text{ant--open}}$.

In the design of nShield, we employ a 4.8V 10 mAh NiMh battery to match the harvesting antenna with a output voltage of 10V. Since NiMh battery has a nearly constant output voltage regardless its discharging level, the maximum energy transfer can be always maintained. Lithium thinfilm batteries such as the Thinergy used in [21] would work well too, when paired to an harvesting antenna with around 8V open-circuit voltage. However, super capacitors are not suitable for nShield, as their output voltages vary significantly with their discharging levels. To protect the batteries from overcharging, we also put a linear regulator between the rectifier and the battery. We do not use a switching regulator since it would decrease the amount of harvested power significantly. Fig. 7 shows the design of energy management circuit on nShield. Our experiment in Sec. 9.1 shows that nShield can harvest 55 mW power constantly from the NFC initiators on typical smartphones.

6.3 Tag Emulation

As discussed in Sec. 3, the initiator adopts a low probing rate [21] when no target device is nearby, which only allows limited amount of power to be harvested. Nevertheless, we show in Sec. 9.2 that, as long as the host device is active for more than 420 seconds/day on average, the energy harvested during the probing phase is sufficient for keeping the battery charged. In the rare case when the mobile device is only infrequently unlocked for a long period, nShield may deplete its battery. To address this issue, we adopt a technique called tag emulation to have the initiator significantly increase its duty-cycle. Specifically, nShield emulates itself as a passive ISO14443A tag and responds to the probing messages sent by the initiator. As a result, it triggers the initiator to stay active. This leads to a 10X increase of the initiator output energy, allowing nShield to be rapidly charged. However, this process may interfere with NFC transactions, as the initiator cannot communicate with other target devices when the tag emulation is active. We adopt the following adaptive mechanism to address this issue. First, nShield pauses the tag emulation for 1 second every 2 seconds, allowing the initiator to discover other target devices during the pause. Second, nShield only activates tag emulation when the discharging level of the onboard battery is lower than 30%.

7. ADAPTIVE RF FIELD ATTENUATION

7.1 Attenuator

nShield reduces the risk of being eavesdropped by attenuating the NFC RF field strength using the harvesting antenna. The level of attenuation to the RF field is adjusted by the load of the harvesting antenna. nShield adopts a MOSFET as the variable load, i.e., attenuator to the antenna. The resistance of the MOSFET is controlled by its gate terminal voltage, which is dynamically set by the adaptive RF field attenuation algorithm described in Sec. 7.2, using an onboard DAC. A novel design of nShield is that the attenuator is multiplexed with the load modulator. This design reduces the cost and size of nShield. Our experiment in Sec. 9.4 shows that nShield can achieve an attenuation range of 10.86 dB, which is sufficient for the purpose of regulating NFC RF field strength.

7.2 Adaptive RF Field Attenuation Algorithm

nShield adapts the signal attenuation level dynamically to maximize the amount of harvested energy while ensuring reliable communication between the initiator and the target device. nShield equally divides the whole attenuation range into N discrete levels. The goal of adaptive RF field attenuation is to find the optimal attenuation level in the N levels, with which the attenuated field strength is just enough to support reliable bi-directional communications between the initiator and
the target. Fig. 8 illustrates the relationship between Packet Reception Ratio (PRR) and the attenuation levels (AL). nShield tries to use an attenuation level as high as possible, while ensuring the resulted PRR to be close to 1, i.e., high communication reliability. A_{opt} shown on Fig. 8 is the optimal attenuation level.

![Figure 8: An illustration of the attenuation level vs Packet Reception Ratio relationship.](image)

However, a key challenge in the design of nShield is that, without prior knowledge about the target device, such as reception sensitivity and initiator-target distance, nShield cannot know what RF field strength would support reliable communications. NFC work in a poll-response fashion, in which the target only transmits after it was polled by a message from initiator. We refer to the process of a polling and its subsequent response as a polling round. To find out whether an attenuated field strength can support bi-directional communication, the initiator has to attempt a polling round with the attenuation level in question. nShield learns if a polling round is successfully completed, by examining the logic of the polling messages of consecutive polling rounds. In particular, some polling messages, such as the Single Device Detection Request and the Select Request defined in the NFC-A standard, can only be transmitted if the previous polling round succeeds. When overhearing such polling messages, nShield infers that the previous polling round ends successfully.

As shown in Sec. 9.3, for the passive communication mode, the field strength required for completing the first polling round is lower than that for completing later polling rounds. This phenomenon is caused by insufficient energy left on the tag after the first polling round. Passive tags rely on the energy from the NFC RF field to operate. After activating the RF field, the initiator pauses for certain time to charge the tag before starting the first polling round. The length of this charging period is usually much longer than the interval between consecutive polling rounds. Even if the RF field strength was not sufficient to sustain the successive polling, the first polling round may still succeed due to the energy harvested from the initial charging period. As a result, for passive communication mode, the success of the first polling round after the activation of the RF field is not a good indicator if the field strength is strong enough for sustaining bi-directional communication. In our design, we deem a field strength sufficient only if it can support the first three consecutive polling rounds.

Algorithm 7.1 Adaptive RF Field Attenuation

Input: N: number of attenuation levels.

Output: n_{opt}: optimal attenuation level.

Used sub-function: $Comm(n_i)$: attempt communication with attenuation level n_i. This sub-function returns “success” only if the first three polling rounds are completed successfully with the attenuation level n_i.

1: $N_{upper} = N$
2: $N_{lower} = 1$
3: $n_{opt} = N/2$
4: while $N_{upper} - N_{lower} > 2$ do
5: if $Comm(n_{opt}) = success$ then
6: $N_{upper} = round((N_{upper} + n_{opt})/2)$
7: else
8: $N_{lower} = n_{opt}$
9: end if
10: $n_{opt} = round((N_{upper} + N_{lower})/2)$
11: end while
12: return n_{opt}

An interesting question is that, with N different attenuation levels, in what order should nShield attempt communications. A naive solution is to attempt with all N levels from a high-to-low or low-to-high order, until an attenuation level for supporting reliable bidirectional communication is found. However, this approach incurs high delay (at least several seconds) to the NFC. We adopt the Binary Search Algorithm to accelerate the search process. With BSA, the search starts from the middle of all attenuation levels. Depending on whether the following polling rounds are successful or not, BSA discards the lower or higher half of the levels that unlikely contain the optimal level. For example, if any of the three following polling round fails, BSA discards all the levels that are higher than the currently attempted level. BSA repeats this process with the remaining levels until there is only one level left. However, due to the transition region on the PRR-AL curves (see Sec. 9.3), BSA may fail to locate the optimal attenuation level. This is because whether an attenuation level in the transition region, such as A_{trans} on Fig. 8, can support a successful polling round is probabilistic. When the polling rounds attempted with A_{trans} succeed, all the attenuation levels higher than A_{trans}, including the optimal level A_{opt}, would be discarded. To address this issue, we adopt a modified BSA in nShield. It works in the same way as the original BSA, except that it only discards half of the higher levels after three successful polling rounds. As the transition region of the PRR-AL curve is very narrow (see Sec. 9.3), this ensures that the optimal level would not be accidentally discarded. Algorithm 7.1 shows the pseudo-code of the adaptive RF field attenuation algorithm.
nShield exploits the target discovery process, which is always performed by initiator in the initial phase of the communication, to perform adaptive RF field attenuation. An NFC initiator periodically performs this process by broadcasting NFC discovering probes (at a rate about 3Hz on Android smartphones). If a target NFC device (which can be a tag or another NFC initiator working in active mode) hears this probe, it will send an acknowledgement message back to the initiator. The initiator will then confirm the discovery of the target device by broadcasting a response. The two devices will then exchange a few messages back and forth to learn a few parameters (such as IDs and capabilities). There are several advantages of exploiting this process for adaptive RF field attenuation. First, the NFC target discovery process is mandatory in all NFC communication modes and NFC technologies (NFC-A, NFC-B, and NFC-F) [8]. Second, this process does not involve the data payload. The communication conducted during adaptive RF field attenuation might be eavesdropped, due to the possibly high initiator transmission power. However, this does not lead to security breach since there is no data payload exchange. Once adaptive RF field attenuation is done, the following data communication is protected from eavesdropping. If the adaptive RF field attenuation is not finished yet in the last phase of the target discovery process, nShield will jam the communication to force the initiator to restart the process.

8. IMPLEMENTATION

We implemented a prototype nShield, which is shown in Fig. 6. We use a TI MSP430F2618 as the MCU on nShield. It integrates many low-power components used by nShield, such as comparator, ADC, DAC, and DMA controller. A 4.8V 20 mAh NiMh battery is adopted to store the harvested energy.

We implement the harvesting antenna using layered tapes and aluminum foil. To maximize the attenuation range, the size of the harvesting antenna should be slightly larger than the antenna on the NFC initiator, so that all magnetic flux generated by the initiator would undergo the attenuation before reaching the target. For example, our prototype antenna attached to Nexus 7 has a dimension of 9.6 cm by 9.6 cm, slightly larger than the NFC antenna in Nexus 7. We build the base of the antenna using layered tapes with 2 mm thickness. We apply a layer of aluminum foil to each side of the base, and cut the foils into 7 mm wide tracks to reduce the series resistance. Since the distance between the two layers of aluminum foil is only 2 mm, the resulted strong cross-induction significantly increases the inductance of the antenna. The combination of high inductance and low series resistance leads to a very high Q factor (> 10^3), which is essential for achieving high energy transfer efficiency. The NFC signal reception antenna is prototyped using the same materials and techniques, except that it has much thinner tracks and a single layer structure. We use an impedance analyzer to tune the Q factor of the antenna to the optimal value of 15 [17]. The harvesting and receiving antennas are then glued together. The two prototype antennas can be easily mass-manufactured using flexible thin film circuits.

We implement an NFC transceiver on nShield. The reception path is composed of a peak detector, a comparator, and a software decoder. The RF signal from the antenna is first converted to baseband signal by the peak detector, and then converted to clean logic levels by the comparator. The decoder is implemented in software on the MCU. To decrease the computational overhead, hardware components on the MCU are adopted to assist the decoding. Specifically, a hardware timer is adopted to timestamp the transitions of the logic levels, and a DMA controller is employed to automatically transfer the timestamps to the RAM. This design automatically collects samples without software intervention, enabling low power asynchronous decoding. The data is then verified using CRC and reported to upper layer protocols. For transmission, nShield adopts the load modulation communication techniques [8], in which the load of the antenna is modulated according to the data to be transmitted. We adopt a high speed MOSFET (Fairchild FDV301N) as the load modulator (multiplexed with attenuator), which can be easily driven by the onboard DAC due to its very low gate driving voltage (less than 1V). The bridge rectifier is implemented by four NXP PMEG600 low forward drop Schottky diodes to minimize the energy loss on rectifying. To generate accurate baud rates and sub-carrier frequencies, a 13.56 MHz crystal oscillator and a hardware clock divider are employed. We implemented the ISO14443A (NFC-A) protocol on nShield, which supports a data rate of 106 kbps. Since the modulation/demodulation tasks are mainly handled by hardware, higher data rates can also be easily supported by nShield. Moreover, since many protocols are implemented in software, nShield can be easily customized to meet the requirements of different applications.

9. EXPERIMENTATION

9.1 Amount of Harvested Power

We measure the amount of power that can be harvested by nShield, and the energy harvesting and delivery efficiency with two experiments in this subsection.

In the first experiment, we employ a Google Nexus 7 and an Adafruit PN532 NFC breakboard as initiators. The harvesting antenna (shown in Fig. 6) is attached to the back of Google Nexus 7, and to the surface of the PCB antenna on PN532 breakboard. We connect
a potentiometer to the antenna as the load. The output voltage and current of the antenna under different loads are measured with an Agilent 34410A benchtop multimeter. A linear regression is applied to the results to compute the internal resistances and the open-circuit output voltages of the harvesting antenna. We then compute the power delivered to the system and the power received by harvesting antenna under different loads.

Fig. 9(a) depicts the delivered power under different antenna output voltages. We can see that the curves are parabolas, with the maximum power of 55 mW at 5V, and 90 mW at 12V, respectively, when Google Nexus 7 and PN532 breakboard are used. The amount of power that can be harvested from PN532 breakboard nearly doubles that from Google Nexus 7. This is because PN532 breakboard has a much higher transmission power than Nexus 7, according to our measurement. However, as the antenna is optimized for working with Nexus 7, nShield cannot harvest the maximum amount of power from PN532 breakboard. In particular, the maximum power is delivered at 12 V output and the battery voltage on nShield is only 4.8V. This voltage mismatch limits the maximum delivered power to be only 57 mW. On the other hand, nShield can receive the maximum power when working with Nexus 7, due to the tight voltage matching. These results also confirm that a super capacitor is a poor choice for energy storage on nShield, since the voltage of super capacitors varies significantly with its discharging level, resulting a poor voltage matching.

Fig. 9 (b) shows the power received by the harvesting antenna at different output voltages. We can see that the received power decreases linearly when the output voltage increases. It is also observed from both Fig. 9 (a) and (b) that, when the antenna receives maximum power (when output voltage is zero), it delivers virtually no power to the system, resulting in an extremely low energy harvesting efficiency. The energy transfer efficiency is about 0.5 when maximum power is delivered, i.e., half of the energy received by the antenna is delivered to the system. These results show that, in order to deliver the maximum power to the system, the battery and the harvesting antenna must achieve a voltage matching.

We next evaluate the efficiencies of energy harvesting and energy delivery of nShield. We define the efficiencies of energy harvesting and delivery as the ratios of the amount of power received by the harvesting antenna and the amount power delivered to system, to the amount of power transmitted by the initiator, respectively. We use an Adafruit PN532 breakboard as initiator in this experiment. We use the total power consumption of the PN532 board to approximate the transmission power. We note that this approximation is reasonable because the power consumed by other onboard components like receiver and control logic circuit is insignificant compared to the transmission power. The harvesting antenna is connected with a potentiometer which serves as a variable load.

Fig. 10 (a) shows the amount of power transmitted, received, and delivered, under different loads to the harvesting antenna. We can see that the transmission power increases when the load becomes lighter. The change of the transmission power is due to the detuning effect, in which the tuning of the initiator’s antenna is varied by the mutual coupling between the harvesting antenna and the initiator antenna. A heavier (lighter) load to the harvesting antenna creates a stronger (weaker) mutual coupling, which in turn leads to a stronger (weaker) detuning effect. The detuning effect changes the impedance of the antenna, resulting in less power transferred to the antenna. The highest transmission power is about 500 mW.

Fig. 10 (b) shows the computed energy harvesting and delivery efficiencies. We can observe that the energy harvesting efficiency increases linearly with the load to the harvesting antenna, while the energy delivery efficiency is a parabola which peaks at the voltage matching point (12V). When the output voltage of the
harvesting antenna is close to 0 V, the energy harvesting efficiency is close to 1. At this point, most of the transmission power is absorbed by the harvesting antenna, and the strength of the RF field created by the initiator is significantly attenuated. The energy delivery efficiency peaks at 0.21 when the output voltage of the harvesting antenna is 12 V. This is very close (84%) to the theoretical limit (0.25) of the energy delivery efficiency when maximum power is delivered (see Sec.6). Compared with existing systems [28] that can achieve an energy delivery efficiency of at least 70%, our system has a low energy delivery efficiency (21%). This is because our energy harvesting system is optimized for maximizing harvested power from NFC transmissions.

9.2 System Power Consumption

We use an Agilent 34410A benchtop multimeter to measure the power consumption of nShield. The results are summarized in Tab. 1. The most power consuming states are data reception and transmission. This is because the MCU has to work at a higher system clock rate to meet the strict timing requirements of the NFC data reception and transmission, and several system components (e.g., TX control circuit) need to be powered on. Although the idle/RX/TX power consumption are high, their impact on system lifetime is actually insignificant, since nShield spends most of the time in the sleep state with a power consumption of only 23 uW. This is due to the fact that, the NFC initiator is usually inactive most of the time (e.g., when the mobile device is locked), during which nShield is asleep.

Thanks to the large amount of power harvested from NFC transmissions and low power design, nShield can sustain its operation solely on the harvested energy. NFC standard requires initiators to insert long guard time between consecutive polling rounds [8]. As a result, NFC initiators are in idle listening most of the time when activated. This causes nShield to be idle during most of its active period, leading to an average active power consumption of 8.7 mW. As nShield can harvest 55 mW power from an active NFC initiator, it maintains a net power gain of 46 mW during its active state. For typical Android devices, the integrated NFC initiators are duty-cycled at 10% [21] during probing. With its low sleep power consumption, the battery on nShield can stay fully charged if the mobile device is unlocked for average 420 seconds per day, which can be met by smartphones and tablets in most circumstances [20][2]. When the discharging level of the onboard battery is low, nShield automatically activates tag emulation, which increases the charging rate by 10X to rapidly charge the battery. Moreover, even when energy harvesting is not possible (e.g., NFC is disabled), the lifetime of a fully charged nShield still exceeds one month, thanks to its low sleep power consumption.

Table 1: System power consumption under different states.

<table>
<thead>
<tr>
<th>State</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleep</td>
<td>23uW</td>
</tr>
<tr>
<td>Idle listening</td>
<td>8.7mW</td>
</tr>
<tr>
<td>RX</td>
<td>13.1mW</td>
</tr>
<tr>
<td>TX</td>
<td>18.1mW</td>
</tr>
<tr>
<td>Attenuation</td>
<td>9.8mW</td>
</tr>
</tbody>
</table>

9.3 Receiver Characteristics

In this subsection, we study the receiving characteristics of passive NFC tags, by measuring the PRR-FS (Packet Reception Ratio vs Field Strength) curves. The purpose of this experiment is to show two key observations based on which the adaptive RF field attenuation algorithm is designed: 1), the transition regions on the PRR-FS curves are very narrow, and 2), the field strength required for completing the first polling round is higher than the subsequent rounds.

We attach a thin aluminum antenna to the back of each tag to measure the field strength, using an Agilent DSOX2024A oscilloscope. We also use this antenna to measure the packet receptions. A Nexus 7 serves as the NFC initiator in this experiment. We vary the field strength near the tag by changing the distance between the initiator and the tag. The PRR associated with each field strength value is computed from 100 transmissions. The field strength measurements are normalized.

Fig. 12 (a) and (b) show the PRR-FS curves of Mifare Classic tag and Mifare Ultralight tag, respectively. We can see that, all the curves have narrow transition regions (<0.2 dB) in which the PRR values quickly increase from 0 to 1. We further observe that, Mifare Ultralight tag has a narrower transition region than the Mifare Classic tag (0.05 dB vs 0.2 dB). This is because the Mifare Ultralight tag has a much smaller antenna size, making it more sensitive to the field strength. For each tag, we can see that the field strength required for a successful first polling round is lower than that for the second polling round. As mentioned in Sec. 7.2, this is due to the fact that the tag has more time to harvest energy before the first round of polling.

9.4 Attenuation Range and Granularity

nShield provides a wide attenuation range and fine attenuation granularity, which allows it to precisely control the strength of the NFC RF field to the optimal level. This subsection evaluates the attenuation range and step that can be achieved by nShield. We manually tune the DAC connected with the attenuator to sweep through its entire voltage output range with a step of 0.05 V. To measure the attenuated signal strength, we use an Agilent probe to form a small loop antenna, and connect the probe to an Agilent DSOX2024A oscilloscope. We record the measured peak-to-peak amplitude (Vpp) of the NFC signal.

Fig. 11 (a) depicts the signals that are maximally attenuated and unattenuated. We can see that nShield can significantly decrease the strength of NFC signals,
as the Vpp of the signal decreases from 2.14V to only 0.216V after the maximum attenuation level is applied. Fig. 11 (b) shows the computed attenuation levels with different DAC output. We can observe that the effective attenuation region roughly takes about a quarter of the full output scale of the DAC, ranging from 0.8 V to 1.4 V. This is due to the characteristic of the attenuator on nShield, which is a high-speed switching MOSFET. The MOSFET is completely shut down when the gate voltage is below 0.8 V, and is saturated when the gate voltage is above 1.4 V. Therefore, it operates as a variable attenuator only when the gate voltage is between 0.8 V and 1.4 V. The maximum attenuation, 10.86 dB, is achieved when the MOSFET is saturated. We can also observe that the attenuation is nonlinear with the DAC output, resulting in a nonconstant attenuation steps. The maximum step occurs when the MOSFET operates near the middle of the effective attenuation region. For a 16 bit DAC with 2.3 V reference, the maximum step is 0.0029 dB. The wide attenuation range and fine attenuation step allows nShield to precisely attenuate the RF field with wide strength range to the optimal level. This ensures nShield to best protect the security of NFC while maintaining reliable communication.

9.5 Delay of Adaptive Attenuation

The delay caused by the adaptive attenuation algorithm is a critical performance metric for nShield, since a long delay would have significant impact on the user’s experience. In this section, we measure the delay introduced by the adaptive attenuation algorithm, using a Mifare Classic tag and a Mifare Ultralight tag. We define the delay as the interval from the time instant when the initiator sends the first probe to the tag to the time instant when the optimal attenuation level is determined. We use the hardware timer on nShield to timestamp these events and measure the delay. For each tag, we measure the delay associated with 3 different optimal attenuation levels, by varying the tag-initiator distances. We repeat the experiment at each distance for 20 times.

Fig. 13 shows that, mostly of the delays fall below 2.2 s, while the mean delay is 2.1 s. Some long delays (3s to 4s) are observed, although they are very infrequent (< 5%). Our investigation indicates that they are caused by occasional initiator halts, in which the initiator pauses its transmission for 1 to 2 seconds, with the RF field remaining active. The exact reason that causes the halt is still unknown.

9.6 Accuracy of Adaptive Attenuation

We evaluate the accuracy of adaptive attenuation algorithm in estimating the optimal attenuation level in this subsection. The tags used in our experiment are a Mifare Classic tag and a Mifare Ultralight tag. For each tag, we evaluate the optimal attenuation level under different tag-initiator distances. We define the optimal attenuation level as the highest attenuation setting that can support successful initiator-tag communications for 10 seconds. We manually determine the ground-truth optimal attenuation level for each tag-initiator distance, by examining all attenuation levels from a high to low order. We use an Agilent probe to form a small loop antenna, and connect the probe to an Agilent DSOX2024A oscilloscope to measure the attenuated RF field strength. We then run the adaptive attenuation algorithm for ten times, and measure the resulted RF field strength of each run.

Fig. 14 shows that, 90% of the estimation errors of the Mifare Classic tag at distances of 0cm, 2cm and 4cm fall below 0.3 dB, 0.34 dB and 0.52 dB, respectively. For the Mifare Ultralight tag at distances of 0cm, 1cm and 2cm, 90% the errors fall below 0.12 dB, 0.16 dB and 0.35 dB, respectively. The mean errors of the two tags are only 0.29 dB and 0.1 dB, respectively. We can observe that Mifare Ultralight tag generally incurs smaller error than Mifare Classic tag. This may be because the Mifare Ultralight tag has a much smaller antenna size, which makes it more sensitive to the field strength. As a result, it has a narrower transition region, which conforms the finding in Sec. 9.3. This makes Mifare Ultralight tag more responsive to our adaptive attenuation
algorithm, resulting in a smaller estimation error.

10. CONCLUSION AND FUTURE WORK

This paper presents a novel, noninvasive security system called nShield to protect NFC against eavesdropping. nShield dynamically attenuates the signal strength of NFC transmissions by absorbing the excessive RF energy. nShield intelligently determines the amount of absorbed energy, so that the attenuated signal strength is just enough to sustain successful NFC communications. As a result, in order to launch an attack, the eavesdroppers must be in close proximity of the mobile device, making possible security breach significantly more challenging. We have implemented a prototype of nShield, and evaluated its performance via extensive experiments. We show that nShield can harvest up to 55 mW power, which outperforms two state-of-the-art NFC energy harvesting systems by 1.7X and 3.1X, respectively. Moreover, nShield can accurately attenuate the NFC signal strength in fine granularity, which allows it to provide security protection for a diverse set of NFC platforms. Lastly, nShield only introduces insignificant delay (up to 2.2 s) to NFC data communications.

nShield may occasionally lower the signal attenuation levels, which jeopardizes the protection against eavesdropping. A low attenuation level is necessary to ensure the communication reliability, when the NFC target device has low sensitivity or is far away from the initiator. A possible solution is to have nShield send an alert via NFC to the host device, informing the user of potential risk of eavesdropping and suggesting to move the target device closer. This would require the installation of an nShield App on the mobile device, which is left for future work.

The next-generation NFC chipsets may have native transmission control capabilities, which allow mobile devices to configure their NFC transmission power from software. This eliminates the need of accessory security hardware like nShield. In such a case, the adaptive attenuation algorithm of nShield can be integrated by the NFC driver to attenuate the transmission power. Thanks to the high energy harvesting efficiency, the nShield only introduces insignificant delay (up to 2.2 s) to NFC data communications.