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Abstract

The biased dielectric properties of several barium stannate titanate ceramics were reported in the present study. The reversible dielectric
nonlinearities (RDNs) were investigated both in ferroelectric and paraelectric phases. The increased lateral dielectric constant was illustrated
with the anisotropy model in ferroelectric phase. The field dependence of dielectric constant was analysed by thermodynamic models in
paraelectric phase.
© 2004 Published by Elsevier Ltd and Techna Group S.r.l.
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1. Introduction

Barium stannate titanate is a solid solution system of bar-
ium titanate and barium stannate. This material is one of
the earliest prototypes of diffused phase transition study[1].
Similar to barium zirconate titanate and barium hafnate ti-
tanate[2], the crystallographic phase structures evolve from
tetragonal, orthorhombic, rhombohedral to cubic with the
increasing tin composition at room temperature.

Much attention has been focused on the electrical field
tunable materials due to their potential applications as phase
shifter [3–8]. However, we cannot well solve the material
problem for this purpose partially because the field tuning
mechanism is not clearly known yet. In the present study,
we are going to study the reversible dielectric nonlinearity
(RDN), which is a measure of field tuning ability of re-
versible dielectric constant (small signal dielectric constant).

2. Experiment

BTS10 (Ba(Sn0.10Ti0.90)O3), BTS20 (Ba(Sn0.20Ti0.80)O3)
and BTS30 (Ba(Sn0.30Ti0.70)O3) ceramics were prepared by
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solid state reaction approaches. The geometry of the sample
pallet is 10 mm in diameter and about 1 mm in thickness.
A computer controlled system, which is composing of a
LCR meter (TH2816, Tonghui Electronic Instrument Inc.),
a high voltage source (SRS PS350, Stanford Research Sys-
tem Inc.), an environmental box (Delta Design 9023, Delta
Design Inc.) and a voltage protection circuit, was employed
to measure the dielectric nonlinear properties of the ceram-
ics. The temperature dependence of dielectric constant was
measured via another computer controlled system, including
a high precision LCR meter (HP 4284A, Hewlett-Packard
Inc.) and an environmental box with its temperature range
form liquid nitrogen to 250◦C.

3. Results and discussion

3.1. Temperature dependence of dielectric constant and
tunability

The dielectric constants with temperature of BTS10,
BTS20 and BTS30 samples were shown inFig. 1. The
dielectric maxima of these samples move to lower temper-
ature with the increasing tin composition.

Electric field dependence of dielectric constant could be
measured by the automated measurement system at vari-
ous temperatures. Thus, we could draw three-dimensional
surfaces ofε − E − T or tgδ − E − T . Fig. 2a and bare
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Fig. 1. Dielectric constants with temperature of BTS10, BTS20 and BTS30
at 10 kHz.

Fig. 2. ε − E − T (a), tgδ − E − T (b) surfaces of BTS10 ceramics. The
frequency of signal field is 10 kHz.
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Fig. 3. Tunability with temperature at 10 kV/cm of BTS10, BTS20 and
BTS30. The frequency of signal field is 10 kHz.

surfaces of the dielectric constant and dielectric loss tangent
of BTS10 ceramics, respectively.

Ordinarily, the RDN is quantitated by tunability, which
is defined as the reduction of reversible dielectric constant
under bias field with respect to the original one, i.e., it can
be expressed as:

TE = ε(0) − ε(E)

ε(0)
(1)

whereε(0) andε(E) is the reversible dielectric constant un-
der zero andE bias fields, respectively.Fig. 3 shows the
tunabilities with temperature of BTS10, BTS20 and BTS30
samples. The tunability of BTS10 exhibit a maximum at
about 30◦C, which is a little bit lower than its Curie temper-
ature. For both BTS10 and BTS20 samples, the tunabilities
decrease with temperature at their paraelectric phase. The
tunability of BTS30 is neglectable even at room tempera-
ture because its Curie temperature is far away from room
temperature.

3.2. Reversible dielectric nonlinearity in
ferroelectric phase

In ferroelectric phase, RDN originated from two mecha-
nisms, i.e., intrinsic and extrinsic ones. For single domain
ferroelectric crystal, only the former one exists. We can ex-
press the RDN with the phenomenological thermodynamic
theories. This is the same as that of paraelectric phase for-
mally, which will be mention in the next section. For multi-
ple domain ferroelectrics, we must consider the effect of the
latter one, which is corresponding to the existence of ferro-
electric domains. The relative models are anisotropy, clamp-
ing effect and vibration of domain wall. Then, we will show
some experimental evidences for anisotropy model of RDN.

Here, anisotropy refers to that the dielectric constant is
different along different crystal axis of single crystal. Based
on the model of anisotropy, direct current bias field will drive
90◦ domain wall to move. This will change the reversible di-
electric constant of the volume where the domain wall swept
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Fig. 4. Schematic drawing of the sample for lateral dielectric constant
measurement.

over. The dielectric constant parallel to the field will decrease
and the lateral one will increase. Uchida and Ikeda[9] ex-
plained the decrease of dielectric constant of BT and PZT ce-
ramics along parallel direction by anisotropic model. Maru-
take and Ikeda[10] predicted that the dielectric constant of
BT along lateral direction might increase with bias field.

Fig. 4 illustrates the structure of the sample used in the
present study.Fig. 5 shows that the lateral dielectric con-
stant of BTS10 ceramics in its ferroelectric state, which is
measured along lateral direction, increase with bias field,
i.e., the tunability is negative. This result is a positive exper-
imental evidence of anisotropy model, which is consistent
with that of Uchida and Marutake, but it is contradictive
to that of Diamond[11] and Zhang et al.[12], where they
have observed the lateral dielectric constant decrease with
increasing bias field. This argument may have two origina-
tions. First, the anisotropy model may overestimate the vol-
ume ratio of domains who are reoriented by 90◦ in certain
materials, and this may lead to the mis-estimation. Second,
there are two pairs of perpendicular electrodes, and the bias
field and the signal field disturb with each other inevitably.
Thus, the precise dependence of dielectric constant with bias
field is unavailable.
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Fig. 5. Parallel and lateral tunabilities of BTS10 ceramics. The frequency
of signal field is 10 kHz.

3.3. Reversible dielectric nonlinearity in
paraelectric phase

Basically speaking, only intrinsic mechanism of RDN
contributes in paraelectric phase. Starting from the defini-
tion of Helmholtz free energy, Johnson[13] derived an ex-
pression of ac dielectric constant with electric field. With
analogizing, he gave a compact approximation of the rela-
tionship between differential dielectric constant and electric
field (Here, the expression was rewritten with SI unit instead
of CGS unit.):

ε(E) = ε(0)

(1 + 3βε(0)3E2)1/3
(2)

whereβ is a parameter related to the coefficient of the free
energy. This expression is also appropriate for RDN because
reversible dielectric constant is equal to differential dielectric
constant in paraelectrics.

With weak field approximation, the reversible dielectric
constant can be deduced from Gibbs free energy[14]:

ε(E) ≈ ∂P

∂E
= 1

α
− 3β

α4
E2 = ε(0) + �ε (3)

whereα andβ are coefficients of the free energy.
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Fig. 6. Inharmonic factorβ with temperature of BTS10 (a), and BTS20
(b).
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The data fitting of both the above two equations show
good agreement with experimental results. By fitting the ex-
perimental data of BTS10 and BTS20 withEqs. (2) and (3),
we obtained the value ofβ with temperature as shown in
Fig. 6. Theβ values obtained are strongly temperature de-
pendent and are close to each other for the two models.
Theβ parameters of BTS10 show minima at 50◦C and for
Eq. (2)and 40◦C for Eq. (3). The log(β) increases linearly
with temperature for BTS20, and the slope is 0.00902 for
Eq. (2)and 0.00939 forEq. (3). These values are compara-
ble with that reported by Liou and Chiou[15].

4. Conclusion

The reversible dielectric nonlinearities of several barium
stannate titanate ceramics were investigated both in ferro-
electric and paraelectric phases. The increased lateral di-
electric constant in ferroelectric phase is a positive evidence
of the anisotropy model. The field dependence of dielectric
constant in paraelectric is analysed by the Johnson’s model
and the weak field approximation model. The fitting results
suggest that theβ values are strongly temperature dependent.
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