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The time domain method is more reliable for the study of nonlinear
dielectric response compared with frequency domain analysis. A Tikhonov
regularization method, which is widely adopted for ill-posed problem,
is described for derivation of the relaxation time distribution function, g(�),
from the ferroelectric discharge current in time domain. The new method
allows study of the structure variation and the relaxation behavior of
ferroelectrics at different temperatures. For barium stannate titanate
ceramics (BTS20), g(�) has been successfully derived; the relaxation peaks
move to shorter times with increasing temperature in the range 20–60�C,
which may indicate a space charge thermal activation process. However,
g(�) could not be derived from the discharge current by the regularization
method for BTS20 at temperatures above 60�C or for lanthanum-doped
lead zirconium titanate transparent ceramic (PLZT), since the data do
not satisfy the discrete Picard condition, which is a valid criterion for
regularization method.

Keywords: time domain response; ferroelectrics; relaxation time; distribu-
tion function; ill-posed problem; Tikhonov regularization

1. Introduction

As a special group of polar crystals, much attention has been paid to ferroelectrics
characterized by the fact that the polarization can be redirected by external electric
fields. However, only little is known about the types and the dynamics of structure
variation inside a ferroelectric ceramic under an external electric field.

The method of studying the relationship between physical variables and time
in an external electric field is called the time domain method, which is different from
the frequency domain method usually used in the study of ferroelectrics dielectric
properties. The time domain method can reflect directly the dielectric response
for stepwise, impulse or arbitrary external electric field. In addition, it is possible
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to derive the relaxation time distribution function, gð�Þ, which is the eigenfunction

of dielectric relaxation, from the time domain response. Most importantly, the

distribution function can provide information directly for understanding the

processes of ferroelectric structure variation.
Long time scale (up to 104 s) dielectric responses, which contain information

about slow processes, such as space charge injection, transportation, etc, can usually

be described by the universal relaxation law (URL) proposed by Jonscher [1,2].

Differing from the simplified ideal Debye model, the URL is characterized by a

fractional power law in both time and frequency domains. Debye relaxation

corresponds to a single relaxation time, �, whereas the URL may correspond to a

series of relaxation times, or relaxation time distribution, gð�Þ. Although much work

has been reported on the time domain response for dielectrics [3–6], reports about

deriving the relaxation time distribution spectrum by the time domain method are

still absent. The differential time domain spectrum method used by Li [7] was only

able to indicate separated multi-relaxation times.
As is known, the relaxation function f ðtÞ, which is proportional to the discharge

current, can be derived directly from the current density. Current density data can be

obtained by application of a stepwise electric field to a sample and then removal of

external electric field. According to the equation f ðtÞ ¼ A
R1
0

1
� gð�Þ expð�t=�Þd� [8],

gð�Þ can be calculated via the inverse Laplace transformation of f ðtÞ. Experimentally,

the current data is discrete, thus the integration corresponds to linear equations

Ax¼ b. Unfortunately, the equations are an ill-posed problem and cannot be

resolved by the ordinary least squares method. Tikhonov regularization [9], which is

a data algorithm usually used in inverse problems such as analyzing the echo of an

electromagnetic wave and reconstructing the blurred image, was employed to obtain

gð�Þ. Similar work was performed by Banys [10], where Tikhonov regularization was

used in resolving gð�Þ from frequency domain data on complex dielectric constant

data of (Sr,Ba)Nb2O6.
This paper aims at deriving gð�Þ from the ferroelectric discharge current in the

time domain. The samples considered are relaxor ferroelectric barium stannate

titanate ceramics (BTS20) and lanthanum-doped lead zirconium titanate transparent

ceramics (PLZT). The experiment and data processing procedures are interesting,

and we attempt to find a new way of characterizing the dynamic behaviors of

ferroelectric structure variation.

2. Experiment

As shown in Figure 1, the experimental system contains a Keithley 6485

picoammeter, a SRS PS350 5000V high-voltage source, a home-made constant

temperature system and a computer for data recording.
Samples were placed in a constant temperature system at temperatures in the

range of 30–160�C. A 100V electric voltage was applied to the sample for more than

60min to ensure sufficient charging, and then the external electric field was removed.

Under a short-circuit condition (switch to position a), the picoammeter measures

the discharge current and a computer program collects the current data at intervals

of 1–2 s through the GPIB interface of the picoammeter.
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3. The principle of data analysis

3.1. The relationship between current, j(t), and g(�)

As is known, the discharge current density is a differentiate of polarization with

respect to the time of a relaxation process, jðtÞ ¼ dPr

dt ¼ ð"s � "1Þ"0E0f ðtÞ, where jðtÞ is

the discharge current density derived from experiment, Pr is the relaxational

polarization and f ðtÞ is the relaxation function.
If there is a single relaxation time in the dielectric, where gð�Þ is a � function,

the relaxation function is as follows: f ðtÞ ¼ 1
� expð�t=�Þ. Otherwise, if there is

distribution of relaxation times in the dielectric, the relaxation function is

f ðtÞ ¼ B
R1
0

1
� expð�t=�Þgð�Þd�; therefore,

jðtÞ / f ðtÞ ¼ B

Z 1
0

gð�Þ
1

�
expð�t=�Þd�, ð1Þ

where gð�Þ is the distribution function of relaxation times, which is the goal to be

derived from Equation (1). The above integral equation can be replaced with discrete

linear equations in realistic problems,

Ax ¼ b, ð2Þ

where A ¼ 1
� expð�t=�Þ, x ¼ gð�Þ and b ¼ jðtÞ. By solving the equations Ax ¼ b with

the least squares method as usual, we find immediately that we obtain completely

different answers even if the discharge current data contain negligible errors, which

indicates mathematical difficulties! The difficulty comes from the fact that the

equation is an ill-posed problem, which must be solved by a regularization method

[11]. We are going to adopt Tikhonov regularization method, described in the

appendix I, to calculate the distribution function gð�Þ from time domain current data.

3.2. Mathematical criterion

There is a most important criterion, the discrete Picard condition (DPC), in the

Tikhonov regularization. If DPC is satisfied, the resolution is reasonable. Otherwise

it means nothing. After obtaining the discharge current data, the first thing we

should do is to check whether DPC is satisfied, which means whether we can find

a suitable solution for Equations (1) and (2).
The singular value decomposition (SVD) of matrix A is a decomposition of

the form: A ¼ U
P

VT ¼
Pn

i¼1 ui�iv
T
i , where U ¼ ðu1, . . . unÞ and v ¼ ðv1, . . . vnÞ are

Sample and constant
temperature system

H

 GPIB 

a 

b 

A

Figure 1. Current measurement setup: H¼ high-voltage source; A¼ picoammeter.
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matrices with orthonormal columns, UTU ¼ VTV ¼ In and where
P
¼

diagð�1, . . . , �nÞ has non-negative diagonal elements appearing in non-increasing

order.
If the SVD of matrix A is used in the least squares method, then we can obtain the

least squares solution:

xLS ¼
Xn
i¼1

uTi b

�i
vi: ð3Þ

For an ill-posed problem, the singular values, �i, of A decay gradually toward

nearly zero and the condition number of A (cond(A)¼ �1/�n) is very large.

The condition about solvability of Equations (3) is whether the convergence rate

of juTi bj is faster than the convergence rate of �i. The criterion DPC refers to whether

the Fourier coefficients juTi bj of the unperturbed right-hand side of Equation (2)

decay to zero faster than the singular values �i do [12]. If juTi bj decay faster than �i,
DPC is satisfied. So, DPC is actually a criterion for solvability of the equations.

A Picard plot (generated by using the routine ‘Picard’ in Regularization Tools [9])

enables a visual check of the discrete Picard condition. A Picard plot shows the

variation of �i, ju
T
i bj and ju

T
i bj=�i.

In practice, the experimental data right-hand side of Equation (2) are usually

contaminated by measurement errors, approximation errors, and so on. So the given

perturbed problem rarely satisfies the DPC. However, if the underlying exact problem

satisfies the DPC, we may see that Fourier coefficients juTi bj still decay faster than the

singular values �i above the level of noise. In this case, we can say that the problem

satisfies the DPC (see Figure 2). The two plots in Figure 2 correspond to two different

noise levels: 10�5 and10�3. The juTi bj value level off at 10
�5 and 10�3, which are the

noise levels. The larger the noise, the fewer terms, juTi bj, remain above the noise

level and can be trusted. The essence of a regularization method is to keep those

components (for small indexes i), juTi bj=�i, and preferably dampen the components,

juTi bj=�i, which are dominated by the noise (juTi bj level off noise) by multiplying it with

a filter factor less than unity. More details of the Tikhonov regularization method

can be found in the appendix. Mathematically, it is realized by

x� ¼
Xn
i¼1

fi
juTi bj

�i
vi, ð4Þ

where the scalars fi are referred to as the filter factors.
DPC is a necessary condition for obtaining acceptable regularized solution.

The reasons that a problem does not satisfy DPC are probably: the error in right-

hand side of Equation (2) is too large; insufficient collected data (right-hand side

of Equation (2)) for meaningful analysis; physical relation of the underlying exact

problem is not reasonable.

4. Experimental results and data processing

A 100V voltage was applied to PLZT and BTS20 samples for 60min at different

constant temperatures in the range 30–200�C. About 3000 discharge current data
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points were collected in 60min at each temperature. Time spectra of the discharge
currents of PLZT and BTS20 samples are different in log–log plots (see Figures 3–4).

PLZT discharge current–time spectra exhibit a linear relationship in log–log
current–time coordinates, which obey the URL [1,2] advanced by Jonscher (see
Figure 3). They can be roughly described by the power law: I ¼ At�n.

The fitted exponents n are listed in Table 1. These values are larger than unity,
corresponding to mþ 1 [1, 2]; therefore, the values of m are in the range 0.14–0.21,
as listed in Table 1.

0 5 10 15 20 25 30
10–20

10–15

10–10

10–5

100

105

1010

i

Picard plot

 σi

|ui
Tb|

|ui
Tb|/σi 

(a)

0 5 10 15 20 25 30
10−20

10−15

10−10

10−5

100

105

1010

1015

i

Picard plot

 σi

 

(b)

–15

|ui
Tb|/σi

|ui
Tb|

Figure 2. (Color online). The Picard plots for an ill-posed problem with noise: (a) noise level
10�5; (b) noise level 10�3.
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Discharge current–time spectra of BTS20 at different temperatures are shown
in Figure 4. Comparing with the spectra for PLZT, the two current curves are quite
different. They are similar to an exponent function, which obeys the near-Debye
relaxation at low temperature (30–60�C), and are neither linear nor obey an
exponent function in log–log coordinates at higher temperature (60–90�C).

The Tikhonov regularization method was used to derive the distribution function
of relaxation times, gð�Þ, from discharge current data. For comparison, the
differential time domain spectrum method was also used. Calculating the derivative
of product of current and time is referred to as the differential time domain spectrum
method. The peaks correspond to separate relaxation times [7]. Using the Tikhonov
regularization method, we intend to find the distribution profile of relaxation times,
whereas the differential time domain spectrum method is used to locate the separated
relaxation times.

4.1. gðsÞ of BTS20

4.1.1. At 30–60�C

100 points of � are equally spaced in logarithm range of 1–4000 s, because the current
data is in the range 1–4000 s. Establish equations in 4000 variables:

X4000
i¼1

X100
j¼1

1

�j
expð�ti=�jÞgð�jÞ ¼ I: ð5Þ

0.1 1 10 100 1000 10000
1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

PLZT

 60°C
 80°C

 100°C

 120°C

 140°C

 200°C

 Linear Fit of 60°C

 Linear Fit of 80°C

 Linear Fit of 100°C

 Linear Fit of 120°C

 Linear Fit of 140°C

 Linear Fit of 200°C

j /
A

/c
m

2

t /s

Figure 3. (Color online). Discharge current of PLZT in the range 60–200�C (voltage 100V,
sample thickness 1mm).
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Figure 4. (Color online). BTS20 discharge current time spectrum (a) 30–60�C; (b) 60–90�C.
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The coefficients,
P4000

i¼1

P100
j¼1

1
�j
expð�ti=�jÞ, are decomposed by SVD and the

Picard plot is obtained (see Figure 5). It can be seen that the noise is about 10�10 and
the terms juTi bj also level off at 10�10. juTi bj values decay faster than the singular
values �i above the noise level 10�10, which indicates that Equation (5) satisfies the
DPC. This enables us to find a proper solution from these ill-posed equations by the
Tikhonov regularization method. The results are shown in Figure 6.

Two separate peaks are shown in Figure 6. The first peak is less meaningful
because of the unstable start of the current data. However, we pay close
attention to the second peak, which moves toward shorter times with increasing
temperature. At the same time, differential time domain spectrum method is used
to verify the position of peaks (see Figure 7) and the results are shown in Table 2.
The peaks obtained by both methods are close to each other for different
temperatures.

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

i

Picard plot

σi

|ui
Tb|

|ui
Tb|/σi

Figure 5. Picard plot of BTS20 at T¼ 35�C. juTi bj decays faster than the singular values �i
above the noise level 10�10, which indicates that Equations (5) satisfy the DPC, and a proper
solution can be found.

Table 1. Exponent n at different temperatures.

Temperature 60�C 80�C 100�C 120�C 140�C 200�C

n 1.19807 1.19143 1.18558 1.18909 1.21398 1.14433
m¼ n� 1 0.19807 0.19143 0.18558 0.18909 0.21398 0.14433
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Figure 6. (Color online). gð�Þ of BTS20 in the temperature range from 20�C to 60�C. The first
peak is less meaningful because of the unstable start of current data. We pay attention to the
second peak, which moves toward shorter times with increasing temperature.
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Figure 7. (Color online). Results of differential time domain spectrum.
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4.1.2. At 60–120�C

When the temperatures are higher than 60�C, the discharge current–time spectra
obey neither linear nor exponent functions (see Figure 4). A Picard plot shows that
DPC cannot be satisfied even for the first current data (see Figure 8), which indicates
that there is no reasonable regularization solution to Equations (5).

4.2. gðsÞ of PLZT

The discharge current–time spectra of PLZT are in the form of a power function,
obeying the URL (see Figure 3). However, a Picard plot shows that it does not
satisfy the DPC (see Figure 9). As mentioned before, DPC is a necessary condition
for obtaining reasonable regularized solution. Therefore, we can not find a
regularization solution for PLZT, as for BTS20 at temperatures higher than 60�C.

0 10 20 30 40 50 60 70 80 90 100
10−20

10−15

10−10

10−5

100

105

1010

i

Picard plot

σi

|ui
Tb|

|ui
Tb|/σi

Figure 8. (Color online). Picard plot for BTS20 at T¼ 90�C. juTi bj always decays slower than
�i, so DPC cannot be satisfied and there is no reasonable regularization solution to
Equation (5).

Table 2. Comparation of Tikhonov method with differential time domain spectrum method.

Temperature (�C) 30 35 40 45 50 55 60

Tikhonov regularization method 360 250 160 115 80 52 33
Differential time domain method 520 270 190 120 80 55 35
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5. Discussion

The distribution function, gð�Þ, can be derived from Equation (1) for near-Debye
dielectric relaxation, such as in the case of BTS20 at temperatures 30–60�C, for
which the discharge current–time spectrum is approximated to an exponent function.
The curve of gð�Þ reveals the regularity with which the peak position of the relaxation
time moves toward shorter times, from 350 s to 30 s, with increasing temperature
and the peak position is closely matched with the results derived by the differential
time domain spectrum method.

In particular, the relaxation time at room temperature is comparable to the
relaxation time results obtained previously by the present authors [13,14]. The
experiment of slow relaxation of piezoelectric resonance shows that this relaxation is
related to the injection and transportation of space charge [13,14]. The thermal
activation behavior of space charge relaxation may be obtained from relaxation
current spectrum at different temperature. This is interesting for us. Furthermore,
the profiles of gð�Þ at different temperatures may contain much more unknown
information related to structure variations inside ferroelectrics.

For BTS20 at temperatures above 60�C and PLZT, gð�Þ can not be derived from
Equation (1) by the Tikhonov regularization method. As mentioned above, data
error, the lack of data and improper relationship of Equation (1) may lead to this
situation. Excluding data error, we propose that the reason gð�Þ cannot be derived
from Equation (1) both for BTS20 above 60�C and for PLZT is either the lack
of data or Equation (1) is inapplicable. It is clear that a monotonically increasing
current curve can not be described by Equation (1) at all. Considering the two joint
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10−10
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100

105

1010
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Figure 9. (Color online). Picard plot for PLZT at T¼ 60�C; it does not satisfy the DPC.
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Figure 10. (Color online). The squares are gð�Þ, which we have set, and the circles are the gð�Þ
results that we derived by the Tikhonov regularization method: (a) gð�Þ set as a double �
function; (b) gð�Þ set as a complicated function.
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lines behavior in time domain response of URL (for example, for PLZT) presented

by Jonscher [1,2] the difficulty may come from the limitation of experiment

conditions; in other words, the difficulty may be solved if a wider range of current

data is collected.

6. Conclusion

The distribution function of relaxation times, gð�Þ, can be derived from BTS20

discharge current at 20–60�C by the Tikhonov regularization method. The peak

position of the relaxation time moves to shorter times with increasing temperature,

which indicates a thermally activation process of space charge relaxation. In both

cases, for BTS20 at temperatures above 60�C and PLZT, gð�Þ can not be derived

from Equations (5) by the regularization method because of inadequate experiment

conditions (the lack of data) or improper application of Equation (5).
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Appendix 1. Tikhonov regularization method

Tikhonov regularization method

The form of Tikhonov regularization method used in this paper is

x� ¼ min
x
f Ax� bk k

2
þ�2 xk k2g, A 2 Rm�n, m � n, b 2 Rm: ð6Þ

Philosophical Magazine 1249

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
X
i
'
a
n
 
J
i
a
o
t
o
n
g
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
4
:
2
6
 
2
2
 
A
u
g
u
s
t
 
2
0
0
9



With respect to lease squares method, an additional regularization term is added to the
minimum. The role of this regularization term is to ensure that the norm of the solution should
be lower than that of the lease square solution, which would become abnormally large at some
point. Choosing proper � to make a compromise between minimization of Ax� bk k

2 and xk k2

is important. The assistant tool for choosing proper � is L-Curve [9].
Using the SVD, the solution of the Tikhonov regularization method given by Equation (6)

is given by x� ¼
Pn

i¼1
�2i

�2
i
¼�2

uTi b

�i
vi, where the filter factor fi ¼

�2i
�2
i
þ�2

, An important property

of the filter factor is that as �i decrease the corresponding fi tend to zero. When �! 0, and
x� ! xLS, different fi selection leads to a different regularization method. In the present
paper, the Tikhonov regularization method is used.

Validity check of Tikhonov regularization method

We generate a discharge current data set from Equation (1), in which gð�Þ are known, and then
derive gð�Þ from the supposed discharge current data in the reverse direction by the Tikhonov
regularization method. The result should fit with the original gð�Þ, which is known.
We perform these two steps to check the validity of the algorithm.

In Figure 10, the squares are gð�Þ, which we have set, including a double � function and
a complicated function. The circles are the results that we have derived for gð�Þ by the
Tikhonov regularization method. These figures illustrate that the Tikhonov regularization
method can derive gð�Þ correctly.
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