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Flexoelectric effect, which is defined as strain gradient—induced polarization or electric
gradient—induced strain in crystalline solids, can be presented as a fourth-rank tensor. The
symmetry of the flexoelectric coefficients in matrix form is studied. The results indicate that the
direct flexoelectric coefficients should be presented in 3 x 18 form and the converse flexoelectric
coefficients in 6 x 9 form, rather than 6 x 6 form, like elastic constants. In addition, non-zero and
independent elements in the matrices have been calculated for 32 point groups and 7 Ci groups.
These results will provide valuable reference to the theoretical and application studies of
flexoelectric effect. © 2011 American Institute of Physics. [doi:10.1063/1.3662196]

INTRODUCTION

Flexoelectric effect is an electromechanical coupling
phenomenon in crystalline solids. Unlike the piezoelectric
effect, this effect has no crystallographic constraint. Direct
flexoelectricity describes the coupling between electric
polarization and strain gradient and can be characterized by
the following formula:

S
P = Mijklai)gv (1)

where P is the induced polarization, p is the flexoelectric
coefficient, a fourth-rank tensor, s is elastic strain, and x is
the axis.'

Flexoelectricity was firstly named by Indenbom in
analogy with charge separation in non-piezoelectric liquid
crystals.” Later, it was regarded as an intrinsic property of
the materials. Tagantsev firstly made an exhaustive theoreti-
cal analysis about the mechanism of this effect, which
contained four parts: (1) dynamic bulk flexoelectricity, (2)
static bulk flexoelectricity, (3) surface flexoelectricity, and
(4) surface piezoelectricity.>™

For solid crystals and dielectrics, the flexoelectric
coefficient was previously estimated to have the order
of magnitude of e/a, which is approximately equal to
107'° ¢/m.%7 Recently, the coefficients value in certain fer-
roelectrics, incipient ferroelectric, and relaxor ferroelectric
perovskites were measured experimentally by Cross and his
co-workers.®” The enhanced flexoelectric coefficients by at
least 4-5 orders have been obtained in some specific ferro-
electric solid-state materials with nano-polarized clusters,
such as BaTiO3-based material systems. The applied device,
such as the truncated pyramid structure, has a reasonable and
attractive superior equivalent piezoelectric coefficient, which
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is more than 100-200 pC/N.'® Another attractive feature of
the flexoelectricity phenomenon in solids is its equivalent
piezoelectric coefficient, which is inversely proportional to
the thickness of the active layer d. If the size of a designed
sample is scaled down in the same ratio, the equivalent
piezoelectric flexoelectric coefficient will be increased
drastically."!

With proper and careful design, this new flexoelectric
phenomenon in solids inherently exhibits great advantages
over piezoelectric materials used currently in either having
sensing without actuating, or even having actuating without
sensing, or having both sensing and actuating properties.

But the mechanics of this effect are not very clear. It
seems a fundamental problem must be solved promptly: the
symmetry of the flexoelectric coefficients. In 2006, Cross
proposed that flexoelectric coefficients have the same sym-
metry with the electrostrictive constant.' For cubic crystal, it
has only three independent non-zero components: {1, {2,
and py4. Recently, a different viewpoint has been raised by
H. Le Quang and Q.-C. He after analyzing the number and
types of all possible rotational symmetries for flexoelectric
tensors.

To solve this problem, this paper bases from the funda-
mental tensor relationship of the flexoelectricity and
expresses the symmetry of the flexoelectric coefficients in
matrices form.

SYMMETRY OF DIRECT FLEXOELECTRICITY

The flexoelectric coefficient and the electrostrictive con-
stant usually have no comparable properties either in form or
nature.

Xij = QijuPiPy. ()

The strain tensor and the product terms P,P; are symmetri-
cal, while the strain gradient term is a partial derivative.

© 2011 American Institute of Physics
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Actually, it is a third rank tensor in Cartesian coordinates. So
the most significant difference between the coefficients is
that electrostrictive constant Q combines two second-rank
tensors, while y combines a first-rank tensor and a third-rank
tensor.

Because of the terms of the strain gradient, the equa-
tion differs greatly from the common dielectric effects. It
is necessary to discuss whether the coefficient is a tensor.
As we know, all tensors should subject to the principle of
coordinate transformation; therefore, when an old coordi-
nate changes, the tensors P, S, and x should be trans-
formed too.

Py =d.P;, (3)
Siy = didySi, @)
Xy = aj,x/ 5)
combines with Eq. (1),
i i S i 8(al ailslk')
Py =a;P; = a,»/.“ijkla—j =a /‘iﬂd%- (6)
M A(a; xy)

Obviously, the transformation matrix will not always be reg-
ular matrix only when all coordinates are the same kinds of
the coordinate systems, such as Cartesian coordinates and
cylindrical coordinates. But different coordinate system
transformation is not involved in the area of crystals and
dielectrics.

Thus, we can obtain directly,

ddj ay Sy = a; d Sy, (7

Ba{x/: a{ Ox, ®)

|

myp 0 0wy O 0 g O

H3x18 = 0 wg O 0wy O 0wy
0 0 wmy 0 0 py 0 O

Hi11r = Ho222 = M3333= Hips

Hi133= H2233= Hi122= H2121= H3232= H3131= H111s

Hi221= H1331= Ha112= Ho3z= M3203= HM3113= Hi4-

For isotropic material, the number of the non-zero independ-
ent components reduces to two further though the matrix
transformation.

A is defined as a symmetry operation matrix, which is
an arbitrary rotation around the x axis,

J. Appl. Phys. 110, 104106 (2011)

TABLE I. Symmetry of coefficient combination.

s: elastic constant Q: electrostrictive u: flexoelectric

21 36 54

/

!
i g K
Bor = dyay ag a; -

(€))
The tensor nature of the pj; can be demonstrated by the
above equation.

The matrix u should reflect the relationship between the
induced polarization and applied strain gradient. Focusing on
Eq. (1), the polarization term is a vector (first rank tensor)
which indicates that the matrix u is more suitable to be writ-
ten as the form of 3 xn rather than 6 x m. In terms of
physics, the polarization (the subscript i) is an electrical
quantity, but the strain gradient (the subscript j, k, [) is a
dynamical variable. The subscript i is not commutative with
the subscript /, so, by taking the subscript / and i as a whole,
to describe the effect may conflict with its physical
implication.

For strain gradient tensor, only i and j is commutative.
A unique method is used to decrease its rank.

To simplify the formulation, let

ik _ e (10)
8x1
[ (4] [} es3 €y es €6 ey eg €9
e el €3 €21 €222 €223 €33] €332 €333
ep €10 el e €3 €14 eis €6 €17 e
2e121 2e1 2e13 2e131 2e1: 2e133 2e31 2ea3n 2er33
Then, Eq. (1) can be written as
Pi = u,e,. (1)

For cubic crystal, after the subscript transformation, the
matrix presentation should qualify the following form:

0 O my 0 0 0 wyy 0 O 0
O wy 0 0 0 0 0 0 0 |,
JCTR 0 0 myy 0 0 0 pyyy O
|
1 0 O
A=|0 m n m = cos0, n = sind.
0 —n m

Owning to this operation, the strain gradient tensor e,
changes to ¢/,,

/
e, =N".e,

where
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10 0 O 0 0 0 0 0
O0m —n O 0 0 0 0 0
On m O 0 0 0 0 0
00 0 m*> 0 0 n? 0 0
00 0 O m —m’n 0 mn? —n?
00 0 0 mln m? 0 n’ mn®
00 0 n? 0 0 m? 0 0
00 0 0 mn* -—-n’ 0 m? —m?

N — 00 0 O n mn? 0 m2n m?
00 0 O 0 0 0 0 0
00 0 O 0 0 0 0 0
00 0 O 0 0 0 0 0
00 0 O 0 0 0 0 0
00 0 O 0 0 0 0 0
00 0 O 0 0 0 0 0
00 O 2mn O 0 —2mn 0 0
00 0 0 2m’n —2mn* 0 —2m*n 2mn?
00 0 0 2mn*> 2m’n 0 —2mn*> —2m’n

combined with the identical equation
W=AuN".

Then, the relationship between the coefficients can be writ-
ten as

2mPn? (uyy = pygy) + (m* + 0t =200y =0 (12)
combined with
m*+n* =1, (13)
)
2m*n* (g — gy — 2i14) = 0. (14)
Thus, for arbitrary m, n (mn # 0),
1
H14:§(H11 = i) (15)

SYMMETRY OF CONVERSE FLEXOELECTRICITY

Converse flexoelectricity is the coupling between the
applied gradient of the electric field intensity and the induced
elastic strain. This can be characterized by the following
formula:

OE;
Xij= :uijkla—xl' (16)
Converse flexoelectric coefficients are also a low symmetri-
cal fourth-rank tensor. Obviously, the subscript k and 1 is not
commutative, so it can be characterized by a 6x9 matrix.

J. Appl. Phys. 110, 104106 (2011)

o0 O 0 O 0 0 0 0

O 0 O 0 0 0 0 0 0

0O 0 O 0 O 0 0 0 0
o0 O 0 0 0 —mn 0 0

0 0 0 0 0 0 0 —m’n mn’®

O o0 O 0 O 0 0 mn? —m’n
0O 0 O 0 O 0 0 mn 0

0O 0 O 0 0 0 0 m’n —mn?
0 0 0 0 0 0 0 mn’® m’n
m 0 0 —-n O 0 0 0 0

0 m*> —mn 0 —mn n® 0 0 0

0 mn m> 0 —n* —mn 0 0 0

n 0 0 m O 0 0 0 0

0 mn —n*> 0 m> —mn 0 0 0

0 n» mn 0 mn m? 0 0 0

O 0 O 0 0 0 m>—n? 0 0

0 0 0 0 0 0 0 m> —mn* nd—m’n
O 0 O 0 0 0 0 m*n—n® m’ —mn?

Actually, the converse flexoelectric coefficients have the
same symmetry with the direct flexoelectric coefficients. The
numbers of both the direct and converse matrix components
are 54. Take the analogous method and definition

=en(m=1,2,,,9) (ki =11,12,13,21,,,33)

Oxy

5 =l = )25 = i £)). an

For cubic crystal, it satisfies the following character:

tp 0 0 0 ms O 0 0 s
s 00 0 py 0O 0 0 s
s 00 0 s O 0O 0 puy
0 0 0 0 0 g O m O}
0 0 w O O O e O O
0 e O e O O O 0 O
Hinn = Hozoo = H3333= Mty

H1133= H2233= H1122= M3311= M3322= Ho211= Hiss
Ho323= H2330= Hi1212= M1221= H1331= H1313~ Hae-

For isotropic medium, the relationship between the non-zero
components is

Hae = Hip — 5 (18)

The difference between Egs. (15) and (18) will be empha-

sized in the discussion.

DISCUSSION

Maybe these notations, calculated in cubic crystals and
isotropic medium, are according with Ref. 1, but the
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TABLE II. Different coefficient relationship for isotropic medium.

J. Appl. Phys. 110, 104106 (2011)

Compliance s Stiffness ¢ Electrostriction Q Direct u Converse
Si1, 512, 544 C11,C12,Ca4 011,012,044 Hits Hanrs Mg ity Hass Hae

Sqq = 2(511 — 8 1 =2 — 1 = —

44 (s11 12) s :E(C” - O (011 — 012) Iy :E(’u” — ) e = (1 — Hys)

difference can be revealed and illustrated in Table I. The key
point is that both the direct and converse flexoelectric coeffi-
cients are very low symmetrical, because only the subscripts
of the strain term are commutative, which means that the
four subscripts i, j, k, [ will have 54 different combinations.
However, the electrostrictive constant only has 36 different
subscript combinations, because both 7, j and &, / are commu-
tative; the elastic compliance constant has 21 different sub-
script combinations, since i, j as a whole can exchange with
the whole of k, [ further.

Most of the crystalline materials studied recently are in
cubic phase. But the fourth-rank coefficients’ symmetry is
almost hidden in cubic crystals due to Neumann’s law.'* For
cubic crystals, the three different coefficients Q, s, and p
have absolutely the same non-zero independent components
(subscript form 1111, 1122, and 1221).

For the isotropic medium, the relationship of the non-
zero independent components is different.

Actually, the origin of this difference derives from ma-
trix form. If we take them into the fourth-rank tensor form,
then a universal relationship will be found.

A :%(Allll — Aj122). (19)
A stands for any of the coefficient in Table II.

The unity of the fourth-rank tensor in isotropic medium
can be concluded through formula (19). In addition,
Table III expresses the demonstrations of the different coeffi-
cients, respectively.

Then, we discuss the coefficients in various crystalline
point groups and Curie groups. The details are shown in the
Appendix. In contrast with the previous work, we also ana-
lyze the numbers of the non-zero independent components
for different symmetry class.

Table IV is in accordance with the results calculated by
H. Le Quang and Q.-C. He,'? who used the harmonic decom-

TABLE III. Relationship between tensor components and matrix

position and Cartan decomposition of the group theory to
solve the problem of the number and types of all rotational
symmetries for flexoelectric tensor. Based on the characters
of symmetry groups and basis vectors, the group theory is
unique and systematic in calculating the non-zero independ-
ent components. Comparing with their rotational group
theory, our method describes the symmetry more directly
and visually and provides the specific component position
and the relationship between the non-zero components for
each point group and Curie group in the matrices.

These results will provide valuable reference to the theo-
retical and application studies of flexoelectric effect. It
reveals clearly that the flexoelectric coefficient is lower
symmetrical than the elastic constant and electrostrictive
constant.

SUMMARY

This paper discusses the proper notation of the flexo-
electric coefficient in matrix form. The flexoelectric coeffi-
cient is an asymmetrical tensor, due to the gradient term of
its definition. Compared with the electrostrictive constant
and the elastic constant, it has more non-zero independent
components, except for the cubic crystals and the isotropic
medium. In fact, most fourth-rank tensors of cubic crystals
have only three independent components due to its extremely
high symmetry. For isotropic medium, widely applied nowa-
days, the accurate number of the non-zero independent com-
ponents further reduces to only two.

The traditional 6 x 6 matrix form cannot express the
symmetrical quality of flexoelectric coefficients. The correct
form for direct flexoelectric and converse flexoelectric coef-
ficients is 3 x 18 and 6 x 9. The matrices calculated in the
Appendix express more new information about the flexoelec-
tric effect, which may provide guidelines for future research

TABLE IV. Numbers of the non-zero independent components for different
point groups and Curie groups.

components. Point and Curie groups s/c  Q  udirect/converse
Relationship Demonstrations 11 21 36 54
2, m, 2/m 13 20 28
sS4 = 4s1212 X4 = 2003 = 2(52323X23 + $2332X32) = 4512124 222, mm2, mmm 9 12 15
C44 = C1212 X4 = X3 = (co33X03 + €2330%32) = 2¢1212 X 1/2x4 3,3 7 11 18
= C1212X4 32, 3m, 3 m 6 8 10
044 =401 x4 = 2x12 = 2(Q1212P1P2 + Q1201 P2P1) = 4Q1p1,P1 P2 4,4, 4/m 71 14
g = Moo Py = 082 4m_m, 42m422, 4/mmm 6 7 8
PRy 6,6, 6/m, 00, c00/m 5 7 13
a6 = 214212 OE, 0E, 622, 6mm, 6m2, 6/mmm, 002, com, 0o /mm 5 6 7

=200 = 2( oy ot =2

s (” 2 gt M g 23, m3 34 5
_5 OE, i OE, 432, 43m, m3m 3 3 3
= A Ox,  Oxg 0000, 0O0OM 2 2 2
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work. In addition, for the origin of the flexoelectricity, we
believe flexoelectricity exists in such materials, where exist-
ing random polarization or polarization can be aligned by
stress gradient. If, in a material, no dipole or polarization
formed under stress gradient, such as in some covalent
bonded solids, the flexoelectric effect would not exist.
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APPENDIX: DIFFERENCES BETWEEN S, Q, AND
FOR SPECIFIC POINT GROUPS AND CURIE GROUPS

Point groups (1, 1)

S11 S12 813 S14 S15 S16 On Qi 0Oz Ou Ois O Hir M2 Mgz Mg M5 Bie Bz Hag o Hao
S12 S22 23 S 5 526 | | Qa1 Om Oz Ou Qo5 One | | Mot Moo Moz fos  fas  Hoe Mo Hog Moo
S13 8§23 §33 34 S35 S36 031 O3 0O O 035 O Har Mz M3z Mg M35 Hizg H37  H3g  H3o
S14  S24  S34  Saa S45  S46 Ou Qun Qs Ou 0Oss O My Hao M4z Haq Has Hae a7 Hag Hao
S15 825 S35 Sas Sss Ss6 | [ Osi Oso Osz Osy Oss Ose | | Usi Hsp  Hsz  Hsa  Hss  Hse  Hs7  Hsg  Hso
S16 S26  S36  S46  S56  S66 Os1 Q62 O3 Qs Qo5 Des He1  He2  Hez Hea MHes Hes He7  Hes  Heo
Point groups (2,m,2/m)
siiosi2osi3 0 osis 0| (0O Op O 0 05 0 pr 0wy 0 s 00wy 00wy
sz s 3 0 s5 0 Oy On Opn 0 0O 0 Por 0 o3 0 frs 0y 0y
s;3 83 833 0 535 0 O3 On O 0 05 0 w0 w3 0 g5 00 py; 00 g
0 0 0 s 0 4 0 0 0 Ou 0 QO 0 wup 0wy 0 e 0 g O
s;15 85 835 0 ss5 0 Osi O, Os3 0 QOss O st 0 w3 0 pss 0 ps; 0 s
0 0 0 s 0 66 0 0 0 Ou 0 O 0 up 0 pss O pgg O pgg O
Point groups (222, mm2, mmm)
sitosi2osi3 00 0 ]Qy Op Q3 0 0 0 iy 00 0 s 0 0 0 py
sz 0s» s3 0 0 0 Oy On 0n O 0 0 oy 0 0 0 s 0 0 0
si3 s3 s33 0 0 0 Oy 0Oxn 03 O 0 0 i 00 0 ps 0 0 0
0O 0 0 s44 0 O 0 0 0 Ou O 0 0 0 0 0 0 e 0 g O
0O 0 0 0 s O 0 0 0 0 Oss O 0 0 us3 O 0 0 us; O 0
o o0 o0 0 0 se¢6 0 0 0 0 0 O 0 wup 0 pg O 0 0 0 0
Point groups (3, 3)
[ si1 Sz si3 sS4 —8s 0 17O Qi Qi O —0 Oi6 i
Sz Si S13 —S14 85 0 On 0Oy 0O —0u 0 =06
sz sz osu3 0 0 0 05 QO3 0O 0 0 0
s —sie 0 su 0 0 Ou —04s 0 Qu Oy Os,
—825  §25 0 S44 2514 05, 0O 0 Q45 Oy 204
0 0 0 s 2514 2(s1—s02)] -0 Q6 0 O 201 2(01 — Q)
[ Hiz Hi3 Hig His —Hoe Hi7 —lbg Mg |
His —Hia —Hi7 —Hi2 Hip Hae —Hi3 Hog  Hig
y M3 0 0 0 M3 0 0 0 H39
Haq Hap Ha3 Hsa —Ha1  Hae Ha7 Hag
—Hy —Hsp Hae “Hy TH4y3 T He3 Hag —Hy7
L Mot M — s —2pas M — s —Her  2Mas —2pag 2y 0
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Point groups (32,3 m,3m)

(511 s
Si2 S
S13 813
S14 —S14
0 0
L 0 0
[

s

« M3y
Haq

0

| 0

Point groups (4, 4.4/m)

[s11

S12

513

0

0

LS16

X

Point groups (4 mm, 42m 422,4/mmm)
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S13 S14 0 0 O On Qi QOu 0 0
s;i3 —s14 0 0 On Ou Qi —Qu O 0
s 0 0 0 O3 0Oy O O 0 0
0 sS4 0 0 Oy —04 Ous 0 0
0 0 su 2514 0 0 0 0 Ou 204
0 0 2514 2(sii—s2)]JL O 0 0 0 201, Qu
0 0 s —He 0 —Hag Mo |
0 0 M1 o 0 g Hig
0 0 0 Uy 0 0 0
0 0 —Ha1 Mg 0 Hag
Hsp Hae ~Hs2 0 0 Hag 0 0
M — Mis —246 My — s 0 0 —2u4g 0 0
szosi3 000 si6 ] [Qn QO Qi O 0 QO
suoos3 000 —si6| (O QO Qi O 0 —0Qi
s;i3 s3 0 0 0 03 03 033 0 0 0
0 0 s4 O 0 0 0 0 Ou 0Os O
0 0 0 sy O 0 0 0 -0 Ou O
=si6 0 0 0 s | Qs —Qa O 0 0 Qs |
My Hip 0 Hig Hys 0 0 0 I |
s —Hig —Hi2 Hyg 0 g
M3 H3p 0 0 M3y 0 H3g
0 0 Hy3 0 0 Hae  Ha7  Hyg 0
0 0 Hae 0 0 TH4z Hag T Hag 0
L He1  He2 0 Her  —Hey 0 0 0 —H3 |
(s sz osi3 0 0 07701 Q@ O O 0 07
szosuosi3 00 0110 O Q3 0 0 0
s;3 S;3 s33 0 0 0 03 O3 033 O 0 0
0 0 0 s O O 0 0 0 QOu O 0
0 0 0 0 s O 0 0 0 0 Ou O
0 0 0 0 O s6dL O 0 0 0 0 Qg
(w00 0 s 0 0 0 py
s 0 0 0wy O 0 0 o
y ty 0 0 0 w3y O 0 0z
0 0 0 0 0 wme 0 wg O
0 0 mwme O O O g O O
L0 s O e O O O O O
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Point groups and Curie groups (6, 6,6/m, 0o, 0o /n)

S11

S12

S13

S12

S11

S13

Hiq
His

Hay
0

0

L He1

S13 0
sz 0 0
533 0
0 s4 O
0 0 sy
0O 0 O
Hiz
—Hyg
H3p
0
0
M — s

M43

Hag
0

S O O o O

2(s11 — s12) |
Hyg

—H12
0

0
0

Hir — Has

His
Hiy

Hay
0

0

—He1

Point groups and Curie groups (622,6 mm, 6 m2,6/mmm, oont, 002, 00 /mnt)

(S Si2 813 0 0

S S 813 0 0

S13 813 833 0 0

S44 0 O

0 S44 0
L 0 0 2(s11—s12)d

[ 11 0 0 0

My 0 0 0

M3y 0 0 0

X

0 0 0

0 M6 0
L Hip — His Hip — His

Point groups (23, m3)
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