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outer wall, we should consider the key facts that the outer
wall area covers the lumen area and the outer wall area
excluded the lumen area forms a ring. Hence the traditional
U-Net method cannot segment the thin portion of vessel wall
area and causes an overlap of lumen and outer wall contours,
since the relationship between of lumen and outer wall area
is not considered.

Figure 12 shows several segmentation results of the caro-
tid artery obtained by the traditional U-Net method and the
proposed segmentation subnetwork. In [Figs. 12(a)–12(f)],
the lumen boundary and the outer wall boundary identified
and outlined by the trained radiologists are shown in red or
green outlines, respectively. The corresponding segmentation
results of the vessel wall obtained by the traditional U-Net
method and the proposed segmentation subnetwork are plot-
ted in [Figs. 12(g)–12(l)] and [Figs. 12(s)–12(x)], respec-
tively, where the subtraction operation of the lumen and the
outer wall segmentation areas is completed to obtain more
intuitive comparison of the vessel wall segmentation. Unfor-
tunately, the traditional U-Net method cannot segment the

thin portion of vessel wall area and results in an overlap of
lumen and outer wall contours as shown in [Figs. 12(g)–
12(l)], while we can find that the proposed segmentation sub-
network can improve the automated segmentation in the same
part as shown in [Figs. 12(s)–12(x)].

Furthermore, [Figs. 12(m)–12(r)] show the segmentation
results of the vessel wall obtained by the proposed segmenta-
tion subnetwork without the vessel wall loss given in Eq. (7),
that is, only the losses given in Eqs. (5) and (6) are used in
Eq. (4). Obviously, the proposed segmentation subnetwork
without the vessel wall loss does not ensure that the vessel
wall is a ring as shown in [Figs. 12(m)–12(n)], while the seg-
mentation of lumen contours is exacerbated at the challeng-
ing locations with artifacts as shown in [Figs. 12(o)–12(p)],
and the obtained rough outer wall contours suppress the back-
ground tissues as shown in [Figs. 12(q)–12(r)]. However, as
described above, the proposed segmentation subnetwork
establishes the relationship between the lumen and the outer
wall areas by the proposed triple Dice loss defined in Eq. (4),
where the vessel wall loss defined in Eq. (7) is added as a

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIG. 10. (a–f) The segmentation results of the lumen obtained by B-spline snake (in red) and the proposed DeepMAD network (in green) and (g–l) the corre-
sponding ground-truth segmented by the trained radiologists (in red). DeepMAD, deep morphology aided diagnosis. [Color figure can be viewed at wileyonline
library.com]

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIG. 11. (a–f) The segmentation results of the outer wall obtained by B-spline snake (in red) and the proposed DeepMAD network (in green) and (g–l) the corre-
sponding ground-truth segmented by the trained radiologists (in red). DeepMAD, deep morphology aided diagnosis. [Color figure can be viewed at wileyonline
library.com]
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constraint by considering the relationship that the outer wall
area excluding the lumen area should form a ring. Obviously
we can find that the proposed segmentation subnetwork can
improve the automated segmentation in the same part as
shown in [Figs. 12(s)–12(x)].

On the other hand, the diagnosis subnetwork was pro-
posed by using a combination of the morphological and
image information to distinguish the atherosclerotic and the
normal carotid arteries. Unlike traditional clinical indexes of
the carotid atherosclerosis, the diagnosis subnetwork is
trained under the supervision of the modified AHA lesion
Types. In the diagnosis subnetwork, the unreliable mark was
prevented for the diagnosis of carotid atherosclerosis, and the
morphological information and image information are com-
bined to improve the diagnosis performance. The validity of
the diagnosis subnetwork was evaluated on two datasets and
compared with other methods in Tables III and IV. The visual
features have more potential image representations and more
discriminating information than clinical parameters, and it
can be used to diagnose atherosclerosis without the need to
extract the clinical parameters (e.g., the vessel wall thickness
and the remodeling index), where the clinical parameters are
based on information currently observed by the clinician,
while the visual features are a deep representation of a

broader set of image attributes, and some of which may be
unrelated to what the clinician explicitly defines. Since the
morphology stream and the image stream are fused in the fea-
ture layer and the deep supervision is used to “guide” early
stream feature learning to improve significantly the diagnosis
performance of carotid atherosclerosis, the proposed diagno-
sis subnetwork is superior to the morphology stream, the
image stream and the similar network without deep supervi-
sion, and it has better diagnosis performance on the “CAREII
test” dataset (0.9503 AUC and 0.8916 Accuracy) and the
“AIM-HIGH Trail test” dataset (0.9227 AUC and 0.8679
Accuracy) as shown in Tables III and IV.

In addition, the proposed DeepMAD network also has
some limitations. Firstly, the extraction processing of the ROI
(80 9 80 pixel square image) was manually performed from
each T1-weighted MRI slice, where the ROI is located at the
manual center point of the carotid artery lumen, and the data-
sets “CAREII test” and “AIM-HIGH Trail test” include the
lumen center points provided by the trained radiologists.
However, the center point can be located easily and automati-
cally, and the elaborate method for automated centerline
detection58,59 is currently being studied. Secondly, many seg-
mentation methods have been proposed from different per-
spectives in the literature. Due to the limited paper space, we

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

FIG. 12. The segmentation results of the lumen and the outer wall obtained by (a–f) the trained radiologists, (g–l) the traditional U-Net method, (m–r) the pro-
posed segmentation subnetwork without the vessel wall loss, and (s–r) the proposed segmentation subnetwork. [Color figure can be viewed at wileyonlinelibra
ry.com]
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will compare the proposed DeepMAD network with other
methods in future work.

7. CONCLUSIONS

In this paper, we proposed an ensemble and end-to-end
network named DeepMAD network for the segmentation of
2D carotid artery vessel wall area and the diagnosis of
atherosclerotic carotid artery slices, where the CNN was used
to segment the lumen and the outer wall areas together and to
automatically diagnose carotid atherosclerosis. The Deep-
MAD network was evaluated on two test datasets, and it was
shown that the experimental results were consistent with the
manual marking of the wall boundaries (the lumen and the
outer wall borders) and the manual labeling for the diagnosis
of carotid atherosclerosis. In addition, it was found that the
trained DeepMAD network from one test data set could be
successfully transferred to another test dataset. The proposed
DeepMAD network can be used in clinical trials to help the
radiologists perform cumbersome reading tasks such as
screening for the normal carotid and the vessel wall contours
from atherosclerotic arteries.
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