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MSE-Based Regularization Approach to Direction
Estimation of Coherent Narrowband Signals Using
Linear Prediction

Jingmin Xin Member, IEEEand Akira SanpMember, IEEE

Abstract—This paper addresses the problem of directions-of-ar- [51], [54] [for a uniform linear array (ULA)], and weighted
rival (DOAs) estimation of coherent narrowband signals impinging - subspace fitting (WSF) [43], [48], [49].
on a uniform linear array (ULA) when the number of signals is un- In the Min-Norm linear prediction (LP) method for a ULA
known. By using an overdetermined linear prediction (LP) model - o . .
with a subarray scheme, the DOAs of coherent signals can be esti- [41, 5], SmQUIar value decomlpos!t'on (SVD) '_S applied to an
mated from the zeros of the corresponding prediction polynomial. overdetermined LP data matrix with a truncation to reduce the
Although the corrected least squares (CLS) technique can be used noise effect and to mitigate the ill-conditioned nature of the con-
to improve the accuracy of the LP parameters estimated from the ventional LP method. The accuracy of the estimated LP param-
noisy array data, the inversion of the resulting matrix in the CLS eters is obtained in the sense of least squares, and the DOASs of
estimation is ill-conditioned, and then, the CLS estimation becomes oo . - ’
unstable. To combat this numerical instability, we introduce mul- th? incident signals are estimated from the zeros of a polyno-
tiple regularization parameters into the CLS estimation and show Mmial formed from the LP parameters. It has been shown that the
that determining the number of coherent signals is closely related Min-Norm LP method [4], [5] provides excellent resolution in
to the truncation of the eigenvalues. An analytical expression of moderately low signal-to-noise ratio (SNR) environments [6].
the mean square error (MSE) of the estimated LP parameters is As studied in [7], in the LP-based direction finding methods
derived, and it is clarified that the number of signals can be deter- . L . . '
mined by comparing the optimal regularization parameters with the rgllable est_lmat|on of the LP parameters is clearly an impor-
the corresponding eigenvalues. An iterative regularization algo- tantissue. To improve the accuracy of the LP parameters esti-
rithm is developed for estimating directions without anya priori mated from the noisy array data, the total least squares (TLS)
knowledge, where the number of coherent signals and the noise technique was used to reduce the noise effect from both the ob-
variance are estimated from the noise-corrupted received data si- servation vector and the data matrix [8].
multaneously. Unfortunately, like the other subspace-based methods except
Index Terms—Array processing, eigenvalue decomposition MODE and WSF, the Min-Norm LP and TLS-LP methods [4],
I(E\./DZ.' linear prediction (LP), mean square error (MSE), requ- g1 suffer serious degradation when the incident signals are
arization. mutually coherent in the practical scenarios due to multipath
propagation in which the rank of the source signal covariance
|. INTRODUCTION matrix is reduced. To improve the performance of the sub-

RRAY signal processing is used in many fields to eXs_,pace—based direction estimation algorithms, some methods
Atract the desired information from data received at ch as spatial smoothing (SS) [9], smoothed eigenvector

array of sensors. In these applications, the estimation of ],bart'l(ihelgotlenlv?tpr sm?cfmh,:n(? [1%] ha\;]e been p)lropQS(acjd ;o
directions-of-arrival (DOASs) of signals from the noisy data i ombat the deleterious etiect due to coherency. Inspired by
a major task. To estimate the DOAs of narrowband signa S preprocessing in Wh'Ch. the subarray covariance matrices
maximum likelihood (ML) methods [41], [42], [51]-[53], [48], are averaged for decorrelation, a subarray averaging was used

[56] and subspace-based methods are well known [59)]. 0 produce a noise-free reduced-rank approximation for an

eneral, subspace-based methods have attracted conside data matri.x, and a smoothed Min—Norm'LP method was
g P oposed to estimate the DOAs of coherent signals [12], [13].

attention because of their relatively high resolution capability =" i b h ih the LP model

and low computational complexity. Typical subspace-bas (ES'nfgrpor?hmg asu a(rjray ISC e(;n;a wi et | m(t)' e’tni\:"

methods include the Pisarenko method [1], multiple sign "L~ methods were developed lo accurately estimate the
irections of impinging signals in the presence of multipath

classification (MUSIC) [2], estimation of signal parameters vi i 141 115] H th directi timati
rotational invariance techniques (ESPRIT) [3], minimum norfopagation [14], [15]. However, these direction estimation

(Min-Norm) [4], method of direction estimation (MODE) [50] methods for coherent signals requar@riori knowledge of the
' "number of incident signals, as do most of the subspace-based

methods [1]-[4], [50]. Because the number of coherent or
Manuscript received September 10, 1999; revised August 6, 2001. The as$gncoherent signals is usua”y unknown, a detection procedure

SV'ZS’SS 'izrkrcggwsﬁ'ggr;hﬁ{ﬁfewOfth'spaperandapprowng ItfoerbIICat'cﬁ6]—[23] generally must precede the direction estimation.
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Laboratories Co., Ltd., Yokosuka, Japan (e-mail: xin@yrp-ktrl.co.jp). e[r43]' [48] are generally the optimal solution to the detection
A. Sano is with the Department of System Design Engineering, Keio Univer- . . .

sity, Yokohama, Japan (e-mail: sano@sd.keio.ac jp). and estimation problem. In these methods, the solution of
Publisher Item Identifier S 1053-587X(01)09237-6. direction finding is required for each of several hypotheses.
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In addition, MODE and WSF are the statistically efficientegularization approach to CLS estimation. In Section 1V, the
direction estimator in cases when either the number of snajirection estimation from the received array data is derived. The
shots or the SNR is sufficiently large [48], [52]. In generakffectiveness of the proposed approach is evaluated in Section V,
MODE needs the number of signals and the dimension afhd the paper is summarized in Section VI.
signal subspace [50], [51], and the WSF detection scheme can
be combined with MODE to provide the estimated number Il. PROBLEM FORMULATION
of signals for MODE/WSF [43], [48]. However, when theA Data Model
number of snapshots is finite, it will be difficult to choose an™
appropriate threshold for the sequential hypothesis testing ofVe consider a linear array d/ equally spaced omnidirec-
WSF detection scheme without aaypriori knowledge [16], tional sensors with spacing. We assume thag (¢ < M)
[20], [21], [43]. narrowband signals with center frequengyare far from the

In this paper, we investigate the problem of estimating tréray and impinge on the array from distinct directidi }.
DOAs of coherent narrowband signals impinging on a ULAwhednder the narrowband assumption, the wavefronts can be ap-
the number of signals is unknown. A new mean—square—erMpXimated as planar. Then, the propagation of a wavefront be-
(MSE) based regularization approach is developed by usiff§een sensors can be modeled as a simple phase delay, and all
the LP model of array data with an appropriate overdeterminBig Signals are the baseband equivalents [48], [59], [60]. Then,
order (larger than the number of signals) and a subarray schetig.signal received by th¢h sensor is the superimpositionof
In general, the ordinary least squares (LS) estimate of the LBRINging wavefronts and the additive noise, which can be ex-
parameters from the noise-corrupted array data becomes bigd&gsed as
[24], [7]. The corrected least squares (CLS) method [25], [26] is
a refinement of the LS method in attempt to obtain a consistent yi(n) = zi(n) +wi(n) (1)
estimate by combating the noise effect in both the data matri
and data vector, and it is asymptotically equivalent to the TLS, . . 4 : ;
method [27]. However, because the estimated noisy covariar?ged itive noise. The signal;(n) is represented as
matrix is subtracted by a noise covariance matrix, the resulting
matrix has a reduced rank, and then, the CLS estimation of the zi(n) = Z sp(n)e?@e =1 2
LP parameters will be ill conditioned so that adequate truncation k=1

of the eigenvalues of the resulting matrix should be carried ou}1 the incident sianak is th q
[28], [29]. To perform this truncation, the noise variance and tghere the incident sign k(n) is the zeéro-mean random
ocess with the directiofy, measured relative to the normal of

number of signals are obviously required. Unfortunately, th ) . .
are unknown in practice. Sggg(,jwo = 2n fo, T = (d/c)sin 6y, andc is the propagation

Therefore, we introduce multiple regularization parameter . . .

into the CLS estimation to stabilize the estimate of the LP param—The re_ce|ved data can thus be described by using vector-ma-
. S s drX notation as

eters. We find that the regularization parameters minimizing the

MSE of the estimated LP parameters give an optimal truncation y(n) = A(0)s(n) +w(n) 3)

ofthe eigenvalues. The number of signals can then be determined

from the number of retained eigenvalues. An asymptotic MSfere y(n), s(n), andw(n) are the vectors of the received

is derived through the calculations of the third- and fourth-ordghya  the incident signals, and the additive noise given by

moments of the additive noise, and an analytical expression,gf,) = [y, (n), y2(n), ..., yar(n)], s(n) = [s1(n), s2(n),

the optimal regularization parameters is provided. A data-based ' 5 ()|7, and w(n) = [wi(n), wa(n), ..., wy(n)]?,

iterative algorithm is developed to estimate the DOAs of thg,q A(6) is the array response matrix given by

coherent signals without argy priori knowledge in which the 44y = T[a(6,), a(6,). ..., a(6,)], in which a(6;) = [L,

noise variance and number of coherent signals are estimatedn.  ~ ciwo(M=1)7]7 and(-)? denotes transposition.

simultaneously, and the convergence behavior of the iterative ali this paper, we make the following assumptions in the

gorithm is analyzed. The performance of the proposed approgd}ivation of the algorithm.

is demonstrated and compared with that of the conventionalassymption A:The ULA is calibrated, and the array

methods through numerical examples. The simulation resygsponse matrixA(6) is unambiguous, i.e., for any collec-
show that the proposed method performs better than the Wighh of distinct {6,, 6,, ..., 6,}, the corresponding vectors
detection scheme [43], [48] when the number of snapshotsfigg,) a(6,), ..., a(6,)} are linearly independent. Equiva-
small and that it outperforms the SS-MDL and SS-AIC methogsntly, the matrixA(¢) must have full rank.

[16], [17] in detecting the number of signals. In addition, when assumption B:Without loss of generality, the impinging sig-
the numberof signalsis correctly estimated, the proposed methk are coherent and are expressed as

is superior to SS-based root-MUSIC [9], [58], the smoothed

)ﬂerexi(n) is the noiseless received signal, angn) is the

Min-Norm [13], and the CLS method (with the true number of si(n) = Br s1(n), fork=1,2,...,¢q (4)
signals or noise variance) in resolving closely spaced coherent
signals. wheref;, is the multipath coefficient representing the complex

The data model and decorrelation using the LP technique atéenuation of théth signal with respect to the first ong(n),
presented in Section Il. Section Il discusses the MSE-basgg £ 0, ands; = 1.
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Assumption C:The additive noise componengss;(n)} are {l,1+1, ..., 1+ m — 1} sensors, the signaj,,—1(n) can
temporally and spatially white complex Gaussian noise withe predicted from a linear combination of the other signals
zero-mean and varianee, and they are uncorrelated with the

source signals. The noise variance is given by Tigmo1(n) = xi (n)a, fori=1,2,....L (6)
. ) where z;(n) = [zi(n), zig1(n), ..., Tigm—2(n)]?, @ =
E{wi(n)wi(n)} =076, and E{wi(n)wi(n)} =0 [@m—1, Gm_2, ..., a1]T, and{a;} are the coefficients of the

(5) LP model. Heresn andL are the subarray size and the number
of subarrays. The order of the LP modekis— 1; therefore,

fori, k = 1,2,..., M, whereé; , is the Kronecker delta, the model order is larger than the number of signals as we have
andE{ -} and the asterisk denote the expectation and complessumed that: > ¢ + 1.
conjugate. By substituting (1) into (6), the noise-corrupted signal

Remark A:In this paper, a crucial assumption is that thg;+»—1(n) can be expressed using the forward linear predic-
equally spaced linear array is calibrated so that the noiseléiss (FLP) model
signals received at each sensor obey a linear difference equation -
exactly, i.e., the calibration and other model errors are not Yiym—1(n) = y; (n)a+erpm—1(n) (7)
considered. Additionally, the additive noise is assumed to b% _ T
temporally and spatially white Gaussian noise. If the spatigl erey(n) =[wi(n), vi41(n), -, Ygm—2(n)] ’E“i'r}_l(@
: U ) IS the prediction error given byii..—i1(n) = w; (n)a,
whiteness condition is not met, we can prewhiten the arrd T T
data by linearly transforming the estimated covariance matfg(™ = [ (n)T’ wl*g’__l_(n)] gp”’{(g) = [w(n). wera(n).
of the noise, which can be estimated from measurements WiﬂEozf’l”LZ’*ng)i ’fr%r;n ‘27; E/;eah:av]e é compact vector-matrix
no signal present [48], [59]. More specifically, if the nois N ! ! P

covariance matrix i€, the received array data are multipliejorm to express the array data as

by @Q~/2, which denotes a Hermitian square-root factor of 2(n) = ®(n)a +e(n) ®)
Q. Furthermore, although we assume that the incident signals
are fully coherent for simplicity, as shown in Remark B, it isvhere z(n) = [ym(n), Ymer (), .-, yr(n)]F, ®(n) =
straightforward to extend the proposed method to the case[@f(n),y,(n). ..., y.(n)]%, and e(n) = [em(n), Em1(n),
partly coherent or incoherent signals. U ..., em(»)]*. From (1), we havez(n) = z,(n) +
In array signal processing, the problem of estimating thg, (n), and ®(n) = &,(n) + W(n), where z,(n) =
signal parameters from the sensor measurements has receiygdn), z,,,41(n), ...,z ()7, 2w (n) = [wm(n), wmii(n),
much attention, and many algorithms have been proposed., wy;(n)]”, ®.(n) = [z1(n), 2(n), ..., z5(n)]", and
However, most of them require knowledge of the number o (n) = [w:(n), wa(n),..., wr(n)]*.

signals impinging on the array. In this paper, we consider theunder the assumptions of the data model, we easily see that
direction estimation of coherent signals from the noise-cathe covariance matri¥ of the data matrix®(n) in (8) can be
rupted array data when the number of signals and the nojg@resented as the sum of the noiseless (i.e., signal) covariance
variance are unknown. matrix and noise covariance matrix

1
B. Linear Prediction and Decorrelation = I E{®"(n)®(n)} ==, + 0?l,,1 9)

b It IS W(T” kpown thstdthfg §outrqe S|ghnal c?vgtnarsce matr;;‘( V;"t hereX, is the noiseless covariance matrix given By =
e singu ar(!.e.,raq glglen)ln coherent situations so tha LYE{®H (n)®,(n)}, I,n_. denotes am — 1) x (m —
number of signals impinging on the array cannot be estimat

directlv from ih ltinlicity of the ei | fih identity matrix, and - ) denotes Hermitian transposition.
irectly from the multiplicity of the eigenvalues ot the array CONow, we can derive the following relationship between the rank

variance matrix. To circumvent this crucial rank deficit problen]jf the noiseless covariance matrix and the number of coherent
specific modifications such as spatial smoothing [9], [30] hav

b ted to decorrelate the signal coh d sﬁg[nals.
een suggested lo decorrelate he signai coherency and restofe 5. ¢ the array is partitioned properly so that the

the ra.n.k of t.he source S|gna! covariance matn).( to the numbr‘ﬁfmber of subarrays and the number of coherent signals satisfy
of arriving signals [17]. In this paper, we consider a new aPhe relation, > ¢, then the rank of the matrix, will equal

proac_h for estimating t_he signal parameters in the coherent CH¥E number of coherent signals regardless of whether the source
by using the LP technique and a subarray scheme. ianals are coherent

: : . S
In essence, the DOAs are estimated by using the time dela Proof: By defining A, and 4, as the submatrices con-

(phase d_ifferences) of signals impi_nging on the indiVidu%listing of the firstr — 1 andL rows of theM x ¢ array response
sensors in the array. From the spatial property of array d trix A(6) in (3), from (2) and (4), we can express the noise-
where the noiseless signal received at different sensors %vectoml(n) ir’1 (6) as (9], [30] ,

phase-shifted versions of one another, the noiseless receive

signals{z;(n)} in (2) obey a linear difference equation [4], z(n) = ALD""'s(n) = A, D' 'Bs;(n) (10)
[5], [31]-[33]. By dividing the total array intol. overlap-
ping forward subarrays withe sensors wheren > ¢ + 1 whereD = diagc/“0™, ¢f“o™2 .., ¢f“07a) andB = [,

andL = M — m + 1, i.e., thelth subarray comprises /%, ..., 3,]*. By substituting (10) into the definition of the
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noiseless matrixP.(n) in (8) and performing some manipula-estimation of coherent signals is reduced to that of estimating
tions, we obtain the LP parameter§s; } from the noisy array data.

T o L—1
®; (n) =[A1B, ALDB, ..., ALD"" " Blsi(n) [Il. OPTIMAL REGULARIZATION FOR CLS ESTIMATION

= A\ BAj 51(n) (11) A. CLS Estimation of LP Parameters
where B = diag i, s, ..., ;). We can then obtain the From (15), we can find that the reliable estimation of the LP
noiseless covariance mati®, in (9) as parameters is very important for direction finding. Even though
the additive noise componenfsv;(n)} in (1) are assumed to
3, = 1 E{®"(n)®,(n)} = 1 cicr, (12) be mutually uncorrelated white Gaussian, the prediction error
L L €1+m—1(n) in (7) is no longer white. Although the ordinary LS
whereC = A;BAY, andr, = E{s,(n)s}(n)} is the autocor- Method is simple, it is no longer an optimal estimator due to
relation of the source signal (n). the accumulation of additive noise#(n). The LS estimate of

Under the assumption for the source signals that 0, @ from (8) generally has a bias and is not consistent [8], [24],
we easily find that ranld3) = . Because the submatrices and this estimate will result in an inaccurate estimation of the

and A, of A(#) are Vandermonde matrices and we assumédgle of arrival [7]. To obtain an unbiased and consistent esti-
m > ¢+ 1, we can obtain ranfd;) = min(m — 1, ¢) = ¢ Mate, avariety of estimation schemes have been proposed. The

and rankA4,) = min(L, ¢q) = ¢ for L > ¢. Hence, we have CLS method [25], [26] is a modification of the LS estimation

ranC) = g, i.e., the rank of matri¥, is given by rankX,) =  to combat the noise effects kfn) and®(n) in (8) simultane-
q. m ously. -
Remark B: When some incident signals are coherent and!f n = 1,2, ..., N, from (8), the CLS estimate of the LP

the others are uncorrelated with these signals and with ed@fameters is given by [25]

other, by assuming the firgt(1 < p < ¢) signals are coherent . (@ 2y 1 16

ones as defined in (4) and performing some manipulations, acrs = (¥ —olm)” g (16)
. w7 ok A H o T 7

we can obtain¥, = (1/L)A](r;B*A5 A:B + R,)A;, where & = (1/LN) ET/::I ‘I)H(n)‘I)(n), g = (1/LN)

where theq x ¢ diagonal matricesB and R, are given '22;1 & (n)z(n), and N is the number of snapshots of the

by B = diagp, ..., 5p, 0, ..., 0), Rg = _diag0, array data. It should be noted that the true noise variaids
s 00Ty T ), AN, = Esk(n)si(n)} Then, We o qiired in the CLS estimation.

easily find that the rank of matriX, still equals the number of In (16), we can find that thém — 1) x (m — 1) matrix in
incident signals. O '

. . —. the bracket approaches the noiseless covariance n¥ajrias
Accordingly, for L > ¢, the eigenvalue decomposmonN becomes sufficiently large, i.e

(EVD) of the noiseless covariance matlix can be expressed

as Alim (O —0l,_1)=%-0%1,_1 =X, a7
_ H

3, =VAV (13) while the noiseless covariance matlx tends to be singular
where V. = [u1,v2, ..., vmea], A = diagAi, Aa, ... because its rank is given by rai®) = ¢ < m — 1, wherelim
)\mil)j {)\i}. and {v;} are the eigenvalues and corre-d_enouis t2he probgbmty limit. The_small eigenvalues of_ the ma-
sponding elgenvectorsVVH = vy = 1,_, and trix ¥ —o=1I,,,_1 will cause the estimat&-. s to be numerically
MZ2X2 20> == A1 = 0_"—’ﬁ1u's the unstable;therefore, the —q— 1 extraneous zeros of the corre-
covariance matris qof theqdata matri@(n) has the following sponding prediction polynomial tend to fall closer to or outside
EVD: the unit circle. They are usually observed as spurious peaks in

the spatial spectrum [35], [36]. It is thus difficult to distinguish
S =VAV" + %1, .= VSASV;L’ + o2, (14) thegq signal zeros from the extraneous zeros, and furthermore,
] the direction estimation will be inaccurate. Although the trun-

where A, = diagAi, Az, ..., Ag), and ¥V, = [v1,v2, cation of the eigenvalues is useful in stabilizing this ill-condi-
..., ¥g]. The dimension of the signal subspdke is ¢. This tjgned estimation [7], [28], [29], [36], [37], [46], the number of
rank property is clearly useful for estimating the number Qfrincipal eigenvalues (i.e., the number of signals) and the noise
coherent signals and their directions from (8). The detectigd iance are needed.
of the number of coherent signals can be formulated as thgp the following, we will study ways to determine the rank
determination of the rank of the noiseless covariance matgxnhe noiseless covariance matrix (i.e., the number of coherent

from the noise-corrupted array data. _ signals) and to estimate the noise variance simultaneously so
From the LP parametefs.; }, a prediction polynomiaD(z)  that we can improve the estimation of the LP parameters from
can thus be formed as [4], [33] the noisy measurements.
D(z) =1- alz_l — = anl—lz_(nl_l) (15)

B. Optimal Regularization for CLS Estimation

wherez = eiwo(d/e)sin? The DOAs of the coherent signals can It is found that regularization is another approach to alleviate
be estimated from the signal zeros of)(>) closest to the unit the ill-posed problem [34], [37], [46], [47]. In fact, regulariza-
circle in thez plane. It follows that the problem of directiontion and truncation are intimately related. Here, we develop a
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regularization scheme for combating the ill-conditioning of thand the minimum MSE is obtained as
CLS estimatéicrs in (16). 2 q )
By introducing a regularization matrik into (16), we have MSE({p 1) . — (1 Ai+o
({pz})mm LN + ||a|| Zz:; )

aregularized CLS (RCLS) estimate of the LP parameters as W+ 08)
m—1
arors(R) = (¥ —o’I,1 + R)™'g (18) + 3 plal. (23)
i=q+1

where the regularization matrik is given by ) o ) )
Proof: By letting the derivative of MSE p; }) in (21) with

respect tof p; } equal zero and using the factthigt,; = --- =

R=VPV" (9) Am—1 = 01in (13), the optimal regularization parametgs }
are easily obtained. Then, by substituting (22) into (21), we ob-

in which P = diag(p1, p2, ..., pm—-1), and{p;} are the mul- tain the minimum MSE in (23). n
tiple regularization parameters. Remark C: Here, we consider the theoretical computation of

The next problem is how to determine the regularization meke true LP parameters included in the definition of the MSE in
trix R so that the estimation of the LP parameters can be iff20). In the absence of additive noise, from (6) and (8), we have
proved. Let us consider the MSE of the estimiater.s(R) de- a compact LP model
fined by

Zs (71) =@ (n)a’ (24)
MSE = E{lla — arcrs(R)[*}. (20)
As derived in the proof of Lemma in Section Il, by some

Because the data vecta(n) and matrix®(n) are perturbed straightforward manipulations, we can obtain a succinct ex-
by the additive noise componers;(n)} as shown in (8), the pression of the Yule—Walker equations
derivation of the MSE of the estimafg:cr.s(R) will be com-
plicated because the third- and fourth-order moments of the ad- (,=2.a (25)
ditive noise should be taken into account [25]. For a sufficiently
large number of snapshofg, the analytical expression of thewhere
asymptotic MSE is given by Theorem 1.

Theorem 1:1f the number of snapshot®y is sufficiently ¢, = (1/L)E{® (n)z,(n)} = (1/L)r,A;B* A A;By
large, the asymptotic MSE of the estimd@tgcis(R) in (18) x5, =(1/L)E{®" (n)®,(n)} = (1/L)r. A B* A A,BAT

is given by y= [ejwo(rn—l)‘rl’eng(rn—l)‘rz’ o eng(m—l)‘rq]T
m—1 . . .
X + o2 andr, is the autocorrelation of signal (n). Because the rank of
MSE({p:}) = LN (1 +[lall) Z A 2 the covariance matriX, is ¢, from (25), the true LP parameters
—1 ( i+ pz) A
= can be obtained [4], [28]
m—1
pi vl a|2
DN s (21) T pwlt
)\ + pz = vt 26
§=j S (26)
Proof. See Appendix A. B where the principal eigenvalues, A, ..., A, and eigenvec-

The first term of the asymptotic MSE in (21) is the varianc

vy, v2, ..., vg are givenin (13). Note that (26) is the min-
:ﬁthhand the”second (l)ne s ]ETE bias term. F;om (lel wecan f| m norm solution of LP parameters, and we call it the “true”
atthe small eigenvalues of the matdx— o21,,_; will cause solution in this paper. 0

an excessive increase in the MSE of the estinaafigs. If the
regularization parametefg; } are increased, the variance ternz Minimum MSE-Based Truncation and Detection

in (21) decreases, and the bias term increases. Obviously, an ac-

curate estimate of the LP parameters with a minimum MSE c When the number of snapshaisis sufficiently large, from

be obtained by choosing the adequate regularization parame?ys} and (19), the RCLS estimate in (18) can be expressed as

{pi}. ,

. Theorem 2:The qptlmal regula}rlzanon parameters that min- arcrs({p:}) (27)
imize the asymptotic MSE are given by 1
o2(1 + ||al|?) It is known that both regularization and truncation tend to
) ) dampen the contributions of the small eigenvalues [37], [46].
Pl = .L(;’ fori=1,2,...,q From (26) and (27), we can find that the regularization with
LNAilvi'al? multiple parameters plays an important role in the truncation
00, fori=q¢+1,...,m—1 of small eigenvalues, where a regularization parameter with an

(22) infinite value implies the discarding of the corresponding small
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eigenvalue. As mentioned above, the MSE of the estimateln most practical situations, information about the variance of

arcrs({p:}) can be improved by adequately truncating ththe additive noise is unavailable and must be estimated from the

small eigenvalues that cause instability in the estimation.  received array data. As derived in (9) and (25), we can obtain
To determine whether the eigenvaldg should be retained

or discarded, we use the MSE as the decision criterion. We can ¢ = 1 E{®"(n)z(n)}

thus formulate the truncation problem as the minimization of L

MSE({p;}) in (21) on the condition that each regularization pa- _1 E{®H E{WH
rameterp; takes only one value: zero or infinity. The solution is L EADL (n)zs(n)} + BIW ()2 (n)}}
given as the following theorem. =C(.. (30)
Theorem 3: The optimal truncation of the eigenvaligthat
minimizes the asymptotic MSE is given by Then, from (8) and (9), we easily get
1
@ [0 WA >p (retain) Il == E{@"(n)[®(n), 2(n)]}
pi = . o . (28) L
oo, if Ay < p¢ (discard). —[%, (=11, + I, (31)
Proof: See Appendix B. m where
From Theorem 3, we can find thaf works as a threshold .
value determining whether the eigenvaljeshould be retained IL, = (1/L)E{®; (n)[®s(n), zs(n)]} = [Zs, (]
or discarded. Therefore, if there exists a nunﬁeandpET) in IL, = (1/L)E{WH (n)[W(n), z,(n)]}

(28) satisfies =010 1)x1]

AP =

(29)  rewritten asll, = (1/L)r,AtB*A¥ A,BAL whereA; is an
m X ¢ matrix consisting of the first. rows of the matrixA(#) in

) , (3). Hence, we have rafiKl,;) = ¢; therefore, thém — 1) x m

the eigenvalues\;, Ao, ..., Ay should be retained, whereasyatrix I1 in (31) has the following SVD [27]:

the others should be discarded. The dimension of the subspace

0, for1=1,2 ..., K and0,,; denotes @ x 1 null vector. From (25)II, can be
{oo, fori=K+1,...,m—1

spanned by the retained eigenvectordg(is Because the rank II=UAVH (32)
of the noiseless covariance mat®,; equalsqg as shown in

Lemma, i.e., the dimension of the signal subspaag there- wherelU = [@,, @y, ..., Gm_1], V = [01, T2, ..., U], A =
fore, we can decide that = K, i.e., the number of coherentdiag\;, Xo, ..., A1), @andi; > Xo > - > X, > gy =
signals is equal to the determined truncation number. cee = A1 = 02,

In summary, we have shown that detecting the number of co-Therefore, by performing the SVD on tfie.— 1) x m matrix
herent signals is the same as determining the truncation of {de ¢|
eigenvalues. The decision rule is as follows: R

. _LLH
1) Compute the optimal regularization parametgss} in [T, 9] =UAV (33)
(22). o with the i | by usi find where® andg are given in (16), we can estimate the noise vari-
2) Comparep; W'.t .t € eigenvalué,; by using (28) to fin ances? as the smallest singular valdg,_; or as the average of
the K that satisfies (29). , kS =
em — g — 1 smallest singular valuel,; 1, ..., Ap,_1 [43],

. o . _th
This is the basic principle for detecting the number of S|gnaI[§¥8], [51], [57]. The eigenvalues and eigenvectors of the matrix

It implies that we have to obtain the optimal regularization P& can then be estimated from the finite noisy array data
rameters{ p¢ } for determining the optimal truncation.

N
& 1 H .2 oA ~H
S.= 7% ;:1: ST (n)®(n) — 6%, = VAV . (34)

IV. DATA-BASED ITERATIVE ALGORITHM FOR DOA

ESTIMATION Because the RCLS estimatewivith the optimal regulariza-
o . ) . tion parameters is still unknown, to replace the true value of

A. Regularization with Accessible Noisy Data with its estimate, we introduce another set of regularization pa-

As shown in (22), the optimal regularization paramefgry ~r@metersiy, }, wherep = 1,2, ..., m — 1. We then have an
fori = 1,2, ..., g depend on the LP parametersthe noise alternative regularized estimate
variancer?, and the eigenvalugs\; } and the eigenvectofss; } mel . nH

. . UpU.

of the noiseless covariance matk . All of these are unknown arcrs({up}) = Z e g (35)

and must be estimated from the received array data. In this sec-
tion, we present an approach to calculating the regularization pa-
rameters needed to detect and estimate the coherent signals frofiihen, by replacing the true values af o2, {\;}, and
the finite snapshots of the noisy measureméptén)}_, . {v;} in (21) with their estimatesircrs({1p}), 62, {\i},

p=1
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and {#;} respectively, and using the property of EVD tha amaydata | [p i 7,P iterative §,{ps},6?
vy = vv# = [,,_,, we get the estimated MSE (EMSE) (¢}, |_subarmay regularization
of the estimaté@rcrs(R)
RCLS
estimation
EMSE{p:}, {1p}) \ ,
DOA {8,} q zeros closest -

= 2 (1 arers(GnhID) 3o T Sl o [ it irle | 7 PObmomial
_ ) ; 208 8
Ly = i+ p)?

Fig. 1. Flowchart of the proposed algorithm for estimating the directions of

m—1 9 coherent signals.
+ 5 f i& 1ol gl (36)
=1 (it pi)?(A + i) Step 1) Set the subarray sizeras wherem > ¢ + 1 and
. ] o L =M-m+1 > q,andthen, form the vectarand
Hence, we can obtain the optimal values of the regularization the matrix® asz = [z7(1), 22(2), ..., 2L (N)]¥
parameter§p; } from the available data for the given set{pf,} and® — [&7(1), ¥7(2) o @T’(N)]’T by using
X X (7) and (8).
o ) . o (A + 7)) (N + p1:)? Step 2) Estimate the noise variangg as62 = N1 by
o1 hip}) =07 (Lt llancrs(n DI = S using (33).

(37) Step 3) Estimate the eigenvalugk; } and the eigenvectors
{w;} by using (34) ie.¥, = (I/LN)®"®p —

fori=1,2,...,m— 1. 63,y = VAV"

The alternative parametefg;,} used for calculating the es- SteP4) Letk = 0, and set the |n|t|a(I0;/aIues of the regular-
timatearcrs({1p}) in (35) must have the same values as the ization parameter$y,} asuy” = &, whereisa
optimal regularization parametes$({, }) in order to obtain a small positive number that expresses machine preci-
reliable estimate of the LP parameters. That is, the parameters sion (e.g.£ = 1071). " _

{11, } should be determined by solving the equation Step 5) Calculate the estimaicrs ({4 }) for the given
{1} as
p?({up}):/izv fori:lv 27 "'7m_1' (38)
) 1}
. arcrs({1g? Z - ol g (39)

As shown in (37) 09 ({1, }) depends on the parametdys, }, —
wherep =1, 2, ..., m — 1. It follows that (38) is a nonlinear
equation in terms of the parameters, 2, ..., thm—1, and it

S ! . . . : Step 6) Calculate the regularization paramefet&’} as
is difficult to find the analytical solutions of this equation for P o) u gufanization p {@tf ;

these parameters. However, from (37) and (38), we can deter-

k
mine the regularization parameters from the received array data P = (1 + ||aRCLS({M(k)})||2)
in an iterative manner. The procedure is summarized as follows. 5
T A (3 k
a) Set the initial values of parametefys, } as{u"}. (X +63) ()‘i + ))
b) Calculate the regularization parametgr({uék 1 by ' LN)|oH g]2 (40)
using (37). o

(k)
¢) Update the °|d values ofu,”} 10 the new ones as Step 7) Replace the old valueslgjgk)} with the new ones

(k1) pS({pp )}). Then, repeat the above steps until as
ugk b converges to a constant with a specified limit or
exceeds a specified large value. D = p), (41)
d) Determine the optimal regularization paramegéras
Py = MEHI) If u("“) exceeds a specified large valye(e.g.,
x = 10%°), force it toy, and calculate the increment
B. DOA Estimation with Iterative Regularization Algorithm of ) as ApdTY = D _ 8 Then, set
As described above, the regularization is the key to detecting k=Fk+1, ret.urn to Step 5), and re'pea}t the above
the number of signals and estimating their DOAs. By combining proced’l;lr? until any one of the following is satisfied:
the principles of the optimal truncation and the data-based reg- i) |Au + | <éfori=1,2..m-1(@g,
ularization with the estimation of the noise variance, we can 6 =107°), or ii) the number of iterations > 20.

present an iterative regularization algorithm that uses only theFrom the results of the iterative algorithm, the optimal reg-
received datdy, (n)}._;. In this algorithm, the regularization ularization parameters are estimatedsgs= /ék*l) for ¢ =
parameters are updated in an iterative manner withoutaany, 2, ..., m — 1. By comparing the eigenvalug and the reg-
priori information. A flowchart of the proposed algorithm is deularization parametes?, the number of coherent signals is es-
picted in Fig. 1. timated to be; = K, whereK is the number of the converged
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parameterq p¢}. The noise variance can then be estimated & Convergence Behavior of Iterative Algorithm

[43], [48], [51], [57] It is rather difficult to strictly and theoretically analyze the

convergence of the proposed iterative regularization algorithm.

52 = 1 Z iz (42 Here, we discuss the convergence behavior for a finite but large
number of snapshots when the noise variance and the true noise-

less covariance matrix are known.

Finally, by using (34), the RCLS estimate of the LP parametersin the iterative algorithm, the parametﬁj” (and, hence,

is obtained as (’““)) in the kth iteration is determined by using the parame-
m=l . . H tersugk), ug"), e uf,f) 1 Obtained in thek — 1)th iteration,
dRcLs = Z Bk Y (43) Wherelljc{ > 1. Bybs{ubstltutlng (39) into (40) and using the fact
= A o7 thatV" V =VV" =1I,,_;, we can rewritg\" as
Then, the DOAs of the coherent signals can be estimated from
the ¢ zeros of the corresponding LP polynomialz) = 1 — ) _ m-1 |1}]{{g|2 52(\; + 62)
G127t — o  — am_12~ (™D that are closest to the unit circle i + Z N 2 T oH 12
. th 54, ™Y | LNXB! |
in the z plane or from thej highest peaks of the spectrum + pp
1/1D(2) . o
Remark D: Because a causal model is used for the prediction ) (5\‘ " (k))2 G5(Ai +65)
(i.e., FLP), it follows from the Lemma in Section Il that the max- i LN);

imum number of coherent signals that can be detected<s 1
M /2 [9], [30]. Forward—backward averaging is a well-known (k) ()\ + u(k)) + 1 (45)
method for enhancing the performance of parameter estimation

in array signal processing [30], [54], [60]. Similarly, the full,here
array can be partitioned intobackward subarrays, each with

sensors [30]; therefore, we have the following backward linear -

prediction (BLP) model for the noise-corrupted signgh) in RONE 3_:1 o) gl LN )|o! g|? (46)
the lth backward subarray ‘ ()\ n u(k)) 63\ +63)
. P#
yi_m(n) = yb,l(”)a+ Eb,L—l+1(”) (44) . 63(5\7‘, + (}3) “7)
wherey, ;(n) = [yv—i41(n), yar—i(n), ..., yr—ip2(n)]", / LNA;

the backward prediction erroe, ;_;+1(n) is given by . *) . . . (%)
_ _ ’ « Thus, we can find that;™ in (40) is a quadratic function @f;
2, -t42 (1) = B (08 B (1) = ] (). () # In¢o)isaq o

anduw, ((n) = [w (n), wati(n), .- w (n)]H thatexpressesaparabollc curve onghep; plane showmg the
b, I\N) = M—141\T M—1 L—142\T?

The above derivations and results are still valid if Wérajectory Of“l minimizing the EMSE for the glvelﬁup b

use FLP and BLP simultaneously [i.e., forward—backwarinerer # . a(r}:ilt)he value ofi*’ on this trajectory gives the
linear prediction (FBLP)] [5], [38], except that the numbePext value ofu; [37] If the parabolic curve does not inter-
of subarraysL, the vectorz, and the matrix® should be Sectthelingi; = p;, 1ei" will diverge to infinity ask — oo. On
replaced byL = 2L,z = [27, 2|7 and® = [®7, ] |7, theotherhand, if the parabollc curve intersects the/dine p;
where z,(n) = [yr(n), yL_l(n), - w(n)]H, and inthelimitk — oo, u{*) will converge to a bounded constant.
B,(n) = [y, 1(n), 9 2(n), ..., 9, (n)]F. In this case, Hence, the converged regularization paramﬁj@r is given
the maximum number of coherent signalsg¢is < 2M/3 by the intersection of the parabolic curve (40) and the straight
[30], and the performance of the proposed algorithm can bee defined byu; = p; [37], [40]. From (45) an(;b (k),
improved as the number of snapshots is doubled. [0 we can obtain

Remark E: In practice, the subarray size should be chosen 2(k) . W\ () 2 (*)
appropriately because the information on the number of signals ~ #; =+ (2)% — )M + A+ =0 (48)
is unavailable. From Remark D, we can find that the maximum
detectable number of signalsgs< M/2orq < 2M/3for M fori = 1,2, ... K, whereu](,k) = u;’“_l) for p # 4. From
sensors when FLP or FBLP, respectively, is used. Therefore, (4B), we can find that if
the proposed method with FLP or FBLP, we can predetermine ~
the number of signals as= M /2 org = 2M /3, and a conser- A +m) <1,
vative value of the subarray size can be chosenas M /2+1 mﬁ’” B
orm = 2M/3+ 1, where the total number of subarrays will b
L = M/2 (for FLP) or L = 2L = 2M/3 (for FBLP). Clearly,
the inequality condition in the choice of the subarray size carlb(k)({ (k=1)1y. ugk%({u(k DY
be satisfied, i.eqn > g+ 1 andL = G (for FLP) or L = g
(for FBLP); therefore, the DOAs of the coherent signals canbe _ ) 5 <ﬁ§k) o\ T \/ (k) (,%(k) _ 4(5\71 + m))> (50)

fori=1,2,..., K (49)

S satisfied, then the two intersections of (48) are given by

estimated. O
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whereugf“f({uék_l)}) < ugf“%({u;k_l) ), andp # 4. From V. NUMERICAL EXAMPLES

(45), the derivatives o,f)gk) in (40) with respect tcpgk) at the

these intersections can be calculated as In this section, we evaluate the effectiveness of the proposed

approach with the FBLP model in estimating the DOAs from

dpt®) X+ B i only the observed array data. In the numerical examples, the
2 =2 : Q) ULA has M = 10 sensors with a half-wavelength spacing,
i T = (st~ i and the incident signals are the coherent binary phase-shift

keying (BPSK) signals with a raised cosine pulse shape with
50% excess bandwidth. The SNR is defined as the ratio of the

<l signal power to the noise power at each sensor. For assessing

(51) the detection performance, the spatial smoothing based Akaike
dp(k) information criterion (AIC) and minimum description length
Z(k) > 1. (52) (MDL) (i.e., SS-AIC and SS-MDL) methods [16], [17] and the
dp; pP =) (0D WSF detection scheme (initialization by MODE) [43], [48],

) . . _[51] are performed. To examine the estimation performance,
The contraction mapping theorem [40] states that if the derivgis | s and CLS methods, smoothed Min-Norm [13], spatial

tive at the intersection is less than one, the point is akstf\ble cQMioothing based root-MUSIC (SS-based root-MUSIC) [9],
vergence point. Therefore, the smaller 50'“@,@({@) - )}_) [58], MODE (with the optimal weighting matrix and linear
will converge to a constant @ — oo. Conversely, gthe IN- constraint), [48], [51], and WSF (initialization by MODE)
verse inequality of (49) is satisfied, i.el(A; +n;)/n{" > 1, [43], [48] are carried out. In these methods, we assume that
a solution for (48) does not exist, i.e., the parabolic curve giveRe number of signals is known, and the dimension of the
by (40) and the straight ling; = p; do not intersect, and}" signal subspace is assumed to equal one in MODE and WSF
will diverge to infinity. and to equal the number of coherent signals in SS-based
It is worthwhile examining the convergence of the iterativepot-MUSIC and smoothed Min-Norm. In addition, the sto-
algorithm when the noise varianeg and the true noiseless co-chastic Cramér—Rao lower bound (CRB) [48], [52] is calculated
variance matrix®, are known and the number of snapshdts for proper comparison. To improve the estimation accuracy,

is finite but large. From (46) and (47), we have the true noise variance is used in the CLS estimate, and the
A0 + ) !as_t step of_ the.two—step procedure of the MODE algorithm
’(k) - is iterated five times (see [55] for more details). The results
g shown below are all based on 200 independent trials (unless
otherwise explicitly stated).
a |1,]{Ig|2 m—1 |vi g|? Example A—Performance versus SNRvo coherent signals
=41+ IV E— Z p_2 with equal power impinge on the ULA from anglés = 5°
(k) (k) .
g’;ﬁ ()\p + pp ) P;;jl (Np ) andéd, = 12°. The number of snapshots and the subarray size

are N = 128 andm = 5, where the number of subarrays is

2 2 2 2 -
o (15 ) (v (14 5)) e PSS | |
LN} g|? Ai LN Ai First, we consider the detection of the number of signals by

) *) (k1) ‘ using the iterative algorithm. When the SNR is 5 dB¥ (=
fori = 1,2, ..., K, whereu,” = pp forp # 4, and 3162), the calculated regularization parameté;ék)} (i.e.,
k =z 1. By using the fact that, = Ay > - 2 Ag > {p*Y for k > 1) from only the received array data are
Aghr =+ I(k))‘mfl =01In (13)'. we can obviously obtain that e in Fig. 2, in which the convergence of the regularization
4N +mi)/r; 7 =00 > 1fori = g+ 1,...,m— 1. Fur-  parameters calculated by using the iterative algorithm with the
thermore, we can find that the inequalitg; +7;)/5t" < 1 true matrixs, in (12) and the actual data is shown for reference.
holds fori = 1,2, ..., g (i.e., K = g) when the number of |n addition, the regularization parameters calculated by using
snapshotsV is finite but large. Therefore, based on the abou@e iterative algorithm with the true parameters suclkas(,,
analysis,ué’ﬁl, oo, 1 will diverge to infinity, whereas q ando? are plotted, and the theoretically optimal regularization
10 il will converge to constants for a finite butparametergp? } calculated using the true mati, in (12), the
large number of snapshots. This agrees with the theoreticdlj parametera given in (26), and the varianeg® are shown.
analytical expression of the optimal regularization parameteFbe regularization paramete,rélk) and u(k) converge to con-

derived in Theorem 2. stants within a few iterations, Whereﬁgc anduik) diverge to
Unfortunately, when the number of snapshots is finite, thefinity. The estimated noise varianced$ = 0.3390, which is
inequality4(\; + m)/ﬂgk) < lwillholdfor¢ =1,2, ..., K, near the true value, where the squared errérigo6 x 10—,

whereK < ¢. Thus, we can easily see that the proposed iteratiBased on these results, the optimal regularization parameters
algorithm sometimes underestimates the number of signals dy¢} and the eigenvalueg\;} of the estimated noiseless co-

to uncertainties in the noise variance and the LP parameters aadance matrix2, are obtained, and they are shown in Fig. 3.
small length of data. However, from the viewpoint of stabilizingVe find that the truncation of the eigenvalues is determined by
the CLS estimate of the LP parameters and reducing its MSEke intersection of the two lines & = 2, i.e., the number of

the result is reasonable. signals is estimated to le= K = 2.
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Fig. 4 shows the distribution of zeros of the LP polynomials iastimate of direction can be obtained.

Fig. 5.

SNR (dB)

Probability of correct detection versus the SNR (dotted line: SS-AIC;
dash-dot line: SS-MDL,; dashed line: WSF detection scheme; and solid line with

Fig. 3. Optimal truncation of eigenvalues by comparing the estimateg proposed method) for Example A = 128, M = 10, andm = 5).
inside the unit circle, and the estimated signal zeros are much

eigenvalues of the noiseless covariance matrix (solid line with “0”) with the

calculated regularization parameters (dashed line) for Example A (SNR
less perturbed from their true locations. Thus, a more reliable

thez-plane for 100 trials corresponding tothe LS, CLS, and pro- We vary the SNR from—10 to 25 dB and run 200 in-
posed RCLS methods. For the LS estimation, the signal zedependent trials at each SNR. The detection performance
and extraneous zeros deviate greatly from the true locatidnsterms of SNR is shown in Fig. 5. In the SS-AIC and
though the zeros are inside the unit circle. For the CLS estin8S-MDL methods, the AIC and MDL criteria are applied
tion, although the estimated signal zeros cluster around the ttaethe m x m spatially smoothed covariance matrix of
locations in a certain sense, the extraneous ones fluctuate wildlybarrays withm sensors [9], [16], [17], and the number

and some of them even wander outside the unit circle. It followed signals is determined by the multiplicity of the smallest
that the estimated DOAs using the LS and CLS methods wéligenvalues. The threshold V) for the hypothesis test of the
= vyv/Nlog N,

have large squared errors. However, by using the proposed f{sF detection scheme is chosen-g3V)
ularized approach, an accurate estimate of the LP parametershich satisfies the conditionmy_..(v(N)/N) = 0 and
= o for strongly consistent

obtained. The zeros of the prediction polynomial are almost &iliny ... (v(NV)/loglog N)
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Fig. 6. RMSEs of the direction estimates versus the SNR ("™ L&"* Fig. 7. Squared biases of the direction estimates versus the SNR (“x™:
CLS; dotted line: SS-based root-MUSIC; dash-dot line: smoothed Min-Norms; “A™: CLS; dotted line: SS-based root-MUSIC; dash-dot line: smoothed
dashed line: MODE; solid line: proposed method; and dash-dots line: CRB) fain-Norm; dashed line: MODE; and solid line: proposed method) for Example
Example A (V = 128, M = 10, andm = 5). A (N =128, M = 10, andm = 5).

estimation of the number of signals (see [43], [48], and reéive subspace approximations with the truncated SVD are used
erences therein for details), wheye= 0.995. The AIC and to remove the perturbations of additive noise and to alleviate
MDL methods are rather simple, i.e., only the eigenvalugse ill-conditioning in the estimate of the LP parameters. The
are needed, whereas the WSF detection scheme requiréd@DE and WSF method provide most accurate estimates than
solution of direction finding for each of several hypotheseghe other methods because the true values of number of signals
However, in this paper, the number of signals (i.e., the rank ahd dimension of signal subspace are used. Additionally, the re-
the noiseless covariance matrix) is determined by minimizirgilts of MODE are almost indistinguishable from the CRB in
the MSE of the estimated LP parameters through the truncatigis empirical scenario (the results of WSF are similar to that
of the eigenvalues. In the proposed algorithm, the informati@f MODE and are omitted here). Even thouatpriori infor-
about the eigenvalues and eigenvectors is jointly exploitafiation on the number of signals and the noise variance is not
whereas an iterative computation is needed to estimate tised, the proposed approach provides more accurate direction
regularization parameters. Atlow SNRs, although the proposegtimation than the LS method, and it overcomes the numerical
approach is inferior to the WSF detection scheme, it outpeénstability of the CLS estimation. However, the proposed ap-
forms the SS-AIC and SS-MDL methods. In this example, th&roach has larger errors than the smoothed Min-Norm, MODE,
simulation shows that the amount of computations requirgéhd WSF method at lower SNRs due to the failure in detecting
by the implementation of the proposed algorithm in terms @fie number of signals, as shown in Fig. 5. As the probability of
MATLAB flops is approximately 2.6100 and 0.8667 timeshe successful detection increases, the proposed algorithm out-
that of the SS-AIC (or SS-MDL) method and WSF detectioperforms the other methods except MODE and WSF at medium
scheme (averaged over 200 runs). to high SNRs, and its RMSEs become closer to the CRB.

Next, we examine the performance of direction estimation. As shown in (21), the MSE of the RCLS estimate consists of
The root MSEs (RMSEs) and squared biases of the estimatkd variance term and bias one. In the MSE-based regulariza-
#; and#, versus SNR are plotted in Figs. 6 and 7, where th®n method, at the expense of introducing bias, we lower the
CRBs of the estimates versus SNR are also plotted in Fig. 6 f@riance of the estimate to reduce the overall MSE of the es-
comparison. Due to the noise effects in the data matrix and dédtaated LP parameters (and, hence, the MSE of the estimated
vector, the LS method gives incorrect results at low to mediudirections). As shown in Fig. 7, in general, the actual biases of
SNRs (e.g., at- 10 to 5 dB). Because the accumulation of noisthe directions estimated by using the proposed method are rather
in the matrix2 (i.e., ¥) takes a similar effect as the regularizasmall at moderately low SNRs and, thus, do not affect the overalll
tion parameter, the direction estimation becomes better to a ddISE.
tain extentat some SNRs (e.g., at5to 15 dB). However, the nois&example  B—Performance versus Number of Snap-
variance is not the optimal parameter for minimizing the MSE ahots: Here, we study the effect of the number of snapshots
the LS estimate. The CLS method is better than the LS algoritton the detection and estimation performances. The simulation
atafew SNRs (especially a2 to 5 dB), but the CLS estimate of conditions are the same as in the previous example, except that
the LP parameters is easily affected by the small eigenvaluegiod SNR is fixed at 5 dB, and the number of snapshétss
the noiseless covariance matﬁig. The smoothed Min-Norm varied from 10 to 1000.
exhibits better performance than the SS-based root-MUSIC, LSFig. 8 shows the probability of detection versus the number of
and CLS methods at low to medium SNRs because two succasapshots. It is found that the proposed method outperforms the
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Detection Performance versus Number of Snapshots
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LS; “A” CLS; dotted line: SS-based root-MUSIC; dash-dot line: smootheldS; “A™ CLS; dotted line: SS-based root-MUSIC; dash-dot line: smoothed

Min-Norm; dashed line: MODE; solid line: proposed method; and dash-dowin-Norm; dashed line: MODE; solid line: proposed method; and dash-dots
line: CRB) for Example C (SNR= 5 dB, N = 128, M = 10, andm = 5).

line: CRB) for Example B (SNR= 5 dB, M = 10, andm = 5).

SS-AIC, SS-MDL, and WSF detection scheme even for a smahkcomes more accurate than that of the SS-based root-MUSIC,
number of snapshots. As mentioned previously, it is difficult temoothed Min-Norm, LS, and CLS methods.

choose an appropriate thresheldV) for the hypothesis testof Example C—Performance versus Angle Separatinthis

WSF detection scheme without aaypriori knowledge when example, we examine the performance of the proposed approach
the number of snapshaté s finite [16], [20], [21], [43], and the with respect to the separation between the angles of the coherent
performance of WSF detection scheme is degraded. In Fig.s@gnals. The simulation conditions are similar to those in the
the RMSEs and CRBs of the estimathsand®, are plotted. first example, except that the SNR is fixed at 5 dB, and the two
The proposed approach performs better than the smoothed Miaherent signals come froh = 0° andf, = A6 with Ad

Norm, LS, and CLS methods, and it can estimate the direcarying from T to 10°. .
tions with less RMSE than the SS-based root-MUSIC at rela-The detection performance and the RMSEs of estimétes

tively small lengths of data. For a larger number of snapshots)d 6 versus angle separatiakdf are shown in Figs. 10 and
the estimated covariance matrix more closely resembles the tiiie where the CRBs are also plotted for reference. As shown
one and results in more precise estimation of the eigenvalued-ig. 10, the SS-AIC and SS-MDL methods exhibit a sharp
and eigenvectors. Therefore, as the number of snapshots isaind sudden degradation for moderate angle separalién
creased, the estimation performance of the proposed appro@bk proposed approach has better detection performance for



XIN AND SANO: MSE-BASED REGULARIZATION APPROACH TO DIRECTION ESTIMATION 2493

(a) SNR=-2.5dB (b) SNR=2.5dB (a) SNR=-2.5dB (b) SNR=2.5dB
100 10?
g o 2 2 ?
3 3 k=)
£ 60 g ¥ w
a a 0 17}
s 4 8 z 3
3 u x u
g 20 ]
(=1 L
0 0 . 102 10?
4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10
Subarray Size m Subarray Size m Subarray Size m Subarray Size m
(c) SNR=10dB (d) SNR=20dB (c) SNR=10dB (d) SNR=20dB
100 R 10’
N, 4
g 80 \\.\‘-._ s 80 3 B
< \y <
i o
g e Wi g e w m
: G g 2 2
s 40 Y s 40 ‘»,.e‘ hd 4
T 20 4 20 \
8 v o8 ¢
] 0 10°
4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10
Subarray Size m Subarray Size m Subarray Size m Subarray Size m

Fig. 12. Probability of correct detection versus the subarray size (dotted lifdg. 13. ERMSES of the direction estimates versus the subarray size (“x”:
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line with “0”: proposed method) for Example DM = 128, andM = 10). Min-Norm; dashed line: MODE; solid line: proposed method; and dash-dots
line: empirical CRB) for Example DX = 128, andM = 10).

relatively small separatiohéd because the information on the

eigenvectors is also exploited, though it is worse than the W§fren the subarray size is about= 6 (=~ M/3 + 1), and this
detection scheme for small&y?. From Fig. 11, we can find that ;g roughly in agreement with the results presented in [8], [15],
the proposed approach performs better than the LSgomtbri - 144, and [45]. For low SNR, the subarray size giving the min-
knowledge-based methods such as the SS-based root-MUSlym ERMSE is larger than this value in general. As shown in
smoothed Min-Norm, and CLS methods for larger separatigfiys 12 and 13, the trend in detection performance versus the
Af. As we noted in the previous examples, the estimatiQiparray size does not coincide with that of the estimation per-
performance is commensurate with the quality of the deteCtgfimance at lower SNRs. In fact, the subarray size is related to
number of coherent signals whenpriori knowledge on the the decorrelation of the signal coherency. If the subarray size is
number of signals and the noise variance are not avgnable. reduced, a good decorrelation can be obtained while the resolu-

Example D—Performance versus Subarray Sizee impact tjon of the direction estimation is degraded due to the small size
of the subarray size on the detection and estimation is consiflthe working array aperture. If the subarray size is increased,
ered in this example. The parameters for the simulation are @ resolution is improved, but the decorrelation effect may be
same as in Example A, except that the subarrayssizevaried nsatisfactory. The optimal subarray size generally depends on
from 4 to 10, where the number of subarraygis- 2 = 1410 the coordinates of the coherent signals and their relative angle
L = 2. To measure the overall estimation performance in telmaases. There is a trade off between the goodness of the decor-
of the subarray size, we define an “empirical RMSE (ERMSE}g|ation and the resolution of the direction estimation; therefore,
of the direction estimatef; } of the coherent signals as the subarray size is set at approximat&ly3-+1 in the previous
examples given here.

LN (0 )2
ERMSE= q—FZZ(ei —91) (54)

i=1 k=1 VI. CONCLUSIONS
Whereéf’“) is the estimate obtained in tlh trial, andK is the In most high-resolution methods of array processing for di-
number of trials (herell = 200). rection finding, the determination of the number of signals is an

For several SNRs, the probability of correct detection and timaportant issue. In this paper, we investigated the direction esti-
ERMSESs of the estimates and 6 against the subarray sizemation of coherent narrowband signals impinging on an equally
m are plotted in Figs. 12 and 13, in which the results of thepaced linear array when the number of signals is unknown.
WSF detection scheme and MODE and the “empirical CRB” aky incorporating the linear prediction technique with a sub-
shown for comparison, where the “empirical CRB” is calculatedrray scheme, we developed an MSE-based regularization ap-
by averaging the corresponding CRBs over the number of quroach. Analytical expressions of the asymptotic MSE and the
herent signals. The proposed approach outperforms the SS-Aldimal regularization parameters that minimize the MSE of the
and SS-MDL methods in terms of number detection and tlestimated LP parameters were derived, and based on them, a
CLS estimation in terms of direction estimation, regardless s€heme for detecting the number of coherent signals was pro-
the subarray size at low SNRs. Note that the choice of subargysed. Furthermore, an iterative regularization algorithm was
size can significantly improve the performance of the proposedesented to estimate the arrival angles of the coherent signals
approach. For high SNR, because the number of signals is fgem only the received noisy array data with@upriori knowl-
timated correctly, the relatively minimum ERMSE is attaineddge, where the number of signals and the noise variance are
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estimated simultaneously. The effectiveness of the proposed apthe first termM; in (A3) is given by
proach was evaluated and compared with those of the conven-
tional methods through numerical examples. The simulation re-

N
sults showed that the proposed method performs better than thg, — 1im {vec <% Z W7 (n)&*(n) — 027T>
n=1

WSF detection scheme when the number of snapshots is small N—oo

and that it outperforms the SS-MDL and SS-AIC methods in N

detecting the number of signals. Although the proposed method 1 ~—r N e
is slightly inferior to MODE (with the true number of signals vec” LN z_:lw (n)®*(n) — o1

and dimension of signal subspace), it is superior to the other

methods (with the true number of signals or noise variance) in 1 — bid _ bid

resolving coherent signals when the number of signals has been ~ LN E{vedm(n)z(" (n))vec" (@i(n)z{' (n))

correctly estimated. _ _
Y +vedw(n)af! (n))vec (wi(n)wf! (n))

APPENDIX A + ved(w (n)wi! (n) ved” (@ (n)zf! (n))

PROOF OFTHEOREM 1 . .
L . . w — Fl{w;
The derivation of the MSE is rather tedious because the cal- +vedwi(njwy (n) {wi (n)wi (m)})

culation of the third- and fourth-order moments of the additive ~ved! (@ (n)wl (n) — E{wi(n)wf (n)})}

noise is required [25], [39]. Here, we show only an outline of

the proof. » _ _ = (M, +M:+Ms+M,). (A4)
First, by substituting (8) into the RCLS estimaigcr.s(R) LN

in (18), we obtain
From the fact that
aroLs(R) —a=(® —0’I,,_; +R)!
N ved b ved? (ed?) = (bd™) @ (h - )
' <ﬁ Y @ (nW(n) —027+R> a =bod? o (k')
n=1

(AD) whereh andb, ande andd are vectors with compatible dimen-

sions, we can obtain the term\$,, M, andM3 in (A4) as

whereW(n) = [wi(n), Wa(n), ..., wr(n)]', I = [I,_1,

O(m—_1yx1)s B = [R, O(n_1)x1], @and0,; denotes @& x 1 null — _ _

vector. Note thate (o () (n)} — o°1. M, = B{vedm(n)a{! (m)vec (wi(n)a’ ()}
Under the assumptions of the source signals and additive =Y. ©0] (A5)

noise, by making some manipulations, we obtain the asymptotic ° "

MSE matrixM,, of the RCLS estimatégrcrs(R) as M, =M

. N A = wi(n)z (n H(@wy(n)wl (n
Ma:A}g%o{(aRCT,S(R)_a)(aRCLS(R)_a)H} E{vedwi(n)z;" (n))vec” (wi(n)w;’ (n))}

= Orn(rnfl) (A6)
=B, +R) U1 0a )M, ®a")

—1
(3R (A2) whereQ,, is anm x m null matrix. In addition, the fourth term
M, in (A4) can be obtained as [25]
where
LN M, = E{vedw(n)w/" (n) — E{w; (n)w] (n)})
T . wT w00\ 270 L R
M= Alli%o{ve‘:(m 2 W@ (n)-o"T +R ) ved (@ (nywf (n) — E{@y(nywl (n)})} (A7)
N _ _
vecd?! e Z W7 (n)®* (n)—c?I" +R" where theikth m x m block elemeniM ;. of M4 is expressed
LN i by
=M +M>+Msz+M, (A3)

My = E{(wiy; 1 (n)@i(n) — E{wisi—1(n)w; (n)})
and we used the relation for mattikand vectob with compat- ) H N "
ible dimensions so thath = (I©b" )ved A”), where ve¢A™) (wrsn—s ()@ (n) = B{wipr—(n)jwr (n) 1)}
is the vector obtained by listing the columns4¥, one beneath = E{w ;1 (n)wipk 1 (n)w(n)w] (n)}
the other, beginning with the leftmost column, apddenotes ‘
the Kronecker operation. — E{w};,_ (nyw(n)} E{witk—1(n)w; (n)} (A8)
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fore, k = 1,2, ..
(M 4ix)1p Of M s is given by
(M yir)np = E{(wii; 1 (M) wir—1(n) }E{wipn—1(n)
w1 ()} + E{(wip—1 (m)wiy,—(n)}

- E{wigk—1(n)wign—1(n)} (A9)

forh,p = 1,2, ..., m. BecauseE{w;(n)wi(n)} = 026, »
and E{w;(n)w(n)} = 0, we have

(Myir)np =0, fori £k (A10)

— ot forh=p ‘

(M 41 )rp = fori =k  (All)
0, forh#p

Accordingly, theikth m x m block elementM 4, of M, in
(A7) is given by

Orn )

4
a*I,

fori £k

Mzmz
ok { fori = k.

(A12)

From (A5), (A6), and (A12), the first termM; of M in (A3)
can be expressed as

1

M, =
17 IN

(B, @ 0’1, + M}). (A13)

Additionally, we can obtain the other terms&f in (A3) as

M, =MY
=vedRY)
1 <
AT - Fr 7 * _2qT
J\hEéo {vecH <LN§_:1W (n)®*(n) — oI )}
= Orn,(rn,—l) (A14)
M, =veq R")ved! (RY). (A15)
By concatenating (A13)-(A15) into (A3), we obtain
1 — — —
M=_—(30 0?1, + M) +ved R ved (RT). (A16)

From (A2) and (A16) and by some manipulations, the asymp-

totic MSE matrixM, in (A2) of the estimatércr.s(R) is ob-
tained as

1
LN
(Z,+R '+ (2. +R)'Raa"R" (D, + R)!

o2

“IN
(Z,+R) '+ (Z,+ R 'Raa"R¥ (=, + R).
(A17)

M, = (Z,+R)(Z, © (c?@’a") + o*a’a* I,,_1)

(1+|lal*)(Zs + R) (. + 0%1,1)
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., m — 1. Furthermore, théipth element Consequently, from the fact that MSEtr{M , }, we obtain the

MSE of the estimatércrs(R) in (18) as

2
MSE = 2 (1+ [|altr{(Z, + 0*Ln_1)(S, + R) 72}

+ 'R (2, + R)*Ra (A18)
where t{ - } denotes the trace operation. By substituting (13)
and (19) into (A18), the asymptotic MSE can be obtained
immediately. [ |

APPENDIX B
PROOF OFTHEOREM 3

Because the minimization of M$Ep; }) in (21) can be per-
formed independently for each indéxthen forp, = 0 and
pi = oo, theith terms of the MSE can be obtained, respectively,
as

A + a2
LNA2

MSE({0}); =0*(1 + [la][2) (B1)

MSE({oc}); = |vilal*. (B2)

If we set the valug,; = 0 as an optimal regularization parameter
rather thanp;, = oo fori = 1, 2, ..., ¢, then the inequality
MSE({0}); < MSE({cc}); should hold, i.e.,

A; +02

Ai > o*(1+ |lall?) NNl

=0 (B3

Hence, we have an optimal rule for retaining the eigenvalue
ash; > p7fori =1, 2, ..., q.Ifwe setthe value of the regular-
ization parameter gs;, = oo, then MSE{0}); > MSE({co});
should be satisfied. Hence, we have an optimal rule for dis-
carding an eigenvalue as < p7. The optimal truncation con-
dition can thus be established. [ |
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