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Abstract—This paper focuses on building an efficient, online, 

and intelligent energy management controller to improve the fuel 

economy of a power-split plug-in hybrid electric vehicle (PHEV). 

Based on the detailed powertrain analysis, the battery current can 

be optimized to improve the fuel economy using dynamic 

programming (DP). Three types of drive cycles, highway, urban, 

and urban (congested), are classified and six typical drive cycles 

are analyzed and simulated in order to study all the driving 

conditions. An online intelligent energy management controller is 

built which consists of two neural network (NN) modules trained 

based on the optimized results obtained by DP method, 

considering the trip length and duration. Based on whether the 

trip length and duration is known or unknown, the controller will 

choose the corresponding NN module to output the effective 

battery current commands to realize the energy management. 

Numerical simulation shows that the proposed controller can 

improve the vehicle fuel economy. 

 
Index Terms—Battery, dynamic programming (DP), neural 

network (NN), plug-in hybrid electric vehicle (PHEV), state of 

charge (SOC), trip length and duration. 

 

I. INTRODUCTION 

ybrid and plug-in electric vehicles (HEVs/PHEVs) have 

excellent fuel economy and environmental advantages 

[1-6]. HEVs and PHEVs are powered with two drive trains, one 

or two electric motors and an internal combustion engine (ICE). 

Managing the proper propulsion energy distribution between 

the two drive trains [4, 5] becomes very essential and important. 

PHEVs, which are equipped with a larger energy storage 

system, represent the development trend of HEVs. Besides 

working under hybrid mode or charge-sustaining (CS) mode, 

PHEVs can power the vehicle by using only the stored energy 

charged from the power grid, referred to as charge depletion 

(CD) mode [7]. This is the major difference between a PHEV 

and a HEV. It combines the merits of a HEV and an electric 
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vehicle (EV). Thus it is more important and more complicated 

to manage the energy distribution between the two drive trains 

for a PHEV than for a HEV. An appropriate energy 

management strategy can improve the fuel economy, decrease 

the operation cost, and prolong the battery life without 

sacrificing the driving performance. The target of this paper is 

to propose an online and intelligent controller to improve the 

fuel economy of a PHEV.  

Since the PHEV has the capability of all electric driving 

(AER), the simplest way to manage the energy distribution 

between battery and ICE is to classify the vehicle running mode 

into two modes: CD mode and CS mode [7]. During CD mode, 

the vehicle can be powered mostly by electric motors until the 

battery state of charge (SOC) [8] drops to a preset 

low-threshold. After that, the vehicle changes into CS mode, 

under which the vehicle works like a conventional HEV, and 

maintains the SOC at the vicinity of the low-threshold. This 

control algorithm is simple and easy to implement. However, it 

may not save fuel consumption in either CD or CS modes, as the 

motor and ICE are only to satisfy the propulsion demand 

without considering efficiency optimization and may not work 

in the high efficiency region.  

Substantial research efforts have been carried out on the 

energy management of HEV and PHEV to improve fuel 

economy [4-6, 9-28], prolong battery life [14, 23] with or 

without the help of global positioning system (GPS) or 

geographic information system (GIS) [29, 30]. The research 

methods can be classified into three categories: (1). Analytic 

methods [4, 5, 9, 31]; (2). Intelligent control algorithms such as 

fuzzy logic [13, 24], neural networks (NNs) [5, 11, 12, 22], and 

model predictive control methods (MPC) [25], genetic 

algorithms [10]; and (3). Optimal theory methods such as 

minimum theory [16, 19] and DP method [5, 11-13, 15, 20, 29, 

32] which includes deterministic DP and stochastic DP. They 

will be briefly discussed below. 

1) Analytic Method 

This type of methods mainly focuses on the powertrain 

analysis and is based on several running modes of PHEV. In [9], 

an intelligent charge-depleting control strategies and fuel 

optimization for a blended-mode PHEV was proposed with 

known electric system loss characteristics, and other variables 
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but without the detailed trip information. The proposed method 

cannot give an optimal solution for the energy management with 

simple analysis. In [31], a modern analytical approach was 

proposed for the power management of blended-mode PHEVs. 

The power management strategy was represented by a pair of 

power parameters that describe the power threshold for turning 

on the engine as well as the optimum battery power in engine-on 

operations. The target is a blended-mode PHEV, and the 

method is not universal for all PHEVs which also include 

extended-range PHEVs. 

2) Intelligent Method 

In [5, 13, 24-26], several typical intelligent methods, such as 

fuzzy logic, MPC, and NNs, are used to control the energy 

distribution in a HEV or PHEV. In [24], the battery working 

state (BWS) was used by a fuzzy logic energy management 

system of a PHEV to make the decision on the power split ratio 

between the battery and the engine based on the BWS and 

vehicle power demand. The safety of the battery is of most 

importance in the paper. In [25], MPC-based energy 

management of a power-split HEV was introduced to obtain the 

power split between ICE and battery, whereas it did not 

consider the total trip length and full use of the battery.  

3) Optimal Theory Method 

Generally, optimal theory methods include the minimum 

theory and DP methods (including deterministic DP and 

stochastic DP). In [29, 30], a trip-based optimal energy 

management method was proposed for PHEV based on DP 

method. The proposed method needs the detailed trip 

information and needs too much calculation and computation 

time which decreases the feasibility of application of the 

method. In [32], a stochastic dynamic programming to optimize 

PHEV energy management was proposed with consideration of 

the fuel and electricity price. The method was based on a 

distribution of drive cycles and had the function of predicting 

road conditions. However, it still needs some considerable 

calculation which increases the calculation burden of the 

vehicle controller when applied online. Besides, it did not 

consider the whole trip length so that it may not use up all the 

available electric energy stored in the battery in a given trip. In 

[18], an intelligent multi-feature statistical approach to 

automatically discriminate the driving condition of the HEV 

was proposed and a support vector machine (SVM) method to 

intelligently and automatically discriminate the driving 

conditions was applied to classify the road pattern with high 

accuracy. It does not apply to a PHEV with a larger battery 

capacity. In [19], a model-based control approach for PHEV 

energy management to reduce the overall CO2 emissions was 

introduced by applying the Pontryagin’s minimum theory and 

considering the electricity constitution in different countries and 

areas under known trip information as a prior knowledge. A 

machine learning framework that combines DP and quadratic 

programming (QP) was proposed in [11, 12, 22]. The machine 

learning is to learn about roadway-type and traffic congestion 

level. They are only applied to HEV with a small range of SOC 

variation. 

Based on the above discussion, a conclusion can be made that 

an intelligent controller with fast calculation and excellent 

control performance is necessary for a PHEV. Given the 

detailed or basic trip information such as trip length and trip 

duration, the fuel economy can be improved. This is the main 

motivation of this paper. In this paper, the main target is to 

improve the fuel economy of a PHEV with known trip 

information such as trip length and trip duration. We selected a 

power-split PHEV as the research object. The PHEV has two 

motors/generators, and is more complicated compared with a 

series or parallel PHEV. In order to build a fast, online, easy to 

implement, and effective energy management controller, we 

first applied an offline method, DP, to obtain the optimal energy 

distribution between ICE and battery by numerical calculations 

considering different road types. Then, based on the optimized 

results, NN is introduced to train them to generate an online 

optimal energy controller with known trip length and trip 

duration. 

The NN controller [11, 12, 22] includes a variety of formulas 

to store the optimal energy distribution information based on 

vehicle speed, acceleration/deceleration, trip information 

including trip length and duration, and battery SOC. In order to 

build an effective NN controller, abundant vehicle simulation 

data based on DP method are essential which can include all 

driving conditions. In this paper, six standard drive cycles are 

used to simulate the vehicle operating condition, including 

Urban Dynamometer Driving Schedule (UDDS), SC03, 

Highway Fuel Economy Driving Schedule (HWFET), 

US06_HWY, Manhattan (MANN) and New York City Cycle 

(NYCC), which can represent the criterions of highway, urban 

and urban congested driving conditions to test the light duty 

vehicle in the United States. Each drive cycle is simulated with 

multi consecutive iterations to consider enough driving 

distances and durations. 

Then, we applied the controller to drive scenarios with 

unknown trip information. It was shown that the proposed 

method can still save fuel consumption even without knowing 

the trip length or duration although the benefits is significantly 

reduced. 

II. VEHICLE MODEL AND ANALYSIS 

The objective in the paper is to optimize the fuel consumption 

of a power-split PHEV during a certain trip, which can be 

expressed as an optimization problem: 

 
0

min min ( , )
t n

f

t

F m t v




   (1) 

where F  is the total fuel consumption, n  is the trip duration, 

and fm  is the fuel rate determined by engine speed ew  and 

engine torque eT ,  

 ( , )f e em f T w  (2) 

where f  is a high nonlinear function.  
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In order to calculate fm  and optimize F , the vehicle 

powertrain should be analyzed in detail. The powertrain 

structure of the power-split PHEV analyzed in the paper is 

shown in Fig. 1. The vehicle includes a gasoline ICE, two 

electric motors, a lithium-ion battery pack, and a planetary gear 

set, which combines engine, motor and the final driveline 

together with a particular gear ratio [5, 10-13].  

 
From Fig. 1, the vehicle can be powered by the motor only, 

the engine only, or both [5]. There exist several modes 

according to the power flow [10, 13], and it increases the 

analysis complexity of fuel rate. The vehicle driveline power 
oP  

equals the sum of ring power 
rP  and motor 1 power 

1motP , i.e., 

 1 1 1o o o r mot r r mot motP T w P P T w T w      (3) 

where 
oT , 

rT , and 
1motT  denote the torque of driveline, ring 

gear of the planetary gear set and motor 1, 
ow , 

rw , and 1motw  

denote their speeds respectively. The driveline torque 
oT  

should satisfy 

 

1 1

1 1

( )

/ ( )

/

o r mot mot final

mot o final mot

r o final

T T T r r

w w r r

w w r

  



 

  (4) 

where 1motr  and finalr  are the gear ratio between motor 1 and 

driveline, driveline and vehicle wheels, respectively. The 

planetary gear set consists of a sun gear, a ring gear and carrier, 

which connects motor 2, driveline, and engine respectively. 

Neglecting the friction and inertia losses, there are two basic 

equations for speed and torque of the planetary gear set,  
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where   is the ratio of sun gear and ring gear, ew , 2motw  

represent the speed of engine, motor 2, and eT  and 2motT  are 

their torques. Based on (3) to (5), we can calculate eT  further: 
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  (6) 

where 1mot  and 2mot  are motor 1 and motor 2 efficiency, bP  

and 2motP  are the battery and motor 2 power. Solving (6), we 

can get 
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(7) 

From (7), eT  can be determined by oT , bP , ow , and ew . As 

oT  and ow  are determined to satisfy the vehicle torque demand, 

and cannot be influenced by control algorithms, eT  can be 

controlled by different ew  and bP . bP  can be approximately 

calculated by battery current I , battery open circuit voltage 

ocvV  and battery internal resistance R  [10-12], 

 2

b ocvP V I I R  .  (8) 

Hence, equation (2) can be changed into  

 ( , ) ( , )f e e new em f T w f I w  . (9) 

Now we can see that ew  and I  can influence the fuel rate, 

and therefore can be optimized to minimize the fuel 

consumption for a given trip. The calculation process includes 

some nonlinear efficiency coefficients, such as 1mot , 2mot , and 

fuel rate function f , which makes it not realistic to solve fm  

based on (3) to (9). Therefore, Pontryagin’s Minimum principle 

[16, 19] is not appropriate for the optimization of fuel 

consumption. It needs to build a deterministic relationship 

between the input and the output, construct a Hamiltonian 

function, consider a proper boundary for each variable and 

solve the partial differential function. DP [11, 12, 21, 33] does 

not need to get a detailed numerical solution, can easily apply 

the constraint of each variable, and can be easily applied in the 

discrete system. Based on the above discussion, we use DP to 

solve the energy management problem. 

III. DYNAMIC PROGRAMMING 

DP is a numerical technique which can be applied to any 

problem that requires decisions to be made in stages with the 

objective of finding a minimal penalty decision pathway [5, 

11-13, 20, 21]. DP combines knowledge of the immediate 

penalty of the decision at hand with knowledge of future 

penalties that arise as a result of the immediate decision. DP is 

commonly used for global optimization of the energy 

management of hybrid electric vehicles [11-13, 20]. Generally, 

it needs to define the constraints of each variable used to realize 

DP algorithm and the grid size which can determine the 

calculation precision and time consumption.  

As discussed in Section II, the battery current I  and engine 

speed ew  influence the fuel rate, and can be regarded as the 

controlled variables to realize DP algorithm. However, it 
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Fig. 1.  Power-split vehicle powertrain. 
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induces two degrees of freedom of optimization, which brings 

too much computation and high calculation cost [11, 12]. In 

order to simplify the calculation without influencing the 

precision, a method is proposed to convert the two degrees of 

freedom problem into a one degree of freedom problem. For 

each operating point, we can find out the optimal operating 

efficiency point according to different engine power. This way, 

at each engine operating power, we can determine the optimal 

engine speed 
ew  accordingly. It means that the engine can only 

work in the highest efficiency region at different power levels, 

and the fuel rate can only be determined by engine torque 
eT . 

Fig. 2 shows the relationship between the engine power 
eP  and 

speed 
ew  with a 1kW increment for the next step. Based on this 

relationship, we can easily find the relationship between 
ew  and 

eT , 

 1( )e ew g T .  (10) 

 

 
Now based on (7) to (10), we can solve the fuel rate based on 

battery current I  only. With different I  commands, the motor 

power can be determined accordingly, and the engine power and 

engine fuel rate can be calculated. As presented in (6) to (9), we 

need to know the motor efficiency and fuel rate relationship 

when calculating the fuel rate which cannot be obtained directly. 

Here, we use distributed computing method to get the fuel rate 

from battery current. Equation (11) to (21) detail the calculation 

and Fig. 3 shows the calculation process. First, motor 1 speed 

can be determined by the vehicle speed, 

 1
_

s
mot ring final

v
w w r

wheel r
     (11) 

where _wheel r  is the wheel radius, and 
sv  is the vehicle 

speed. 

Based on different I, we can calculate the temporary engine 

power,  

 * 2

e drive b L ocv o LP P P P V I I R P P         (12) 

where 
LP  is the accessory power of the vehicle, *

eP  is the 

temporary engine power. According to the relationship in (10), 

the speed and torque of engine and motor 2 can be calculated,  

 2 1

1 1
(1 )mot e motw w w

 
     (13) 
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  (14) 

where *

eT  is the temporary engine torque. Based on engine 

torque, we can calculate the ring torque and motor 1 torque 

accordingly, 

 *1

1
ring eT T





  (15) 
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 1 1/mot o mot ringT P w T  .  (17) 

We have already known the motor speed and torque, thus the 

motor efficiency and losses can be determined: 
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where 1mot  and 2mot  are motor 1 and motor 2 efficiencies. The 

updated engine power and torque can be obtained by the sum of 

temporary engine power and motor losses, 
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.  (19) 

Based on the new engine power eP , the engine torque eT  and 

engine speed ew  can be determined by (10) and finally the 

updated engine fuel rate can be calculated. It is worth to point 

out that the motor speed and torque may vary with the new 

engine speed and torque, we assume their efficiency keep 

unchanged during the calculation.  

 /eng eng engP w    (20) 

 2( , ) ( )eng eng newf w f I  .  (21) 

In order to realize DP, some constraints [11, 12, 21] should 

be considered, such as engine maximum power, engine 

maximum and minimum speed, battery maximum charge and 

discharge current, motor maximum and minimum power: 
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Fig. 2.  The optimal speed profile at different engine power output. 

 

Battery power 

demand
Engine power Engine speed Engine torque

Motor 2 speedWheel speed
Motor 2 

torque

Motor 1 speed

Motor 1 

torque

Battery power

Engine ON/

OFF control

Driveline

power 

Battery power 

difference

Updated engine 

power
Fuel rate

Battery current

 
Fig. 3.  The calculation process. 
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where the subscript “min” and “max” denote the minimum and 

maximum value of each variable, and bC  is the battery capacity 

in Ampere-seconds (As). In order to realize DP, a cost-to-go 

matrix should be built, in which some variables, such as time 

interval t , total length 
totalt  and grid size 

bC  should be 

determined.  

Due to the bounds of energy, certain grid levels between 

_ minbC and _ maxbC  needs to be determined [5, 20]. This area is 

mapped onto a fixed grid with determined distance bC , so that 

1m   capacity levels are considered. 

 
_ max _ minb b

b

C C
m

C

 
  

 
.  (23) 

The optimal values are calculated afterwards, by starting at 

( )bC n  ( n  is the duration of drive cycle) and then following the 

path of minimal cost. Given the sequence of I , the requested 

set-points for the motor and generator are found. All 

calculations required for DP can be done in a reasonable amount 

of time due to the simple dynamics and all the restrictions of I , 

bC , ew , 1motP , 2motP  and eP . However, the computation 

increases rapidly with the driving cycle length and the grid 

density [20], especially when we apply several consecutive 

drive cycles. Considering the computation complexity and 

precision, we set 1t s  . 

 
The steps to realize DP is shown in Fig. 4. First, the 

constraints of motors, battery and engine should be considered 

properly, and the engine fuel rate can be calculated according to 

(11) – (21) with different battery current. At the same time, the 

cost-to-go matrix can be built. After getting the cost-to-go 

matrix, the optimal SOC curves and optimal battery current with 

different beginning SOCs can be obtained. The last step is to 

validate the result as we missed some issues, such as inertia of 

motors and engine, and simplified some variables during the 

calculations. Table I lists the vehicle parameters. 

 

IV. DP RESULT: ANALYSIS AND APPLICATION 

We need to validate the DP results through simulation and 

analysis. Due to the high nonlinearity of the vehicle system, it is 

difficult to get the optimal result by approximating it to a linear 

or quadratic system. If we can simulate the vehicle with a 

constant speed profile, we can simplify the problem and analyze 

the result using the linear programming (LP) method to prove 

the correctness of DP result. Here, the whole validation is 

divided into two parts: (1). Constant speed simulation; and (2). 

Drive cycle simulation. Before analyzing the fuel consumption, 

the default control algorithm, i.e. CD and CS strategy, is applied 

to simulate and obtain the vehicle performance as a reference 

[7]. Considering the calculation cost, the current grid is set to 

14.4A. According to the constraints of the battery, the current 

grid matrix can be built as follows. 

 
100.8, 86.4, 72.0, 57.6, 43.2, 28.8,

14.4, 0,14.4, 28.8, 43.2, 57.6, 72.0, 86

[

].4,100.8

I      




. (24) 

At each step, the optimal battery current command can be 

selected from (24) to minimize the fuel consumption. 

A. Constant Speed Simulation 

We built the drive cycles with a constant speed driving time at 

3600s and the vehicle is at rest for 50s at the beginning and 

ending time periods. The acceleration is 1mph/s in the 

beginning after rest time, and the deceleration is -1mph/s after 

the constant speed driving. So the total time of 50mph drive 

cycle equals 3800s. The vehicle driveline power demand during 

the whole drive cycle is shown in Fig. 5. The maximum power is 

22.84kW and the constant power is 7.04kW when the vehicle 

speed stabilizes at 50mph. 

The optimized battery current based on DP method is shown 

in Fig. 6. From 100s to 3700s, the battery is discharged with 

14.4A current for 3511s and followed by 28.8A current for 89s. 

During this period, as the vehicle power demand is unchanged, 

it is easy to apply the analytical method to validate the DP result. 

The driveline power is 7.04kW, and if the vehicle can be driven 

by the battery only, the current is about 30A. So the available 

battery current range becomes: 

Determine vehicle 

parameters

Set up the constraints of 

motors, battery and engine

Simulate to get the fuelrate 

under different battery 

current I

Build the Cost-to-go 

table

Find the optimal 

battery current

Obtain the optimal 

SOC curve

Validate the result

The calculation 

finished

N Y

 
Fig. 4.  The procedure of realizing DP method. 

 

TABLE I 

VEHICLE PARAMETERS 

Vehicle type Plug-in split HEV 

Vehicle mass 1641.3kg 

Engine power 57kW 

Motor power 25kW, peak power 50kW 

Generator power 15kW, peak power 30kW 

Planetary gear set 
Sun gear 30 

Ring gear 78   

Battery 

Lithium-ion battery 

Rated capacity 20Ah 

Rated voltage 356V 
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Fig. 7 shows the fuel rates with different battery currents 

according to (11) to (21), and they range from 0.00001kg/s to 

0.00322kg/s. We implemented the LP method [34] to validate 

the DP result. From (25), as there are only 10 selections, we can 

calculate the following equations to get the optimal value,  
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(26) 

where (i 1,2, ,10)ix   denotes the duration time for each 

current state of (25), and are integers, and should be not less 

than 0. The sum of (i 1,2, ,10)ix   should equal 3600. 

1 10,...,a a  are fuel rates shown in Fig. 7, bC  equals 72000, 

soc  is the SOC range from 100s to 3700s, and equals 0.7378. 

Using LP method, the solution can be easily obtained, 
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The result shown in (27) is identical as the result shown in 

Fig. 6. Therefore the DP result is turned out to be correct by LP 

method. However, LP method can only be used to analyze the 

constant vehicle power optimization, and cannot be used for the 

energy management for PHEV as the vehicle speed and power 

possibly change at all times.  

It is necessary to use the SOC correction method to update the 

fuel consumption in order to compare the fuel saving at the same 

SOC. The linear regression method can be used to ensure that 

the initial and final SOCs are the same. Linear fitting method 

was adopted to obtain fuel consumption and corrected with 

SOC [9, 31]. Table II shows the results with different constant 

speed drive cycles. We can see that when the vehicle speed is at 

constant speed of 40, 50, and 60 mph, DP method can save 

4.24%, 3.51%, and 1.16% of fuel. This way it shows the 

effectiveness of the DP method. But for 30 mph and 70 mph 

constant speed, DP does not show fuel savings. For 30mph drive 

cycle, when the default algorithm is applied, the engine is off all 

the time, and the vehicle is powered by the battery only. 

However, when the DP method is applied, engine starts during 

the acceleration period, which induces some fuel consumption. 

For 70mph drive cycle, when the default algorithm is applied, 

the engine and motors work in the high efficiency region, and 

their speeds keep unchanged. However, when the DP method is 

applied, the variation of battery current commands can make the 

motors and engine accelerate or decelerate, which costs more 

fuel consumption. Hence the proposed algorithm is more 

suitable for drive speed between 30 and 70 mph. In real world 

driving, constant speed driving rarely happens. Therefore, we 

predict that the proposed DP algorithm can help save fuel as 

long as the vehicle is driven mostly between 30 and 70 mph. 

This is also validated through real world driving cycle 

simulations in the next section.  
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Fig. 6.  Battery current obtained by DP method. 
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Fig. 5.  Power demand of 50mph constant speed drive cycle. 

 

-40 -20 0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Battery current(A)

F
u

e
l 
ra

te
(k

g
/s

)

 
Fig. 7.  Fuel rate for the 50mph constant speed drive cycle. 
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B. Drive Cycle Simulation 

Several typical drive cycles are introduced to validate the DP 

algorithm. UDDS, also called “LA4” or “the city test”, and 

SC03 drive cycles represent city driving conditions. HWFET 

and US06_HWY drive cycles represent highway driving 

conditions. NYCC and MANN drive cycles represent the 

congested city drive cycles [18]. Fig. 8 shows two of these six 

drive cycles. Table III presents total length, duration, maximum 

speed and average speed for each drive cycle. It needs to 

mention that as the NYCC and MANN cycle length is very 

short, we repeated them three times as new drive cycles. 

 

In order to compare the results, the default algorithm, i.e. CD 

and CS method, were applied in the simulation to get the fuel 

consumption under different drive cycles. During CD mode, the 

vehicle is powered by the battery only. When the SOC drops 

near 30%, the vehicle is powered by the battery and engine 

together, which makes the battery SOC maintain at the 

low-preset threshold. The battery power is detailed in (28), 
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TABLE IV  

THE FUEL CONSUMPTION BASED ON CD/CS STRATEGY 

Cycle Name UDDS HWFET 

No. of cycles 5 6 7 8 9 4 5 6 7 8 9 

Distance (miles) 37.22 44.66 52.10 59.54 66.98 41.02 51.28 61.53 71.79 82.04 92.30 

Fuel consumption (kg) 0.314 0.668 0.926 1.183 1.450 0.756 1.200 1.645 2.089 2.542 3.004 
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Fig. 8.  Highway and urban drive cycles. 

 

TABLE III 

DRIVE CYCLE COMPARISON 

Type Drive cycle 
Length 

(miles) 

Duratio

n 

(s) 

Maximu

m speed 

(mph) 

Average 

speed 

(mph) 

Freeway 
HWFET 10.26 765 59.9 48.30 

US06_HWY 6.24 368 80.3 61.00 

Urban 
UDDS 7.45 1369 56.7 19.59 

SC03 3.60 596 54.8 21.60 

Urban 

congested 

3 NYCC 3.54 1794 27.7 7.10 

3 MANN 6.21 3267 25.4 6.80 

 

TABLE II 

 CONSTANT SPEED DRIVE CYCLE RESULT COMPARISON 

Vehicle 

speed 

(mph) 

Trip 

length 

(mile) 

Duration 

(s) 

Ending SOC (%) 
Fuel consumption 

(kg) 
Fuel 

savings 

(%) Default DP Default 
DP (SOC 

corrected) 

30 30.26 3760 56.44 56.53 - 0.0016 - 

40 40.46 3780 31.94 29.76 0.118 0.113 4.24 

50 50.71 3800 32.21 30.68 1.083 1.045 3.51 

60 61.02 3820 32.44 30.92 2.164 2.139 1.16 

70 71.38 3840 32.63 31.08 3.503 3.546 -1.23 
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where min( )  and max( ) denotes the minimum and maximum 

value of the two values given in the parenthesis, and 
_ maxeP  is 

the maximum engine power. The engine’s output should satisfy 

the demand of driveline power and battery power. 

The initial battery SOC is supposed to be 100%. Figs. 9-10 

show the battery SOC variation and engine fuel rates under 

UDDS driving cycle test. Before 5300s, the engine is off and the 

vehicle is powered by the battery and motors. When the battery 

SOC decreases to 30%, the engine starts and the vehicle works 

in CS mode, and the battery SOC maintains at the vicinity of 

30%.

 

 
The fuel consumptions under UDDS and HWFET drive 

cycles are listed in Table IV. Fig. 11 show the optimal SOC 

curves with different beginning SOC values under nine 

US06_HWY drive cycles, and five UDDS drive cycles. In Fig. 

11, the beginning SOC is from 100% to 30% with 10% 

decrement for the next step. Fig. 12 compares the total fuel 

consumptions with different drive cycles, in which the fuel 

savings are 0.30%, 4.12%, 3.94%, 3.82%, 3.86%, and 3.77% 

with four to nine US06_HWY drive cycles, range from 12.63% 

to 2.85% with four to nine HWFET drive cycles, and from 

14.91% to 4.92% with five to nine UDDS drive cycles 

respectively. 

Fig. 13 compares the difference of the battery current in eight 

consecutive UDDS drive cycles when the different algorithms 

are applied. We can see that with the default algorithm, the 

battery is discharged more quickly than with DP method. Fig. 14 

compares the engine efficiencies based on different algorithms. 

It can be seen that when the DP method is applied, the engine 

average efficiency is higher than that when the default algorithm 

is applied. To some extent, the comparisons can explain why DP 

method can save fuel consumption. 
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Fig. 13.  Current difference. 
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Fig. 11.  Optimal SOC curve. (a). The optimal SOC curve based on nine 

consecutive US06_HWY drive cycles. (b). The optimal SOC curve based on 

five consecutive UDDS drive cycles. 
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Fig. 10.  Engine fuel rate. 
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Fig. 9.  Battery SOC variation. 
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V. NEURAL NETWORK TRAINING 

As shown above, the DP result can improve fuel economy on 

conditions that the detailed trip information is known in 

advance. Besides, it also needs a large amount of computation. 

These limit the real-time application of DP algorithm. However, 

the optimal battery SOC and battery current values obtained by 

DP method can be regarded as a benchmark for further study. It 

is necessary to construct an online and effective controller based 

on the DP result to realize real-time control. It is difficult to get 

a deterministic equation or relationship as the energy 

management strategy is influenced by many factors, such as 

acceleration, speed, battery SOC, trip length, and trip duration, 

etc. NN can effectively learn the nonlinear relationship based on 

the optimized results and can generate an online controller to 

manage the energy distribution. Here, we apply NN to build an 

intelligent online controller to control the battery current, and 

consequently the engine torque and speed to improve the fuel 

economy. The controller, as shown in Fig. 15, consists of two 

NN modules, N1 and module N2 as shown in Fig. 16 and Fig. 

17, respectively. The major difference between N1 and N2 is 

that N1 needs the trip information, i.e., trip duration and trip 

length. The principle of the controller is detailed in the 

following steps. 

1) The beginning SOC is more than 30% and the trip length 

and trip duration is known or estimated before the trip starts. In 

this case, if the trip length is less than AER according to 

calculation based on the beginning SOC, the controller will 

adopt CD strategy and use the energy stored in the battery. 

Otherwise, the controller will select N1 as the controller to 

output the battery current commands to control the engine 

accordingly.  

2) The beginning SOC is more than 30% and the trip 

information is unknown. In this case, the controller will use the 

electric energy until the SOC drops to 30%. Then the controller 

will select N2 to output the battery current command. 

3) If the beginning SOC is not more than 30%, the controller 

will select N2 to output the battery current directly. 
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Fig. 12.  Fuel consumption comparison under US06_HWY, MANN, HWFET and UDDS drive cycles. 
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Fig. 14.  Engine operating efficiency map. (a) Based on CS+CD algorithm. 

(b). Based on DP method. 
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The function of N1 is to output the battery current command 

based on the basic trip information. It needs the total trip length 

and trip duration in advance. Therefore, it contains at least four 

variables, trip length, trip duration, current drive length, and 

current drive time. In [11, 12, 22], the vehicle speed, driveline 

power, battery SOC, together with driving trend are utilized to 

train the NN to output the optimal battery power for a 

conventional HEV. Besides, the authors also employed another 

NN module to predict the road pattern based on eleven 

variables, which brings too much complexity. In [18], four 

variables, i.e., average speed, idle rate, maximum acceleration 

and minimum acceleration over a certain time interval, are 

applied to classify the driving patterns, of which the idle rate is 

the ratio of vehicle idle time during a certain time range. We 

combine them and select vehicle speed, driveline power, battery 

SOC, average speed, idle rate, maximum acceleration and 

minimum acceleration to train the controller to ensure the 

system precision. Therefore, N1 totally consists of the above 

mentioned eleven variables. Compared with [11, 12, 22], the 

energy management strategy proposed in this paper is easier to 

apply for energy management of a PHEV. During simulation, 

the time interval for calculating the average speed, the 

maximum acceleration, the minimum acceleration and the idle 

rate is 50s, 50s, 50s, and 100s respectively. The output of N1 is 

the battery current command. The beginning SOC to train the 

N1 is from 100% to 40% with 10% decrement for next step. We 

select the total drive cycle data including UDDS, HWFET, 

US06_HWY, SC03, NYCC and MANN cycles trained to 

generate N1. 

Compared to N1, N2 does not consider the trip information, 

and is with only 7 inputs, which are vehicle speed, vehicle 

driveline power, battery SOC, average speed, idle rate, 

maximum acceleration and minimum acceleration. The 

beginning SOC of N2 is 30%. The output is the same as N1. The 

NN training performance is measured by mean squared errors 

(MSEs) MSEE  as shown below [11, 12]: 

 2

1

1
( ( ) ( ))

N

MSE t

i

E y i y i
N 

    (29) 

where ( )y i  is the NN output, and ( )ty i  is the target data. In the 

training process of N2, the target of MSEE  is 0.001, and N  

equals 7075. Fig. 18 compares the trained data and actual 

output, and shows their differences for N2. We can see the 

controller can output the battery current effectively and the 

maximum error is less than 10A. 

 

Vehicle speed

Battery current

Battery current SOC

Average speed

Maximum acceleration

Minimum deceleration

Idle rate

Driveline power

NN controller 2  
Fig. 17.  NN controller N2. 
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Fig. 18.  The training result of N2. 
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Fig. 16.  NN controller N1. 
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Fig. 15.  Vehicle controller. 
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VI. RESULT VALIDATION 

According to the description of the controller in section V, 

when the trip length and trip duration are known in advance and 

the trip length is more than the AER calculated by the battery 

initial SOC, the controller will use N1 to output the battery 

current commands to manage the power distribution between 

ICE and battery. Usually the trip length and trip duration can be 

determined with the help of GPS / GIS or be estimated by 

experience. If the controller can not obtain them before the trip 

starts, it will use the battery to power the vehicle first until the 

battery SOC drops to a preset low-threshold (30%), and then use 

N2 to control the battery power.  

A. Simulation with Knowing the Trip Length and Duration 

Precisely 

Suppose the controller knows the trip length and duration 

precisely by GPS beforehand, we applied LA092 and REP05 

drive cycles to validate the controller’s performance.  

The LA92 drive cycle’s maximum speed is 67.30mph and its 

average speed is 24.61mph, it can represent the urban driving 

condition. The REP05 drive cycle can be mainly split into two 

parts, highway and urban driving, and its maximum speed is 

80.20mph. These two drive cycles can include highway and 

urban driving conditions. Here, we select LA92 cycle repeating 

4 and 6 times, and REP05 cycle repeating 2 and 3 times to make 

sure the trip lengths are more than the maximum AER. The 

beginning SOC is 100%, and the total driving distance is 

39.24miles, 58.86miles, 40.08miles, and 60.12miles, and the 

time duration are 5740s, 8610s, 2800s, and 4200s, respectively. 

As presented in Table V, using the proposed controller, the fuel 

consumption can be reduced by 3.96%, 3.88%, 2.20%, and 

2.79% with SOC correction included. 

Fig. 19 compares the SOC variation when the two control 

algorithms are applied for four LA92 drive cycles, where we can 

see the SOC drops slower when the proposed controller is 

applied than that when the CD and CS algorithm is applied. Fig. 

20 compares the engine operating efficiencies. We can see that 

the engine works more efficiently when the proposed controller 

is applied. This way, it can prove that the controller can improve 

the fuel economy. 

 

 
 

 
 

B. Simulation with Estimation of the Trip Length and Duration 

Usually we do not know the actual trip length and duration 

except with the help of GPS/GIS. However, we can generally 

estimate the trip distance by experience. The proposed 

algorithm is still feasible based on the estimated trip length and 

duration. In order to evaluate them, four consecutive Artemis 

drive cycles and seven New European drive cycles (NEDC) are 

simulated to validate the algorithm. With the default algorithm, 

the simulation result is shown in Table VI. The beginning SOC 

is 100%, the total fuel consumption is 0.722kg, and 0.882kg 

with the ending SOC of 31.36% and 31.53%, respectively.  
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Fig. 20.  Engine efficiencies comparison. (a). Default CS+CD algorithm. (b). 

The proposed controller. 

 

TABLE V 

 FUEL CONSUMPTION COMPARISON 

Drive cycle 

Trip 

length 

(miles) 

Trip duration 

(s) 

Fuel consumption 

(Default algorithm) 

(kg) 

Fuel consumption 

(Proposed algorithm) 

(kg) 

Fuel savings 

(%) 

4 LA92 cycles 39.24 5740 0.960 0.922 3.96 

6 LA92 cycles 58.86 8610 1.959 1.883 3.88 

2 REP05 cycles 40.08 2800 1.318 1.289 2.20 

3 REP05 cycles 60.12 4200 2.473 2.404 2.79 
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Fig. 19.  Battery SOC comparison. 
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In order to validate the performance of the proposed 

algorithm, we considered four groups of parameters for trip 

length and duration for each drive cycle, which are shown in 

Table VII. Groups 1-4 parameters are for four Artemis cycles 

and groups 5-8 parameters are for seven NEDC cycles. Group 1 

parameters are the actual trip parameters, and group 2 and group 

3 parameters are smaller and larger than the actual parameters. 

In group 4, the trip length is larger, and the trip duration is 

shorter than the actual values. These three groups of parameters 

can reflect the differences of the estimated parameters. After 

simulation, the battery SOC curves based on different 

parameters are shown in Fig. 21. They are almost the same, and 

the ending SOC is 36.86%, 34.70%, 38.32%, and 34.03% 

respectively. From Table VII, with the SOC correction 

included, we can see that the proposed controller can save 

4.02%, 5.12%, 5.82% and 3.74% of fuel consumption, 

compared with the default control algorithm. Table VII also 

compares the results for different trip length and duration when 

seven consectuive NEDC drive cycles are simulated. The 

ending SOC is 31.43%, 33.42%, 31.54%, and 34.62%, 

respectively, and the proposed controller can save 2.49%, 

2.15%, 3.17% and 3.51% of fuel consumption, respectively. 

Therefore, the results show that the controller can improve the 

fuel economy based on the estimated trip length and duration. 

 

C. Simulation with Unknown Trip Length and Duration 

Suppose we do not know any information about the trip 

length and duration. Based on the proposed controller, the 

vehicle uses all the stored electric energy first until the SOC 

drops to 30%, then N2 starts to work to output the battery 

current command to manage the power distribution. In order to 

validate the performance, three consecutive REP05 and four 

consecutive Artemis drive cycles are simulated. 

The SOC variations based on the proposed controller and the 

default strategy are shown in Fig. 22 when three REP05 drive 

cycles are simulated. With the proposed controller, we can see 

the SOC first drops to 30%, which is the same as that when 

applying the default algorithm. Then the SOC maintains at the 

vicinity of 30%. Based on training of the optimal results 

obtained by DP method, N2 stores the optimal power 

distribution algorithm for different types of drive cycles, which 

makes the battery charge or discharge more frequently to ensure 

the engine works more efficiently. Fig. 22 shows that the SOC 

varies more obviously when the proposed controller is applied 

than that when the default controller is applied. The ending SOC 

based on the two algorithms is 32.5% and 30.08%. Table VIII 

lists the fuel consumptions based on different algorithms. The 

proposed algorithm can save 1.77% and 3.46% of fuel 

consumption with SOC correction included when three REP05 

and four Artemis drive cycles are simulated. When the total 

driving distance and total driving duration are unknown, the 

proposed algorithm can still save fuel consumption compared 

with the default algorithm. However, the saving is less than that 

when the trip distance and duration is known, as presented in 

Table V and Table VII. 
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Fig. 22.  SOC comparison. 
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Fig. 21.  SOC with different input parameters. 

 

TABLE VII 

THE FUEL CONSUMPTION COMPARISON AND SOC COMPARISON 

Drive cycle Groups 

Estimated trip 

length 

(miles) 

Estimated trip 

duration 

(s) 

Fuel consumption 

(SOC corrected) 

(kg) 

Ending 

SOC 

(%) 

Fuel 

savings 

(%) 

4 Artemis 

cycles 

Group 1 40.86 3924 0.693 36.86 4.02 

Group 2 40.00 3600 0.685 34.70 5.12 

Group 3 42.00 4200 0.680 38.32 5.82 

Group 4 42.00 3600 0.695 34.03 3.74 

7 NEDC 

cycles 

Group 5 47.88 8267 0.860 31.43 2.49 

Group 6 50.00 8500 0.863 33.42 2.15 

Group 7 45.00 8000 0.854 31.54 3.17 

Group 8 45.00 8500 0.851 34.62 3.51 

 

TABLE VI  

THE FUEL CONSUMPTION COMPARISON AND SOC COMPARISON 

Drive 

cycle 

Length 

(miles) 

Duration 

(s) 

Fuel consumption 

(kg) 

Ending SOC 

(%) 

4 Artemis 

cycles 
40.86 3924 0.722 31.36 

7 NEDC 

cycles 
47.88 8267 0.882 31.53 
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VII. CONCLUSION 

An effective online intelligent energy controller consisting of 

two NN control modules has been built to improve the fuel 

economy of a power-split PHEV. Based on whether the trip 

length and trip duration is known or unknown, the controller 

works differently to manage the energy distribution between the 

engine and the battery more intelligently, compared with the 

conventional CD and CS algorithm. 

When the trip length and trip duration are known or can be 

estimated in advance, and if the trip length is more than the 

calculated AER, the controller will use N1 to calculate and 

generate the sub-optimal battery current commands to manage 

the power distribution between ICE and battery in real time 

based on vehicle speed, and other related parameters. If the trip 

length is less than the calculated AER, the vehicle will first use 

the battery to drive the vehicle. The simulation results validate 

the effectiveness of the controller. 

If the controller cannot obtain the trip length and trip duration 

before the trip starts, the vehicle will be powered by battery first 

until the battery SOC drops to a preset low-threshold, and then 

the controller uses N2 to output the battery current commands. 

It can still improve the fuel economy.  

In this paper, the controller is only validated by simulation. 

Besides, the controller does not consider the slope of the road, 

which can influence the vehicle driveline power. We also did 

not consider the battery aging and degradation issues, which can 

affect the AER as well as vehicle energy management. Our next 

step research will be carried out to consider them to improve the 

performance of the controller and validate the controller by 

experiment. 
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