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a b s t r a c t

State of health (SOH) of batteries in electric and hybrid vehicles can be observed using some battery
parameters. Based on a resistanceecapacitance circuit model of the battery and data obtained from
abundant experiments, it was observed that the diffusion capacitance shows great correlation with SOH
of a lithium-ion battery. However, accurate measurement of this diffusion capacitance in real time in an
electric or hybrid electric vehicle is not practical. In this paper, Genetic Algorithm (GA) is employed to
estimate the battery model parameters including the diffusion capacitance in real time using mea-
surement of current and voltage of the battery. The battery SOH can then be determined using the
identified diffusion capacitance. Temperature influence is also considered to improve the robustness and
precision of SOH estimation results. Experimental results on various batteries further verified the pro-
posed method.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Lithium-ion batteries are considered the only viable solution for
electric drive vehicles (EDVs), including hybrid electric vehicles
(HEVs), plug-in HEVs (PHEVs) and battery electric vehicles (BEVs).
Battery safety and reliability are critical for the large-scale pene-
tration of EDVs in the market place. A battery management system
(BMS) is essential to manage, observe and protect the battery for
safe and reliable operations of the vehicle. State of charge (SOC) and
state of health (SOH) are very basic functions of the BMS [1e6].

Battery SOC is the ratio of available capacity and nominal ca-
pacity. It can be calculated through coulomb counting method,
which is simple, direct and reliable [7]. However, this method relies
rant DE-EE0002720.

All rights reserved.
on the knowledge of initial SOC. Other intelligent methods, such as
neural network and extended Kalman filter (EKF), have been
introduced to enhance the accuracy and precision of SOC calcula-
tions by removing measurement error and noise, as well as reliance
on initial SOC [5].

Battery SOH describes the battery performance at the present
time compared with the performance at ideal conditions and when
the battery was new [5,8e16]. It is a measurement that reflects the
battery performance and health status. Research on battery SOH
has attracted wide attentions due to its importance in EDVs. In
theory, by measuring the battery capacity through charging and
discharging with the referenced method at certain temperature,
the present capacity, hence the SOH, can be obtained.

Typically, there exist several methods to derive a battery SOH,
such as comparing the internal resistance [5,11], total available ca-
pacity [7], voltage drop [17], self-discharge, number of cycles, etc.
Jonghoon Kim and Cho [5] proposed a method based on an EKF
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Fig. 1. Equivalent circuit model of battery cell.
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combined with a per-unit system to identify suitable battery model
parameters, which can be utilized to estimate SOC and SOH for a
lithium-ion battery. The main work of Ref. [5] was to estimate SOC
based on EKF and an accurate battery model. In addition, the
diffusion resistance in the model proposed in the paper was
changeable with battery age. It needed some particular charge/
discharge steps to estimate the battery diffusion resistance, which
increases the complexity of estimating the SOH. Besides, it did not
consider temperature influence. In Ref. [7], the battery SOH can be
determined by fully charged and discharged capacity. It was time
consuming, temperature-dependent, and usually hard to realize
after equipped in a vehicle. C. R. Gould et al. [15] described a new
battery model and determined the SOH through subspace param-
eter estimation and state-observer techniques. It mainly focused on
a novel battery model and a predictor/corrector observer. Based on
the observer to adaptively estimate and converge on battery func-
tionality indicators, the SOH can be estimated accordingly. They
focused on a lead acid battery, whose characteristic is different from
lithium-ion battery, and developed a linear equation between bat-
tery SOH and capacitance. It only considered 20% capacity drop
which was too narrow to estimate the battery SOH precisely.

Some researchers have proposed other methods to estimate the
SOH through analyzing the battery internal parameters. Reference
[12] presented a complementary cooperation algorithm based on
dual EKF combined with pattern recognition as an application of
Hamming neural network to identify suitable battery model pa-
rameters for improved SOC/capacity estimation and SOH predic-
tion. It needed about 6000 s to acquire the data to identify the
battery parameters. Therefore it needed larger storage for data, and
to wait longer time to estimate the SOH. A method to identify the
internal resistance in a hybrid vehicles was presented and a special
purpose model derived from an equivalent circuit was developed in
Ref. [11]. This model contained parameters depending on the
degradation of the battery cell. This method needed specific signal
intervals occurring during normal operation of the battery in a
hybrid vehicle which limits its application.

Battery SOH is defined as:

h ¼ Cbat
Cnominal

� 100% (1)

where h is SOH, Cbat is the present capacity and Cnominal is the
nominal capacity of the battery.

While using the above equation for SOH calculations, some
difficulties arise:

� The battery needs to be fully charged and discharged to
determine its present capacity, which is not realistic especially
when the battery is already installed in an EDV;

� The battery capacity will change with temperature and with
different charge/discharge current profiles.

In this paper, an online SOH identification method is proposed
through estimating the battery diffusion capacitance of a two-order
resistanceecapacitance model instead of direct measurement of
battery capacity. From experiments of the battery, we have found
direct linkage between the battery’s diffusion capacitance and the
total available capacity. However, in order to estimate SOH using
the diffusion capacitance, wemust estimate the voltage drop on the
capacitance. If the battery is under rest for a very long period of
time, such as 3 h, we can assume the initial voltage drop on the
capacitance is zero. When the vehicle is running, it is difficult to
obtain voltage drop on the capacitance. To overcome this problem,
we introduce the genetic algorithm (GA) to estimate the voltage
drop on the capacitance and the battery open circuit voltage in the
battery model through the use of measured battery current and
terminal voltage. The diffusion capacitance, hence, the SOH is then
determined.

GA is an effective tool to estimate the model parameters of a
nonlinear system. Genetic algorithm is inspired by natural selection
and biological evolution, and is an efficient method for solving both
constrained and unconstrained optimization problems through
repeatedly modifying a population of individual solutions. GA can
be found with wide applications in bioinformatics, computational
science, engineering, mathematics, physics, and other related fields
[18e22]. Typically, GA requires:

� A genetic representation of the solution, which is so-called the
population;

� A fitness function which is utilized to evaluate the solution.

A typical representation of the population is bit strings. Other
representations may also be introduced, like double vector. All the
populations can be used in the same way, which makes genetic
algorithmsmore convenient to realize crossover, mutation and elite
selection. A fitness function is defined to show the performance for
each population. Once the genetic representation and the fitness
function are defined, GA proceeds to initialize a population of so-
lutions (usually randomly) and then to improve it through repeti-
tive application of the mutation, crossover, inversion and selection
operators.

At each step, the GA selects individuals at random from the cur-
rent population to be parents and uses them to produce the children
for the next generation. Over successive generations, the population
evolves towards an optimal solution. GA has been successfully
applied in themulti objective optimization of HEV fuel economyand
emissions using the self-adaptive differential evolution algorithm
[22]. In this paper, GA is proposed to estimate the battery parameters
based on prediction-error minimization method.

The rest of the paper is arranged as follows. Section 2 introduces
the battery model that is used for SOH estimation. Section 3 ex-
plains GA and the parameter identification method. Section 4 an-
alyzes the uniqueness of the model and convergence of the
proposed GA algorithm. The experiment verification is presented in
Section 5. We also add the temperature influence and build an
observer of SOH with ambient temperature from 0 �C to 40 �C.
Some conclusion and next step work are finally given in Section 6.

2. Proposed method

An equivalent circuitmodelwith one open circuit voltage source,
two parallel resistorecapacitor networks and a series resistor, as
shown in Fig. 1, is introduced to simulate the battery dynamic and
static performance [2,3,5,12,23e25]. The open circuit voltage
source, which is parameterized as a nonlinear function of battery
SOC and the open circuit voltage, is to describe the open circuit
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voltage characteristic at different SOC. The two parallel resistore
capacitor networks represent the time-dependent polarization and
diffusion effects of the cell. The series resistor is to describe the
immediate voltage drop after an excitation current in the battery.
The parameters change gradually as the battery ages. The proposed
method is to identify the parameters online and determine the SOH
according to the identified parameters. This way we can obtain the
SOH in real time. In order to get accurate model parameters, a
particular length of data including battery current and terminal
voltage, as well as battery surface temperature is needed. Through
experiment, we have found that, in a short period of time, e.g. less
than 30 s, if the battery charges/dischargeswithin 2 C rate, the open
circuit voltage can be regarded as unchanged, where C denotes the
battery rated capacity in ampere-hours.1 We also assume that the
battery parameters, including the diffusion capacitance, diffusion
resistance, etc., will remain unchanged during this time interval.
During vehicle operation, or when the vehicle is charged, or right
after the vehicle is turned off, we can select a timewindowof 30 s to
measure the battery voltage, current, and temperature so as to use
the GA algorithm to estimate the battery model parameters, as long
as the discharge/charge rate is less than 2 C.

In this proposed method, we use GA to estimate the open circuit
voltage Eo and voltage drops on Cdiff and Cp from measured battery
terminal voltage, current, and temperature within the 30 s interval.
Based on these estimated voltages, we use iterative prediction-
error minimization algorithm (which will be discussed in the
next section) to estimate the battery parameters. Through the
recursive iteration and convergence ability of GA, the voltages can
be found and as such, the battery model can be identified accord-
ingly. We then use the identified diffusion capacitance to calculate
the battery SOH.
3. Genetic algorithm and parameter identification

3.1. Parameter identification

From Fig. 1, the following equations can be obtained:

vo ¼ Eo þ v1 þ v2 þ iR0 (2)

i ¼ v1
Rdiff

þ Cdiff
dv1
dt

¼ v2
Rp

þ Cp
dv2
dt

(3)

where vo is the battery terminal voltage, i is the battery current, R0,
Rdiff, Cdiff, Rp and Cp are battery parameters which reflect the battery
dynamic response and capacity. v1 is the voltage drop on capacitor
Cdiff, v2 the voltage drop on capacitor Cp, and Eo is the battery in-
ternal open circuit voltage.

For further analysis, we choose the voltage drop on the capaci-
tors as the state variables. The state space equation can then be
expressed as:

_x ¼

2
6664
� 1
Rdiff Cdiff

0

0 � 1
RpCp

3
7775$xþ

2
6664

1
Cdiff

1
Cp

3
7775$i (4)

y ¼ ½1 1 �$xþ Eo þ i$R0 (5)

where x ¼ ½ v1 v2 �T , []T denotes the transposition of a matrix, y is
the estimated battery terminal voltage.
1 The capacity (or SOC) change is less than 1.7% (2 C * 30 s/3600 s ¼ 1.7%).
Define A ¼ �1= Rdiff Cdiff
� �

0

0 �1= RpCp
� �

" #
, B ¼

�
1=Cdiff
1=Cp

�
,

C ¼ [1 1], D ¼ R0, u ¼ i, then Eqs. (4) and (5) can be written as a
standard form:�

_xðtÞ ¼ AxðtÞ þ Bu
yðtÞ ¼ CxðtÞ þ Duþ Eo

(6)

Based on Eq. (6), we can get the system output:

yðtÞ ¼ ep1tv1ð0Þ þ
Zt
0

ep1ðt�sÞq1uðsÞdsþ ep2tv2ð0Þ

þ
Zt
0

ep2ðt�sÞq2uðsÞdsþ Eo þ iR0 (7)

where p1¼�1/(RdiffCdiff), p2¼�1/(RpCp), q1¼1/Cdiff, q2¼1/Cp, u is the
input-batterycurrent,v1(0), andv2(0) are the initial voltagedroponof
CdiffandCp.Wecanfindthat thesystemoutput, i.e. batteryvoltage,has
a strong relationshipwithv1(0),v2(0), andEo. AsEo changeswith time,
we can only use a short time period to estimate the system parame-
ters, so some recursive methods which can estimate the system pa-
rameters, like Kalman filter, cannot be applied as it needs the
recursive computation to make the system parameters converged.

Iterative prediction-error minimization (PEM) method, as a
general estimation method, is selected to estimate the model pa-
rameters. PEM uses optimization to minimize the cost function,
defined as follows for scalar outputs.

Vn ¼
XN
t¼1

e2ðtÞ (8)

where e(t) is the difference between the measured output and the
predicted output of the model, and in this paper, e(t) ¼ y � vo. We
use least-square algorithm to realize PEM for minimizing the cost
function. The fitness function is to compare the model output (y)
and measured output (vo), and is based on the following equation.

Fitness ¼

0
B@1�

ffiffiffiffiffiffi
Vn

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðvo � voÞ2
q

1
CA� 100% (9)

where vo is the average value of vo over the time period the pa-
rameters are estimated. If y is equal to vo, then the fitness value
equals 100%, which is also the maximum value of fitness.

Transfer (6) into the discrete form:

�
xðkT þ TÞ ¼ AdxðkTÞ þ BduðkTÞ
yðkTÞ ¼ CdxðkTÞ þ DduðkTÞ þ Eo

(10)

where T is the sample time interval, k is the time step, and Ad ¼ eAT,
Bd ¼ R T

0 eAsBds, Cd ¼ C, Dd ¼ D. We can get:

Ad ¼
"
a11 0

0 a22

#
¼

2
64 e

� T
Rdiff Cdiff 0

0 e�
T

RpCp

3
75;

Bd ¼
"
bd1

bd2

#
¼

2
666664

1
Cdiff

ZT
0

e
� s

Rdiff Cdiff ds

1
Cp

ZT
0

e�
s

RpCpds

3
777775 ¼

2
664
Rdiff



1� e

� T
Rdiff Cdiff

�

Rp
�
1� e�

T
RpCp

�
3
775:
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Here we assume the initial state Xð0Þ ¼ ½ v1ð0Þ v2ð0Þ �T In
order to estimate the parameters in Eq. (10), the z-transform is
applied:

X½z� ¼ ðzI � AdÞ�1½zXð0Þ þ BdU½z�� (11)

Y ½z� ¼ Cd$X½z� þ Dd$U½z� þ Eo

¼ Cd$ðzI � AdÞ�1½zXð0Þ þ BdU½z�� þ Dd$U½z� þ Eo

¼ zv1ð0Þ þ bd1U½z�
z� a11

þ zv2ð0Þ þ bd2U½z�
z� a22

þ DdU½z� þ Eo (12)

where X[z], Y[z], and U[z] are the z-transform of x(kT), y(kT) and
u(kT).

Define Yd(z) ¼ Y[z] � Eo and Eq. (12) can be transferred into:
z2Yd Z½ � � zyd 1ð Þ � z2yd 0ð Þ � a11 þ a22ð ÞzYd Z½ � þ a11 þ a22ð Þzyd 0ð Þ þ a11a22Yd Z½ �
¼ Ddz

2U z½ � þ bd2 þ bd1 � a11Dd � a22Ddð ÞzU z½ � þ Dda11a22 � a22bd1 � a11bd2ð ÞU z½ � þ z� a22ð Þzv1 0ð Þ þ z� a11ð Þzv2 0ð Þ � zyd 1ð Þ
� z2yd 0ð Þ þ a11 þ a22ð Þzyd 0ð Þ

¼ Ddz
2U z½ � þ bd2 þ bd1 � a11Dd � a22Ddð ÞzU z½ � þ Dda11a22 � a22bd1 � a11bd2ð ÞU z½ � þ z2 v1 0ð Þ þ v2 0ð Þ � yd 0ð Þ½ �

� z a22v1 0ð Þ þ a11v2 0ð Þ þ yd 1ð Þ½ � þ a11 þ a22ð Þzyd 0ð Þ
¼ Ddz

2U z½ � þ bd2 þ bd1 � a11Dd � a22Ddð ÞzU z½ � � z2Ddu 0ð Þ þ Dda11a22 � a22bd1 � a11bd2ð ÞU z½ � � z a22v1 0ð Þ þ a11v2 0ð Þ þ yd 1ð Þ½ �
þ a11 þ a22ð Þzyd 0ð Þ

¼ Ddz
2U z½ � þ bd2 þ bd1 � a11Dd � a22Ddð ÞzU z½ � � z2Ddu 0ð Þ þ Dda11a22 � a22bd1 � a11bd2ð ÞU z½ � � bd2 þ bd1 � a11Dd � a22Ddð Þzu 0ð Þ

þ bd2 þ bd1 � a11Dd � a22Ddð Þzu 0ð Þ � z a22v1 0ð Þ þ a11v2 0ð Þ þ a11v1 0ð Þ þ a22v2 0ð Þ þ bd1u 0ð Þ þ bd2u 0ð Þ þ Ddu 1ð Þ½ �
þ a11 þ a22ð Þzyd 0ð Þ

¼ Ddz
2U z½ � þ bd2 þ bd1 � a11Dd � a22Ddð ÞzU z½ � � z2Ddu 0ð Þ þ Dda11a22 � a22bd1 � a11bd2ð ÞU z½ � � bd2 þ bd1 � a11Dd � a22Ddð Þzu 0ð Þ

þ �a11Dd � a22Ddð Þzu 0ð Þ � z a22v1 0ð Þ þ a11v2 0ð Þ þ a11v1 0ð Þ þ a22v2 0ð Þ þ Ddu 1ð Þ½ � þ a11 þ a22ð Þz v1 0ð Þ þ v2 0ð Þ þ Ddu 0ð Þ½ �
¼ Ddz

2U z½ � � zDdu 1ð Þ � z2Ddu 0ð Þ þ bd2 þ bd1 � a11Dd � a22Ddð ÞzU z½ � � bd2 þ bd1 � a11Dd � a22Ddð Þzu 0ð Þ
þ Dda11a22 � a22bd1 � a11bd2ð ÞU z½ �

(13)
where yd(0), and yd(1) are the battery voltage at t ¼ 0, and t ¼ T.
u(0), and u(1) are the battery current at t¼ 0, and t¼ T respectively.

So Eq. (13) can be transferred into differential equation:

Yd kT þ 2T½ � � a11 þ a22ð ÞYd kT þ T½ � þ a11a22Yd kT½ �
¼ Ddu kT þ 2T½ � þ bd2 þ bd1 � a11Dd � a22Dd½ �u kT þ T½ �

þ Dda11a22 � a22bd1 � a11bd2½ �u kT½ �
(14)
Pd ¼ a11 þ a22 �a11a22 Dd bd2 þ bd1 � a11Dd � a22Dd Dda11a22 � a22bd1 � a11bd2½ �T
Suppose we have n sets of data and define:

Yd ¼ ½ YdðkT þ 2TÞ YdðkT þ 3TÞ . YdðkT þ nT þ TÞ �T
Then Eq. (14) can be changed into:
Hd ¼

2
664

YdðkT þ TÞ YdðkTÞ UðkT þ 2TÞ UðkT þ TÞ
YdðkT þ 2TÞ YdðkT þ TÞ UðkT þ 3TÞ UðkT þ 2T

« « « «
YdðkT þ nTÞ YdðkT þ nT � TÞ UðkT þ nT þ TÞ UðkT þ nT
Yd ¼ Hd$Pd (15)
The least-square algorithm can be applied to estimate themodel
parameters based on the following calculation.

Pd ¼
�
HT
d$Hd

��1
$HT

d$Yd (16)

where ()�1 denotes the inverse of a matrix. As such, the battery
parameters can be obtained based on the estimated Pd accordingly.
So we need to determine Eo in advance to calculate Yd and estimate
the battery parameters. In order to calculate the fitness value in Eq.
(9), we need to calculate the model output based on Eqs. (7) and
(10), we need to know v1(0) and v2(0) ahead, which can be
within the constraint of difference between battery terminal
voltage y(kT) and the open circuit voltage Eo. GA supplies an effi-
cient way to estimate these values based on the fitness function.
3.2. Genetic algorithm

Typically, GA consists of encoding, selection, mutation and
crossover [18e22]. The most used way of encoding is a binary
string. During each successive generation, some of the existing
population is selected to generate the next offspring and this pro-
cess is the so-called selection. A proportion of the existing popu-
lation is regarded as the elitists and selected as the next offspring
directly without any change. The criterion of the selection is based
on the fitness function and the constraint. The crossover process is
to hybridize the chromosome of the parent and generate the next
offspring and the mutation process’s function is to mutate some
bits in the chromosome randomly or uniformly. The main purpose
UðkTÞ
Þ UðkT þ TÞ

«
Þ UðkT þ nT � TÞ

3
775
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of mutation is to prevent falling all solutions in population into a
local optimum of solved problem. Finally, the above processes
result in the next generation population of chromosomes which is
different from the previous one. Generally the average fitness value
will increase after processes. Although crossover and mutation are
known as the main genetic operators, it is possible to use other
operators such as regrouping, colonizationeextinction, or migra-
tion in genetic algorithms. This generational process is repeated
until a termination condition has been reached. Common termi-
nating conditions are: (1). A solution is found that satisfies the
minimum criteria; (2). Allocated budget, like time or generations
reached. (3). The setting fitness value has been found.

Based on the above analysis, the SOH realization is shown in
Fig. 2, which combines the battery model parameter identification
along with GA. The process is realized in Matlab/Simulink.2 The
calculation process is repetitive according to the fitness value. If the
fitness value is not satisfied, GA will take a series of actions,
including elitism selection, crossover and mutation based on the
fitness value of each individual, and output the new individuals, i.e.
v1(0), v2(0), and Eo for the next cyclic calculation. The repetition
continues and terminates until the fitness value is larger than the
boundary value and the current parameters will be regarded as the
identified system parameters. Based on the identified diffusion
capacitance and the built relationship between diffusion capaci-
tance and battery SOH, the battery SOH can be estimated. From Eq.
2 Matlab is a high-level language for numerical computation, and programming.
It is easy to use it to analyze data, develop algorithms, and build the models.
Simulink, which is integrated with Matlab, provides a user-friendly interface, cus-
tomizable block libraries, strong solvers for simulating dynamic systems, and fast
auto-code generation for embedded systems.
(9), the maximum value of the fitness function is 100%. Due to the
existence of noise of the measured current and terminal voltage, it
is impossible to fit the curve with fitness value of 100%. In this
paper, if the fitness of the model output reaches 95%, the model can
be considered to simulate the system’s performance, and the GA
algorithm terminates.
4. Convergence analysis

In order to prove the convergence of the proposed GA for battery
parameter estimation, we need to prove that:

� There is a unique solution of the battery model;
� The proposed algorithm converges.

In Eq. (6), as C ¼ [1 1] is definite, according to the proof in Ref.
[26] (pp. 161e167), we concluded that there is a unique solution for
the system parameters.
Fig. 4. Battery capacity variation versus charge/discharge cycle.
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The convergence rate of genetic algorithms is addressed using
Markov chain analysis [20,21,27].We can describe an elitist GA using
mutation, recombination and selection as a discrete stochastic pro-
cess. Evaluating the eigenvalues of the transition matrix of the
Markov chain we can prove that the convergence rate of a GA is
determinedby the second largest eigenvalueof the transitionmatrix.

G. Rudolph [20] analyzed the convergence properties of the
canonical genetic algorithmwith crossover, mutation and selection
by means of homogeneous finite Markov chain analysis, which
showed that the canonical GA will never converge to the global
optimum as a result of unceasing selection, crossover andmutation.
However, he also proved that the canonical GAwhich can maintain
the best solution found over time after selection converged to the
global optimum. Besides, the canonical GA can reach any state
infinite times with probability one regardless of the initial states.
Theoretically, this means the premature convergence cannot occur
provided that the mutation probability is larger than zero. Practi-
cally this means even if premature convergence can occur, it will
not persist indefinitely. Therefore, GA with an arbitrary initial
population converges to the global optimum if the following as-
sumptions are fulfilled [20,27]:

� Selection chooses the elitist individual from parents and
offspring.

� Each state is reachable from any other state.

Based on the above theorems, GA can reach any state. If the best
individual can be selected, the convergence to the optimum value
can be assured, thus the algorithm can converge to the optimal
point without considering the initial input. During the process of
GA operation to find the optimal value, themutation coefficient, the
population and the elitism of the population for GA is set to 0.05, 12
and 2 respectively. Therefore the convergence of the proposed
method can be assured.
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Fig. 6. Comparison of identified and measured battery terminal voltage.
5. Experiment validation

A pouch cell lithium-ion battery is tested repeatedly as well as at
different ambient temperatures. The battery has a rated capacity of
32 Ah, fully charged voltage of 4.05 V, and cut-off voltage of 3 V. The
open circuit voltage Eo and the battery cell are shown in Fig. 3,
which ranges from 3.5 V to 4.05 V.

In order to realize online parameter estimation based on GA,
some constraints should be considered which includes the re-
striction of v1(0) and v2(0), and the open circuit voltage Eo.8>>>>>><
>>>>>>:

v1ð0Þ þ v2ð0Þ þ Eo � vo ðif uð0Þ � 0Þ
v1ð0Þ þ v2ð0Þ þ Eo > vo ðif uð0Þ < 0Þ
�0:5 < v1ð0Þ < 0:5
�0:5 < v2ð0Þ < 0:5
3:5 < Eo < 4:05
�0:5 < v1ð0Þ þ v2ð0Þ < 0:5

(17)

where u(0) is the initial battery current value when the following
data is utilized to identify the parameters. The constraints of v1(0),
v2(0) and v1(0) þ v2(0) are obtained from the battery voltage when
charging or discharging the battery with the maximum allowable
current. Because Eo ranges from 3.5 to 4.05 V and the battery ter-
minal voltage vo ranges from 4.05 V to 3 V when the battery is
charged or discharged, the absolute value of maximum difference
between Eo and vo is less than 0.5 V. From Eq. (2), we can get
v1(0)þ v2(0) are limitedwithin [�0.5, 0.5], therefore v1(0) and v2(0)
are also with the same range. The initial values of v1(0), v2(0) and Eo
are chosen randomly with the restriction in Eq. (17).

5.1. Battery parameter identification

Two hundred and fifty-three cycles are applied on the energy
decay experiment, partial experiment data is shown in Fig. 4.
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Fig. 8. Maximum fitness value in each generation of GA.
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Among them, we conducted the experiment with the following
pattern: at C/2 (16 A) charge rate and 1 C (32 A) discharge rate, 2 C
charge rate and 2 C discharge rate, 1 C charge rate and 2 C discharge
rate, 1 C charge rate and at 1 C discharge rate for 109 cycles, 98
cycles, 43 cycles and 3 cycles, respectively. The initial capacity is
32 Ah. After 253 cycles, the battery capacity drops to less than
23 Ah. There is 1 min rest for the battery after charging for 12 min.
Fig. 5 presents the measured battery terminal voltage of cycle 102.
Three different testing periods marked on the curve are selected for
the parameter identification. After the parameters are identified
based on GA and PEM method, one of the identified results are
shown in Fig. 6, in which the fitness can reach 95.28% which sat-
isfies the criteria presented in Section 3. Fig. 7 presents the differ-
ences between measured voltage and model output, of which the
maximum error is less than 0.006 V. This indicates that the model
can simulate the battery voltage with good accuracy.

Fig. 8 shows the maximum fitness value in each iteration gen-
eration of GA, which is calculated using Eq. (9). The initial
maximum fitness value is �150.86%, and after 83 generations, the
maximum fitness value reaches 95% and GA calculation terminates.
The whole process lasts 5 min using a laptop with a CPU core i5 and
4G RAM.

Fig. 9 shows the measured terminal voltage and current curves
of a used battery when the battery is simulatedwith a hardware-in-
the-loop system with an urban dynamometer driving schedule
(UDDS) drive cycle. Similar to Fig. 5, the data marked within red
rectangle frames is extracted to estimate the system parameters.
The results are shown in Figs. 10 and 11 respectively.

It can be seen from Figs. 10 and 11 that the identified terminal
voltage can track the measured terminal voltage of the battery, and
the fitness function can reach 95.12% and 95.40%, respectively.
Fig. 12 shows the minimum Vn variation of each generation during
evolution process for time period 850 se880 s. The beginning value
5 10 15 20 25 30

3.73

3.74

3.75

3.76

3.77

3.78

3.79

Time(s)

Vo
lta

ge
(V

)

Measured battery voltage  
model output; fitness: 95.12%

Fig. 10. Comparison of measured battery voltage and model output for time period of
750 se780 s.
is 6.620 V2 and it gradually converges during evolution. After 46
generations, it reduces to less than 0.005 V2 when the GA calcula-
tion terminates. The whole calculation lasts less than 5 min. It is
therefore proves that the proposed GA can estimate the battery
parameters even when the vehicle is in operation. Based on the
identified results of different cycle data, partial data are listed in
Table 1, which includes Rdiff, Cdiff, battery capacity, battery average
temperature and measured battery SOH inferred from battery
diffusion capacitance.

In Table 1, Rdiff and Cdiff are the online identified diffusion
resistance and capacitance value. The capacity denotes the battery
discharge capacity at 1 C current rate after the battery is fully
charged. The temperature is the average battery temperature when
identifying the parameters. It can be seen from Table 1 that the
diffusion resistance Rdiff remains almost unchanged but the diffu-
sion capacitance Cdiff decreases gradually as the battery ages. The
capacitance varies from 1629.04 F to 459.42 F as the battery ca-
pacity varies from 31.37 Ah to 22.77 Ah. Hence the change of
diffusion capacitance can reflect the change of battery capacity, i.e.,
battery SOH. Based on the identified Cdiff and the related capacity of
each measurement, a linear equation with the reciprocal of Cdiff, as
shown in Eq. (18), can be obtained to calculate the battery SOH h at
room temperature.

h ¼
 
b1$Cdiff rat

Cdiff
þ b0

!
� 100% (18)

where b0 ¼ 1.105, b1 ¼ �0.105, Cdiff_rat is the identified capacitance
for a healthy battery and equals 1632.36 F. In Table 1, the battery
SOH calculated using Cdiff and capacity measurement, as well as
their difference are presented. The maximum error is 4.35%.
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Table 1
The identified battery parameters.

Cycle no. Rdiff (U) Cdiff (F) Capacity (Ah) Temperature (�C) SOH calculated using Cdiff (%) SOH calculated using capacity (%) SOH error (%)

14 0.0024 1629.04 31.37 23.03 99.98 98.03 1.95
50 0.0020 1502.96 30.98 22.02 99.10 96.82 2.27
102 0.0019 1527.56 30.38 21.55 99.28 94.93 4.35
126 0.0021 1202.41 29.95 22.36 96.25 93.59 2.65
158 0.0020 855.30 28.15 21.75 90.46 87.97 2.49
172 0.0019 765.86 27.87 23.08 88.12 87.09 1.03
188 0.0020 606.70 27.11 25.32 82.25 84.72 �2.47
208 0.0022 578.25 26.19 24.58 80.86 81.84 �0.98
231 0.0025 502.90 24.39 25.18 76.42 76.22 0.20
253 0.0027 459.42 22.77 25.78 73.19 71.16 2.04
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5.2. Temperature influence

The battery parameters and capacity change with temperature.
In order to ensure the robustness of the proposed method, tem-
perature influence is taken into account to increase the identifica-
tion accuracy and robustness. A healthy battery is experimented in
a temperature-controlled chamber. A standard battery test
equipment BT 2000, a product of Arbin Instruments Inc., is used to
test the battery performancewith C/2 charge rate and 1 C discharge
rate. In an electric drive vehicle, the battery pack is equipped with
an effective thermal control module, which usually can maintain
the battery temperature within 0 �Ce40 �C. Therefore, we test the
battery at different ambient temperatures from 0 �C to 40 �C with
5 �C increment as a next step. Table 2 presents the battery capacity
versus different temperatures. The parameters of the battery at
different temperatures are identified as well and shown in Table 2.
From Table 2, Cdiff changes from 504.47 F at 0 �C to 2172.28 F at
40 �C; and Rdiff changes from 0.0056 U at 0 �C to 0.0016 U at 40 �C.
The battery capacity will increase from 26.47 Ah at 0 �C to 33.84 Ah
at 40 �C.

Fig. 13 presents the resistance and capacitance variation at
different temperatures. No doubt, the resistance decreases and the
capacitance increases as the temperature increases, thus it can
reflect the battery capacity variation, as shown in Fig. 14.
Fig. 13. Resistance and capacitance variation with temperature.

Table 2
The identified battery parameters with different temperatures.

Temperature (�C) Rdiff (U) Cdiff (F) Capacity (Ah)

0 0.0056 504.47 26.47
5 0.0033 821.23 28.64
10 0.0030 927.11 29.78
15 0.0026 1157.61 31.48
25 0.0022 1632.36 32.47
30 0.0020 1661.91 33.19
35 0.0018 1864.56 33.35
40 0.0016 2172.28 33.84
5.3. SOH estimation

Based on the analysis, Eq. (18) and the data listed in Table 2, the
battery SOH h, as defined in Eq. (1), can be determined by the
diffusion capacitance Cdiff and temperature T through curve fitting.

h¼ f
�
Cdiff ;T

�
¼
 �

a1T2þa2Tþa3
�
$Cdiff rat

1000�Cdiff
þb0

!
�100% (19)

where b0 ¼ 1.105, a1 ¼ 0.0041, a2 ¼ �2.684, a3 ¼ �35.12, Cdiff_rat is
the identified capacitance for a healthy battery at 25 �C and equals
1632.36 F.

In order to verify the proposed algorithm, a used battery is
tested at 5 �C and room temperature consecutively. The measured
current and terminal voltage of the battery at 5 �C are shown in
Fig. 15. The battery charging current is 16 A and discharging current
is 32 A. The fully charged voltage is 4.05 V and the cut-off voltage
for discharge is 3 V.

Based on the proposed method, the identified model output is
compared to the measure battery terminal voltage as shown in
Fig. 16. The fitness value reaches 95.35%, which satisfies the criteria
Fig. 14. Battery capacity variation with temperature.
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Fig. 15. The measured battery current and terminal voltage at 5 �C.



50 100 150 200 250 300
3.77

3.78

3.79

3.80

3.81

3.82

Time(s)

Vo
lta

ge
(V

) Measured battery voltage
Model output; fitness: 95.35%

Fig. 16. Comparison of measured battery terminal voltage and the identified result.

Z. Chen et al. / Journal of Power Sources 240 (2013) 184e192192
of estimation precision. The difference between identified and
measured battery voltage is within 0.006 V. The diffusion capaci-
tance Cdiff is 641.33 F. Substitute the value of Cdiff and battery
temperature into Eq. (19), the SOH is obtained, which is 98.14%.
Through the following experiment at room temperature, the
measured battery capacity at room temperature is 29.77 Ah, i.e., the
battery SOH is 93.03%. The SOH difference is 5.11%. Thus it verifies
the feasibility of the proposedmethod with different temperatures.
6. Conclusion

In this paper, battery SOH is estimated online by using the
diffusion capacitance of a two-order RC circuit model of the
lithium-ion battery. Genetic algorithm is proposed to estimate the
parameters of the battery. The following conclusions can be made
from the simulation and experiment results of the research.

� At the same temperature, battery SOH can be observed through
Cdiff. If Cdiff drops, the battery capacity drops proportionally
with the reciprocal of Cdiff. SOH is proportional to the reciprocal
of diffusion capacitance of the battery.

� Battery diffusion capacitance can be observed online and real
time using genetic algorithm using measurement of battery
current and terminal voltage.

� The battery capacity increases as the temperature rises. When
the battery temperature increases, Cdiff will increase and Rdiff
will decrease accordingly.
However, the GA needs some time to find the optimal values.
We plan to improve the convergence speed of the GA in our future
research.
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