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An online State of Charge (SOC) estimation method with reduced prior battery testing information is pro-
posed in this paper, in which no testing data obtained in laboratory is needed, including the relationship
between the open circuit voltage (OCV) and the SOC. The first order RC battery model is utilized to inter-
pret the characteristics of the lithium-ion battery. The genetic algorithm is introduced to carry out the
online identification for the battery model. Parameters obtained by the identification are applied to
the joint SOC estimation method to estimate the SOC of the battery. An experimental battery test work-
bench is established to validate the proposed method. Several drive cycle current profiles are scaled down
and applied to the battery. The experiment results show that the parameters obtained by the proposed
method could characterize the battery well, even for different drive cycles, and accurate SOC of the bat-
tery could be obtained online.
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Introduction

Considered as the only viable solution at present for Electric
Drive Vehicles (EDVs), such as Battery Electric Vehicles (BEVs),
Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehi-
cles (PHEVs)., lithium-ion (li-ion) batteries have drawn more and
more attentions worldwide. However, as complex electrochemical
systems with strong nonlinearities, li-ion batteries are sensitive to
overcharge and overdischarge. If overcharge or overdischarge
occurs, the cycle life of the battery could be dramatically reduced,
and the battery could catch fire or even have an explosion. Mea-
sures should be taken in battery management systems (BMS) to
avoid these situations and assure the safety of EDVs.

Defined as the ratio of the remaining capacity over the nominal
capacity, the State of Charge (SOC) is considered as one of the key
parameters that could be used to solve the problems stated above.
Besides, accurate SOC is also needed as one of the important
parameters in EDVs for the concern of control engineering, remain-
ing range of the EDV, and so forth. If accurate SOC could be
obtained, the useable SOC range could be extended. A smaller bat-
tery pack would be able to satisfy the demand of an EDV that right
now is equipped with a larger battery pack. Thus the price for the
battery pack could be dramatically decreased, further helping the
market penetration of EDVs.

The coulomb counting method (CCM) [1] is the most straight
forward method to estimate the SOC of a battery, according to
the definition of the SOC. The CCM has actually been widely used
in practical BMS for its easy implementation and simple computa-
tion. However, the CCM heavily relies on the prior knowledge of
the initial SOC of the battery. If the initial SOC were unknown or
not accurate, the estimated SOC would always have a bias. Besides,
the accumulative error problem could not be ignored, especially for
long-term SOC estimations.

The model based SOC estimation method (MBSEM) [2–6] is con-
sidered as one of the most popular SOC estimation methods in
recent years. Comparing with the CCM, the MBSEM takes advan-
tage of both the measured current and voltage signals, and thus
forms a close loop estimation method, leading to a more accurate
estimation. For this reason, the MBSEM does not rely on the accu-
rate initial SOC, and the accumulative error problem could also
been solved. Such MBSEMs could be the Kalman filter method
[2,3], the sliding mode method [7–10], the Luenberger observer
method [11–13], the proportional integral observer method [5,6],
etc.

Some attempts have been made to evaluate the models for the
states and parameters estimations of li-ion batteries, such as the
Rint Model [14–16], the first order RC model [17–19], the imped-
ance model [2]. More models have also been researched derived
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from the models mentioned above, such as hysteresis model [14].
Different models have its own unique features, but all the models
should be identified to obtain the parameters of the model. Nor-
mally, such identification procedures are carried out offline with
specially defined data obtained in laboratory. To obtain such test-
ing data, different testing procedures such as the OCV test, the
Hybrid Pulse Power Characterization (HPPC) test [20], and so forth,
should be carried out and complex battery test workbenches
should be established, which could be expensive and time consum-
ing. Furthermore, the obtained data may only suit for the tested
battery and even only for the certain state of the battery. If the bat-
tery has been used for a long time, the parameters may vary, and
the laboratorial data could be useless.

To solve the problems stated above, this paper proposed a new
thought, a joint online parameter identification and SOC estimation
method. In such a joint method, no testing data obtained in labora-
tory is needed, including the OCV–SOC relationship. All the identi-
fication processes are carried out online. By this way, batteries
could be equipped to the EDVs directly, and the parameters of
the model could be obtained automatically. The MBSEM and the
CCM are jointly utilized to estimate the SOC, taking advantage of
each method and making up their own defects. In Section ‘Principle
of the joint method’, the principle of the proposed joint online
parameter identification and SOC estimation method would be
interpreted. In Section ‘Experiment and validation’, the experimen-
tal workbench would be established to validate the proposed
method. The conclusions would be drawn in Section ‘Conclusion’.
Principle of the joint method

In this section, the principle of the joint online identification
and SOC estimation method for li-ion batteries is analyzed in
detail. Although, a battery pack would be used for a real EDV appli-
cation, the whole battery pack could be treated as a big battery cell
by taking advantage of battery balancing methods [21–23] and
some other measurements. Therefore, for the sake of simplicity, a
battery cell is studied in this paper instead of a battery pack, and
the method proposed in this paper could be easily applied to bat-
tery pack.

As is known to all, the only information for a given battery is
from its datasheet, which includes the capacity, the cut-off voltage,
etc. If no laboratorial experiment were carried out, the parameters
for the battery, such as the internal resistance, would be unknown.
However, it would always take long time to excite the characteris-
tics of the battery in laboratorial experiments, such as the HPPC
testing profile [24]. Besides, battery test equipment for such exper-
iments is often very expensive and difficult to operate. A better
way should be configured out to solve such problems. The principle
of the proposed method is depicted in Fig. 1.

As shown in Fig. 1, since the capacity of the battery is given in
the datasheet, the only information needed for the proposed joint
method is the initial SOC. As far as the initial SOC of the battery is
concerned, it is easy to be known when the battery is brand new.
Even if the initial SOC of the battery is unknown, it could also be
easily obtained by a full charge before its first use.

The voltage and the current signals are measured for the battery
used in practical applications, as shown in Fig. 1. With the mea-
sured current signals and the given initial SOC, the SOC of the bat-
tery could be calculated by the CCM for a short time, e.g. one drive
cycle. In this short time, the accumulative error of the CCM could
be small and be ignored. The voltage signals, the current signals
and the estimated SOC are recorded by the data logging device.
After a certain interval, the recorded data are selected to identify
the parameters of the battery model according to some criterions.
To simplify the calculation, such criterions should meet the
requirement that the SOC would vary little for the selected data,
which would be explained in detail in ‘Data selection’.

When the data selection is finished, such selected data are
applied to the online identification algorithm to calculate the
unknown parameters of the battery model. When these parame-
ters are obtained, they are substituted to the model to determine
whether the obtained parameters are accurate enough or not. If
so, such set of parameters are stored for further usage in the model
to estimate the SOC. If not, the online identification processes
would be carried out repeatedly until the parameters could fit
the data well enough. The obtained parameters are stored such
that the piecewise technology could be used and the parameters
for other SOC could also be calculated. Finally, the parameters of
the battery model could be obtained for each SOC interval, and
could be applied to the model based SOC estimation method to
correct the SOC estimation. Since these procedure would carried
out all the time and the parameters of the battery model would
update accordingly, the method could always obtain the latest
parameters of the battery and have a good estimation of the SOC
even the properties of the battery changes with time.

To further understand the proposed joint method, several key
links of the procedure are explained in detail in following sections.

Battery model

Li-ion batteries have been widely used in EDV applications, and
plenty of battery models [14–19] have been proposed and studied.
However, li-ion batteries are complex electrochemical systems
with strong nonlinearity, and no unique model could fully charac-
terize the real battery. Besides, it is believed that, the more accu-
rate, the more complex the battery model would be. Since the
online identification is a complex procedure, the computation
complexity should be carefully considered. To reduce the computa-
tion complexity of the online identification, the battery model
should be the simpler the better. Take such aspects into consider-
ation, the first order RC model [17–19] is introduced in this paper.

The first order RC model is divided into three parts: the open
circuit voltage (OCV) part Eo(z), the internal resistance R1 and the
parallel RC network. The SOC is denoted as z in the figure and equa-
tions, the OCV part Eo(z) is used to interpret the nonlinear part of
the voltage response and it is also a function of SOC, the resistance
R1 is used to interpret the internal resistance of the battery, and the
parallel RC network is used to represent the high frequency
response of the battery. Vo is the terminal voltage of the battery,
I is the denotation of the current applied to the battery and it is
assumed to be positive when the battery is charged.

According to the circuit theory, the terminal voltage could be
calculated as follows:

_V2 ¼ � 1
R2C2

V2 þ I
C2

Vo ¼ EoðzÞ þ V2 þ R1I

(
ð1Þ
Data selection

As stated above, the main criteria of the data selection is to
make sure that the OCV would maintain constant. Through prior
experiments, it is found that in a short period of time, e.g. less than
30 s, if the battery charges/discharges within 2C rate, the OCV
could be regarded as unchanged, where C denotes the battery rated
capacity in ampere-hours. It is assumed in this paper that the bat-
tery parameters, including the internal resistance and the OCV,
would remain unchanged during this time interval. Besides, in
order to fully excite the characteristics of the battery, the battery
should be charged and also be discharged in this time interval.
So the limitations for the selected data should be as follows:
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Fig. 1. Flowchart of the proposed method.
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a. Time interval should be short enough, e.g. less than 30 s.
b. The charge or discharge current should be not too large, e.g.

less than 2C rate.
c. There should be enough current excitation. Maximum cur-

rent deviation (the maximum current minus the minimum
current) of these data should be larger than a certain value,
e.g. 0.5C rate.

Fig. 2 shows an example of the data selection. In this example,
the capacity of the battery is 2.95 Ah. The time interval is set to be
30 s, the maximum discharge current is less than 2C rate (about 1C
rate in this example), and the maximum current deviation is also
large enough. So, these data could be used in the online identifica-
tion process to obtain the parameters of the model.

Online identification

As an effective tool to estimate the model parameters of nonlin-
ear systems and a unique algorithm owning the whole range opti-
mum properties, the genetic algorithm (GA) has been widely
applied in bioinformatics, computational science, engineering,
mathematics, physics, and other fields. GA has also been successful
applied to parameter identification in our previous work [25]. For
the whole range optimum properties, GA is introduced in this
paper to perform the online identification.
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Fig. 2. Online identification data selection with zoom-in selected current data.
For the online identification, the battery model (1) is applied to
calculate the voltage response. As stated above, the parameters
Eo(z), R1, R2, C2 are assumed to be constant in this process. The
errors between the calculated voltage and the measured voltage
are presented as follows:

e ¼ V calculated � Vmeasured ð2Þ

Parameters of the battery could be obtained by minimizing the
following equation:

½eEo; eR1; eR2; eC2� ¼ arg min
½Eo ;R1 ;R2 ;C2 �

Xn

i¼1

e2
i ð3Þ

where ½eEo; eR1; eR2; eC2� is the identified parameters of the model, n is
the samples in the selection time interval. The GA is applied to find
the whole range optimal values of ½eEo; eR1; eR2; eC2� for the selected
data.

Joint online model based SOC estimation

The choice of SOC estimation methods
According to the analysis above, the CCM and the MBSEM are

jointly applied and a joint SOC estimation method is proposed
based on the online identification method. Fig. 3 shows the strat-
egy determining which SOC estimation method should be used.
Previous SOC 
between two identified 

SOC?

Yes No

Model based 
SOC Estiamtion

Current Counting 
SOC Estiamtion

SOC UpdateSOC Update

Estimated SOC

Initial SOC

Time Delay

Fig. 3. Flowchart to determine which SOC estimation method should be used.



C
om

pu
te

r

Matlab/
Simulink M

ic
ro

A
ut

oB
ox

ADC1

ADC2

Current
Sensor

Battery
Voltage

COM1

COM2

E
le

ct
ri

c 
L

oa
d

C
ha

rg
er

B
at

te
ry

RS232
RS232

J. Xu et al. / Electrical Power and Energy Systems 63 (2014) 178–184 181
It is assumed that the initial SOC for the first use is known (it could
be fully charged before the first use if the initial SOC is unknown).

The time delay means time interval between two SOC estima-
tion calculations. As shown in the figure, if the SOC of the previous
sampling time is between two identified SOC, the parameters for
such two SOC are known, and the MBSEM would be utilized. For
example, if the parameters of 40% SOC and 50% SOC are known,
and the SOC of the previous sampling time is between 40% and
50% (45% for example), the MBSEM would be applied since the
parameters could be inferred from the parameters of the two iden-
tified SOC. If not, the CCM would be used to calculate the SOC since
there is no parameter available for the model based SOC estimation
method. Although the CCM suffers the accumulative error problem
discussed above, estimation error caused by such problem could be
acceptable if the time range is short enough. According to prior
experiment results, in a short time range, e.g. one or several drive
cycles, the SOC estimation accuracy of the CCM is accurate enough.
In this case, the previous SOC is treated as the initial SOC for this
process. And these SOC, together with the current and voltage sig-
nals are recorded for the further usage of online identification.

Brief explanation of the MBSEM used in this paper
The proportional integral observer SOC estimation method [5,6]

is introduced as the MBSEM in this paper. Other MBSEMs could
also be utilized if necessary, such as the Kalman filter method.

According to the definition of SOC, following relationship could
be rewritten:

_z ¼ gi

Cn
I ð4Þ

where z is battery SOC, I is the instantaneous battery current, gi is
the battery Coulombic efficiency, and Cn is the nominal battery
capacity.

Taking SOC as the state, the state space function could be writ-
ten as follows:

_z ¼ gi
Cn

I

Vo ¼ EoðzÞ þ R1I

�
ð5Þ

However, the output equation of the above state space function
is not expressed directly with the state z, but with Eo(z). The rela-
tionship between SOC and Eo is nonlinear and it is not easy to draw
a mathematical interpretation for it. To deal with this problem and
simplify the computation, a gain scheduling method [26] is intro-
duced, which typically employs an approach whereby the nonlin-
ear system is decomposed into a number of linear subsystems.
For a given nonlinear system, the relationship between SOC and
Eo(z) can be divided into several sections, and the subsystem in
each section is considered to be linear. So the relationship can be
written in the short SOC interval as follows for the ith SOC interval
(i � 1)�Dz 6 zi 6 i�Dz:

Eo ¼ ai � zi þ bi ð6Þ

where Dz is the SOC interval length. For the ith SOC interval
(i � 1)�Dz 6 zi 6 i�Dz, the corresponding set (ai, bi) can be calculated
from the curve and will maintain constant in the ith SOC interval. To
consider the online identification application, Dz is the SOC interval
between two identification processes. If two identification pro-
cesses have been taken, the parameters between these two SOCs
could be piecewise calculated.

Combine (5) and (6), the state space function of the battery
model could be depicted as follows:

_z ¼ gi
Cn

I

Vo ¼ ai � zi þ bi þ R1I

(
ð7Þ
According to the definition of the proportional integral observer
SOC estimation method, following equations could be obtained:

_~x ¼ A~xþ Buþ Kpðy� ~yÞ þ Ki2w
_w ¼ Ki1ðy� ~yÞ

(
ð8Þ

where variable w is defined as the integral of the difference ðy� ~yÞ.
Vectors Kp 2 R2�1 and Ki1 2 R1�1 Ki2 2 R2�1 are the proportional and
integral gains respectively.

Experiment and validation

Experimental battery test workbench establishment

To validate the performance of the proposed method, an exper-
imental battery test workbench is established. The structure of the
workbench is shown in Fig. 4 and the established battery test
workbench is shown in Fig. 5. In this workbench, a charger and
an electronic load are connected in parallel to the terminals of
the battery. A Hall current sensor is utilized to measure the main
current of the battery. The voltage of the battery is measured by
the analog to digital converter (ADC) of the MicroAutobox, and
the current of the battery by another channel of the ADC. The char-
ger and the electric load are controlled by the MicroAutobox
through RS232 signals. The MicroAutobox is controlled by a com-
puter to simulate some current profiles applied to the battery,
and the current profiles are sent out by RS232 signals to the char-
ger and the electronic load, and finally applied to the battery. These
current profiles could be constant current charge, constant voltage
charge, constant current discharge and drive cycles, such as Envi-
ronmental Protection Agency (EPA), Urban Dynamometer Driving
Schedule (UDDS), EPA Supplemental Federal Test Procedure (SFTP)
and Highway Fuel Economy Test (HWFET). The MicroAutobox is
also used to record the data and perform the proposed joint
method stated above.

Experimental scenario for the proposed method

To verify the online identification method, the experiment is
established and a li-ion battery is tested on the workbench. The
UDDS drive cycle is applied to the li-ion battery, and the current
and the voltage signals are recorded. On the online identification
stage, the SOC is calculated by the CCM and also be recorded. After
a certain time interval, 30 s in this experiment, the data selection
method is applied to select the data to identify the model param-
eters from the recorded data and the online identification would
be carried out to obtain the parameters of the battery model.

While the proposed method could be applied to any scenario
according to practical driving habits. However, to fully validate
the proposed method, a special scenario is set up in this paper as
follows: The battery is assumed to be equipped to an EDV and it
is the first use. All the parameters for this battery model are
Fig. 4. The structure of the experimental battery test workbench.
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unknown except the initial SOC. Firstly, the EDV is applied to sev-
eral UDDS drive cycles. At this time, the SOC is assumed to be 50%
(could be any other value actually) and the EV is back home and
being fully charged. Secondly, the EDV is applied to another several
UDDS drive cycles again and the battery is almost exhausted. The
final SOC is assumed to be about 15% at this time. The EDV would
be charged to a certain SOC but not fully charge, 83% in this case.
Finally, the EDV is applied to another several drive cycles until it
is home and the finally SOC is about 20%. At this final step, to val-
idate the identified parameters used in MBSEM, the initial SOC for
the MBSEM is assumed to be unknown and it is reset to 50%. Fig. 6
shows the procedures and the results of the scenario.

As shown in the figure, in Fig. 6(a), the SOC is always be calcu-
lated by the CCM, since for this first run, the parameters of the bat-
tery model are unknown. In this first run, the data are recorded,
including the SOC, the voltage and the current signals. Besides,
during this time period, the data are selected and the online iden-
tification processes are carried out. According to procedure of the
proposed method, the identified parameters are subscribed to the
battery and calculate the voltage to compare with the measured
voltage. If the value of fitness function is bigger than a certain
value, 98% for example, this set of parameters would be recorded.
If not, the data selection process would be done again and the iden-
tification process would also be carried out again until the criteria
meets.

In Fig. 6(b), the processes are separated into two parts. In the
first part, in the time range from 0 to around 9000 s, the parame-
ters have been identified by the first run as shown in Fig. 6(a).
While in the second part, in the time range after around 9000 s,
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Fig. 6. The results of the validation: (a) data recorded for the first run; (b) data recorded
cycle in which the parameters are identified by former cycles.
the parameters are unknown. So in the first part, as shown in
Fig. 6(b), the SOC are estimated by the MBSEM, and the calculated
voltage could be almost the same as the measured voltage, which
indicates that the model parameters identified by the first run
cycle could characterize the battery well. The parameters of the
first order RC model are shown in following table: (see Table 1).

In the second part, the SOC are calculated by the CCM and the
initial SOC for the CCM is the final SOC estimated by the MBSEM.
In this part, the data are recorded to be used by the online
identification.

In Fig. 6(c), the initial estimated SOC is assumed to be unknown.
Since the parameters for the whole range are known, the MBSEM is
utilized. As shown in the figure, the initial error could be compen-
sated in a short time and the estimation errors are small.

Identification results

Further studies are also carried out by the comparison between
the measured voltage and the calculated voltage with the identi-
fied model. The voltage comparison results are given in Fig. 7.

As shown in the figure, the voltages calculated by the identified
model are almost the same as the measured voltages, which indi-
cates that the identified parameters could fully interpret the char-
acteristics of the battery. The voltage errors between the measured
voltages and the calculated voltages are also given in the figure.
Most of the voltage errors are less than 0.03 V, which is less than
1%, further proving the good accuracy of the battery model
obtained by the online identification method.

SOC estimation results with the identified parameters

The proportional integral observer SOC estimation method is
introduced as the MBSEM. For the first cycle, the CCM is utilized
to calculate the SOC as stated in above sections. When the param-
eters for the battery model are known, the MBSEM is applied. The
results for the MBSEM are depicted in Fig. 8. The figure shows that
the initial SOC estimation error could quickly be compensated and
the estimated SOC could converge to the reference SOC in a short
time. The estimation errors are also very small for the whole SOC
range, within ±2% error bound. It could be concluded that the iden-
tified parameters could work well for the MBSEM method, and the
proposed joint method could work well as long as the initial SOC is
known, but without any other laboratorial data of the battery.
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Table 1
Identified parameters of the first order RC model.

R1 = 0.057 R2 = 0.085 C2 = 50,430

SOC (%) 100 99.4 94.57 90.1 80.2 70.5 60.5 49.8
OCV (V) 4.093 4.0927 4.039 3.966 3.863 3.774 3.673 3.605
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Validation with other drive cycles

To further validate the proposed joint method, the parameters
identified by UDDS drive cycles are applied to SFTP drive cycles.
Fig. 9 shows the voltage response of the measured voltage of the
battery applied with the SFTP drive cycles, comparing to the volt-
age response calculated by the battery model with the parameters
obtained by the UDDS drive cycle. It is obvious in the figure that
the voltage errors are still very small, which indicates that the
parameters identified by the proposed method could work well,
even for different drive cycles.

Fig. 10 shows the SOC estimation results for SFTP drive cycles.
The results show that the parameters identified by the proposed
method could work well even for different drive cycles, and the
estimated SOC could also quickly converge to the reference SOC,
compensating the initial SOC error. Besides, the estimation errors
are also very small, mostly be confined in ±2% error bound. The
results further prove that the proposed method is robust to differ-
ent drive cycles, and it is suitable to be implemented to practical
applications, such as EDV applications.
Conclusion

This paper proposed an online SOC estimation method with
reduced prior battery testing information. The main highlight of
the proposed method is that it could work well without testing
data obtained in laboratory, including the OCV–SOC relationship.
The principle of the proposed method was described and analyzed
in detail. To further take advantage of the merits of both the CCM
and the MBSEM, a joint SOC estimation method has been proposed
in this paper. To validate the proposed method, an experimental
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battery test workbench was established according to the validation
requirements. The online identification results were firstly vali-
dated, in which the identified parameters could characterize the
tested li-ion battery well. The errors between the voltage response
of the battery model and the measured voltage were less than
0.03 V, which was less than 1%. The joint SOC estimation method
was also validated based on the identification method, in which
initial SOC errors were compensated and the estimation results
were accurate. The proposed method were applied to different
drive cycles and also worked well, proving the robustness of the
proposed method and the possibility to be implemented to practi-
cal applications, such as EDV applications.
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