ABSTRACT

Inspired by the recent spatio-temporal action localization efforts with tubelets (sequences of bounding boxes), we present a new spatio-temporal action detector Segment-tube, which consists of sequences of per-frame segmentation masks. The proposed Segment-tube detector can temporally pinpoint the starting/ending frame of each action class in the presence of preceding/subsequent interference actions in untrimmed videos. Simultaneously, the Segment-tube detector produces per-frame segmentation masks instead of bounding boxes, offering superior spatial accuracy to tubelets. This is achieved by alternating iterative optimization between temporal action localization and spatial action segmentation. Experimental results on multiple datasets validate the efficacy of the proposed detector.

Index Terms— Action Localization, Action Segmentation, 3D ConvNets, LSTM

1. INTRODUCTION

Joint spatio-temporal action localization has attracted significant attention in recent years [1,2,3,4,5,6,7,8,9,10,11,12,13,14], whose objectives include action classification (determining whether a specific action is present), temporal localization (pinpointing the starting/ending frame of the specific action) and spatio-temporal localization (typically bounding box regression on 2D frames, e.g., [15,16]). Such efforts include local feature based methods [10], convolution neural networks (ConvNets or CNNs) based methods [3,7], and 3D ConvNets based methods [4,13]. Recently, long short-term memory (LSTM) based recurrent neural networks (RNNs) are added on top of CNNs for action classification [5,17] and action localization [6].

Despite the successes of the prior methods, there are multiple limiting factors impeding practical applications. For example, [5, 7, 8] conduct action recognition only on trimmed videos, where each video contain only one action without interferences from other potentially confusing actions; [3, 6, 9, 10, 11, 12, 13, 14] emphasize only on temporal action localization with untrimmed video; while [15, 16] implement spatio-
temporal action localization in trimmed videos with tubelet-style (sequences of bounding boxes) detectors.

With applications in untrimmed videos with improved spatial accuracy in mind, we propose the Segment-tube spatio-temporal action localization detector, as summarized in Fig. 1. Initialized with saliency [18] based image segmentation on individual frames, our method performs temporal action localization with 3D ConvNets and LSTM. In an alternating and iterative manner, the Segment-tube detector refines spatial per-frame segmentation by focusing on frames identified by the temporal localization step. Upon practical convergence, the final spatio-temporal action localization results are obtained in the format of a sequence of segmentation masks (bottom row in Fig. 1).

We conduct extensive experiments on multiple datasets consisting of untrimmed videos, including temporal action lo-
calization on the THUMOS 2014 dataset [2], and joint spatio-
temporal action localization on the ActSeg dataset, which is
a newly proposed spatio-temporal action localization dataset
with per-frame ground truth segmentation masks. The con-
tributions of this paper are as follows. (1) The Segment-tube
spatio-temporal action localization detector is proposed for
untrimmed videos, which produces per-frame segmentation
masks instead of sequences of bounding boxes. (2) The pro-
posed Segment-tube detector achieves collaborative optimization
of temporal localization and spatial segmentation with
a new iterative alternation approach. (3) The new ActSeg
dataset is proposed, which consists of untrimmed videos with
temporal annotations and per-frame ground truth segmen-
tation labels.

2. PROBLEM FORMULATION

Given a video \(V = \{f_i\}_{i=1}^T \) of \(T \) frames, our objective is
to determine whether a specific action \(k \in \{1, \cdots, K\} \) ap-
pears in \(V \), and if so, temporally pinpoint the starting frame
\(f_s(k) \) and ending frame \(f_e(k) \) for action \(k \). Simultane-
ously, a sequence of segmentation masks \(B = \{B_t\}_{t}=f_e(k) \) within
such frame range should be obtained, with \(B_t \) being a binary
segmentation label for frame \(t \). Practically, \(B_t \) consists of a
series of superpixels \(B_t = \{b_t,i\}_{i=1}^{N_t} \), with \(N_t \) being the total
number of superpixels in frame \(f_t \).

2.1. Temporal Action Localization

A coarse-to-fine action localization strategy is implemented
to accurately find the temporal boundaries of the target action
\(k \) from an untrimmed video, as illustrated in Fig. 2. Inspired
by the recent success of ConvNets [19], this is achieved by a
cascaded 3D ConvNets with LSTM. The 3D ConvNets con-
sists of eight 3D convolution layers, five 3D pooling layers,
and two fully connected layers. The fully-connected 7th lay-
er activation feature is used to represent the video clip. To
exploit the temporal correlations, we incorporate a two-layer
LSTM [5] using the Peephole implementation (with 256 hid-
den states in each layer) with 3D ConvNets.

Coarse Action Localization. The coarse action localization
determines the approximate temporal boundaries with a fixed
step-size \(i.e., \) video clip length. We first generate a set of \(H \)
saliency-aware video clips \(\{h_j\}_{j=1}^H \) with variable-length (16
and 32 frames per clip, [20]) sliding window with 75% over-
lap ratio on the initial segmentation \(B_0 \) of video \(V \) (by using
saliency [18]), and proceed to train a cascaded 3D ConvNets
with LSTM that couples a proposal network and a classifica-
tion network. The proposal network is action class-agnostic,
it determines whether any actions \(\forall k \in \{1, \cdots, K\} \) are
present in clip \(h_j \). The classification network determines
whether a specific action \(k \) is present in clip \(h_j \). We fol-
low [13] to construct training data from these video clips.

Specifically, we train the proposal network (3D ConvNets
with LSTM) to score each video clip \(h_j \) with a proposal score
\(\mathbf{P}_j^{pro} = [\mathbf{P}_j^{pro}(1), \mathbf{P}_j^{pro}(0)]^T \in \mathbb{R}^2 \). Subsequently, a flag label
\(l_j^{fla} \) is obtained for each clip \(h_j \),

\[
l_j^{fla} = \begin{cases} 1, & \text{if } \mathbf{P}_j^{pro}(1) > \mathbf{P}_j^{pro}(0), \\ 0, & \text{otherwise} \end{cases}
\]

where \(l_j^{fla} = 1 \) denotes the video clip \(h_j \) contains an action
\(\forall k \in \{1, \cdots, K\} \), and \(l_j^{fla} = 0 \) otherwise.

A classification network (also a 3D ConvNets with L-
STM) is further trained to predict a \((K + 1)\)-dimensional\(^1\)
classification score \(\mathbf{P}_j^{cla} \) for each clip that contains an action
\(\{h_j|l_j^{fla} = 1\} \), based on which a specific action label \(l_j^{spe} \in \{k\}_{k=0}^K \) and score \(v_j^{spe} \in [0, 1] \) for \(h_j \) are assigned,

\[
l_j^{spe} = \arg \max_{k=0,\cdots,K} \mathbf{P}_j^{cla}(k), \quad v_j^{spe} = \max_{k=0,\cdots,K} \mathbf{P}_j^{cla}(k). \tag{2}
\]

Fine Action Localization. With the obtained per-clip specific
action labels \(l_j^{spe} \), the fine action localization step predicts the

\(^1\)Class 0 denotes the additional “background” class. Although the pro-
posal network prefilters most “background” clips, a background class is still
needed for robustness in the classification network.
video class k' ($k' \in \{1, \cdots , K\}$) and subsequently obtains $f_s(k')$ and $f_e(k')$. We calculate the average of v_{spe}^{j} over all video clips for each action label l_{t}^{j}. We take the label k' with the maximum average predicted score as the predicted action. Subsequently, the action score $\alpha_s(f_{t} | k')$ and the action label l_t for frame f_t specifically are determined by

$$\alpha_s(f_{t} | k') = \frac{\sum_{j \in \{j | f_t \in h_j\}} v_{spe}^{j}}{|\{j | f_t \in h_j\}|},$$
(3)

$$l_t = \begin{cases} k', & \text{if } \alpha_s > \gamma \\ v, & \text{otherwise} \end{cases},$$
(4)

where $|\{\cdot\}|$ denotes the cardinality of set $\{\cdot\}$. We empirically set $\gamma = 0.6$. $f_s(l_t)$ and $f_e(l_t)$ are assigned as the starting and ending frame of a series of consecutive frames sharing the same label l_t, respectively.

2.2. Spatial Action Segmentation

With the obtained temporal localization results, we further conduct spatial segmentation. This problem is cast into a spatio-temporal energy minimization framework,

$$E(B) = \sum_{s_t,i \in V} D_i(b_{t,i}) + \sum_{s_t,i,s_{u,v} \in N_t} S_{tv}(b_{t,i}, b_{u,v}),$$
(5)

where s_t,i is the ith superpixel in frame f_t, which is computed by SLIC [21]. $D_i(b_{t,i})$ composes the data term, denoting the cost of labeling s_t,i, with the label $b_{t,i}$ from a color and location based appearance model. $S_{tv}(b_{t,i}, b_{u,v})$ composes the smoothness term, constraining the segmentation labels to be both spatially and temporally consistent from a color based consistency model. N_t is the spatial neighborhood of s_t,i in frame f_t, and temporal neighborhood of s_t,i in adjacent frames f_{t-1} and f_{t+1}.

Data Term. With a segmentation B for V, we estimate two color Gaussian Mixture Models (GMMs) and two location GMMs for the foregrounds and the backgrounds of V, respectively. The corresponding data term $D_i(b_{t,i})$ based on color and location GMMs in Eq. (5) is defined as

$$D_i(b_{t,i}) = -\log \left(\beta U_{b_{t,i}}^{col}(s_t,i) + (1-\beta)U_{b_{t,i}}^{loc}(s_t,i) \right),$$
(6)

where β is a parameter controlling the contributions of color $U_{b_{t,i}}^{col}$ and location $U_{b_{t,i}}^{loc}$.

Smoothness Term. We exploit the standard contrast-dependent function [22,23,24] to encourage spatially and temporally adjacent superpixels with similar colors to be assigned with the same label. In Eq. (5), $S_{tv}(b_{t,i}, b_{u,v})$ is then defined as

$$S_{tv}(b_{t,i}, b_{u,v}) = \mathbb{I}_{[b_{t,i} \neq b_{u,v}]} \exp \left(-\|c_{t,i} - c_{u,v}\|^2 \right),$$
(7)

where characteristic function $\mathbb{I}_{[b_{t,i} \neq b_{u,v}]} = 1$ when $b_{t,i} \neq b_{u,v}$, and 0 otherwise. $b_{t,i}$ and $b_{u,v}$ are the segmentation labels of s_t,i and $s_{u,v}$, respectively. c is the color vector.

Optimization. With $D_i(b_{t,i})$ and $S_{tv}(b_{t,i}, b_{u,v})$, we leverage graph cut [25] to minimize the energy function in Eq. (5).

2.3. Iterative & Alternating Optimization

With an initial spatial segmentation B_o of video V using saliency [18,26], the overall optimization alternates between the temporal action localization in Section 2.1 and spatial action segmentation in Section 2.2. Upon the practical convergence of this iterative process, the final results B are obtained.

3. Experiments and Discussions

We conduct experiments on multiple datasets to evaluate the efficacy of the proposed Segment-tube detector, including 1) temporal action localization task on the THUMOS 2014 dataset [2], and 2) spatio-temporal action localization task on the newly proposed ActSeg dataset. The average precision (AP) and mean average precision (mAP) are employed to evaluate the temporal action localization performance. If an action is assigned the same category label with the ground truth and simultaneously its predicted temporal range overlaps the ground truth at a ratio above a predefined threshold (e.g., 0.5), such temporal localization of an action is deemed correct. The intersection-over-union (IoU) score is utilized to evaluate the spatial action segmentation performance.

Temporal Localization on THUMOS 2014 dataset [2]. We first evaluate the temporal action localization performance on the THUMOS 2014 dataset [2], which is dedicated to localizing actions in long untrimmed videos involving 20 actions. The training set contains 2755 trimmed videos and 1010 untrimmed validation videos. For testing, we use 213 videos that contain relevant action instances. Five existing temporal action localization methods, i.e., AMA [10], FTAP [11], ASLM [12], SCNN [13], and ASMS [3], are included as competing algorithms. AMA [10] combines iDT features and frame-level CNN features to train a SVM classifier. FTAP [11] leverages high recall temporal action proposals. ASLM [12] uses a length and language model based on traditional motion features. SCNN [13] is an end-to-end segment-based 3D ConvNets framework, including proposal, classification and localization network. ASMS [3] localizes actions by searching for the structured maximal sum. The mAP comparisons are summarized in Table 1, which demonstrates that the proposed Segment-tube evidently outperforms competing algorithms with IoU being 0.3 and 0.5, and is marginally inferior to SCNN [13] with IoU being 0.4.

Table 1: mAP comparisons on the THUMOS 2014 dataset.

<table>
<thead>
<tr>
<th>IoU threshold</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA [10]</td>
<td>14.6</td>
<td>12.1</td>
<td>8.5</td>
</tr>
<tr>
<td>ASLM [12]</td>
<td>20.0</td>
<td>23.2</td>
<td>15.2</td>
</tr>
<tr>
<td>SCNN [13]</td>
<td>36.3</td>
<td>28.7</td>
<td>19.0</td>
</tr>
<tr>
<td>ASMS [3]</td>
<td>36.5</td>
<td>27.8</td>
<td>17.8</td>
</tr>
</tbody>
</table>

Segment-tube | **39.8** | 27.2 | **20.7** |
ActSeg dataset. To fully evaluate the spatio-temporal action localization performance, the new ActSeg dataset is introduced. It contains 446 untrimmed videos and 110 trimmed videos of 9 categories in its training split, and 85 untrimmed videos of 9 categories in its testing split. Both temporal annotations and per-frame pixel-wise segmentation labels are included as the ground-truth in all videos.

Mixed Dataset. To maximize the number of videos in each category (see Fig. 3), a mixed dataset is constructed by combining videos of identical action categories from multiple datasets. The training split of the mixed dataset consists of all 446 untrimmed videos and 110 trimmed videos in the proposed ActSeg dataset, 791 trimmed videos from the UCF101 dataset [27], and 90 untrimmed videos from the THUMOS 2014 dataset [2]. The testing split of the mixed dataset consists of all the 85 untrimmed videos from the testing split of the proposed ActSeg dataset.

Temporal Localization on Mixed Dataset. SCNN [13] and ARCN [9] are used as competing temporal action localization methods. All three methods are trained on the training split of the mixed dataset. Fig. 3 and Table 2 summarize the per-category AP and mAP, respectively. Our proposed Segment-tube method achieves the best mAP, and it outperforms competing methods in 4 out of 9 action categories.

Spatial Action Segmentation on ActSeg Dataset. The spatial action segmentation task is implemented entirely on the ActSeg dataset, with three competing video object segmentation methods, i.e., VOS [28], FOS [29] and BVS [30]. IoU scores of the proposed Segment-tube method and the three competing methods are summarized in Table 3, with a few typical testing results visualized in Fig. 4. All predicted segmentation masks are visualized as polygons with red edges.

The results in Table 3 demonstrate that the Segment-tube method evidently outperforms VOS [28] and FOS [29], and it is subtly better than the label propagation based BVS method [30]. We speculate that severe occlusions (e.g., in the PoleVault and TripleJump categories) might lead to some performance degradations in BVS [30].

We do not include performance comparisons on joint spatio-temporal localization, because existing methods either implement temporal action localization or spatial action segmentation, but never achieve both simultaneously.

Table 3: IoU scores on the ActSeg dataset.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ArabequeSpin</td>
<td>53.9</td>
<td>82.5</td>
<td>64.0</td>
<td>80.2</td>
</tr>
<tr>
<td>CleanAndJerk</td>
<td>20.1</td>
<td>50.0</td>
<td>85.9</td>
<td>84.9</td>
</tr>
<tr>
<td>UnevenBars</td>
<td>12.0</td>
<td>40.3</td>
<td>59.0</td>
<td>53.2</td>
</tr>
<tr>
<td>SoccerPenalty</td>
<td>54.4</td>
<td>38.5</td>
<td>59.8</td>
<td>51.4</td>
</tr>
<tr>
<td>PoleVault</td>
<td>38.9</td>
<td>41.2</td>
<td>42.6</td>
<td>46.9</td>
</tr>
<tr>
<td>TripleJump</td>
<td>30.6</td>
<td>36.1</td>
<td>33.5</td>
<td>55.7</td>
</tr>
<tr>
<td>NoHandWindmill</td>
<td>77.1</td>
<td>73.3</td>
<td>81.8</td>
<td>84.6</td>
</tr>
<tr>
<td>DeathSpirals</td>
<td>1</td>
<td>66.7</td>
<td>77.9</td>
<td>63.1</td>
</tr>
<tr>
<td>Throw</td>
<td>33.8</td>
<td>2</td>
<td>58.7</td>
<td>53.1</td>
</tr>
<tr>
<td>Average</td>
<td>35.8</td>
<td>47.8</td>
<td>62.6</td>
<td>63.7</td>
</tr>
</tbody>
</table>

Fig. 4: Examples on the ActSeg dataset. Row 1 ∼ 4: VOS [28], FOS [29], BVS [30] and our proposed Segment-tube detector.

4. CONCLUSION

The Segment-tube spatio-temporal action localization detector is proposed, which jointly localize the temporal boundaries and spatial per-frame segmentation masks in untrimmed videos. With the proposed alternating iterative optimization scheme, temporal localization and spatial segmentation could be achieved simultaneously and evident performance gains are observed on multiple datasets.

5. ACKNOWLEDGMENT

This work was supported partly by National Key Research and Development Program of China Grant 2017YFA0700800, NSFC Grants 61629301, 61773312, 61503296, 91748208, and China Postdoctoral Science Foundation Grants 2017T100752 and 2015M572563.

6. REFERENCES

