
Video Object Discovery and Co-Segmentation
with Extremely Weak Supervision

LeWang,Member, IEEE, Gang Hua, Senior Member, IEEE, Rahul Sukthankar,Member, IEEE,

Jianru Xue,Member, IEEE, Zhenxing Niu,Member, IEEE, and Nanning Zheng, Fellow, IEEE

Abstract—Wepresent a spatio-temporal energyminimization formulation for simultaneous video object discovery and co-segmentation

acrossmultiple videos containing irrelevant frames. Our approach overcomes a limitation that most existing video co-segmentation

methods possess, i.e., they perform poorly when dealing with practical videos in which the target objects are not present in many frames.

Our formulation incorporates a spatio-temporal auto-contextmodel, which is combinedwith appearancemodeling for superpixel labeling.

The superpixel-level labels are propagated to the frame level through amultiple instance boosting algorithmwith spatial reasoning, based

on which frames containing the target object are identified. Our method only needs to be bootstrappedwith the frame-level labels for a

few video frames (e.g., usually 1 to 3) to indicate if they contain the target objects or not. Extensive experiments on four datasets validate

the efficacy of our proposedmethod: 1) object segmentation froma single video on the SegTrack dataset, 2) object co-segmentation from

multiple videos on a video co-segmentation dataset, and 3) joint object discovery and co-segmentation frommultiple videos containing

irrelevant frames on theMOViCS dataset and XJTU-Stevens, a new dataset that we introduce in this paper. The proposedmethod

compares favorably with the state-of-the-art in all of these experiments.

Index Terms—Video object discovery, video object co-segmentation, spatio-temporal auto-context model, Spatial-MILBoost

Ç

1 INTRODUCTION

WE address the problem of simultaneously segmenting
a common category of objects from two or more vid-

eos, which is known as video object co-segmentation. The
goal is to label each pixel in a set of videos according to
whether it belongs to the unknown common object. Such
capacity can be useful for a number of computer vision
tasks, such as object centric video summarization, and con-
tent-based video retrieval. Compared with object segmenta-
tion from a single image, the benefit is that the appearance
and/or structure information of the target objects across
multiple videos are leveraged for object segmentation in
each individual frame.

Several previous methods [1], [2], [3], [4], [5] have
attempted to harness such information for video object co-
segmentation. However, they all made the assumption that
all frames from all videos contain the target object, i.e., all
frames are relevant. Moreover, a closer look at the video
datasets employed in previous papers reveals that the object
instances in different videos are frequently the same
object [1], or only exhibit small variations in color, shape,

pose, size, and location [2], [3], [4], [5]. These limitations ren-
der such methods less applicable to real-world videos, such
as those online videos gathered from a search engine in
response to a specific query. The common objects in these
videos are usually just of the same category, exhibiting dra-
matic variations in color, size, shape, pose, and viewpoint.
Moreover, it is not uncommon for such videos to contain
many irrelevant frames where the target objects are not
present. This suggests that a practical video object co-seg-
mentation method should also be capable of identifying the
frames that contain the objects, i.e., discovering the objects.
Fig. 1 illustrates the problem we intend to address.

We present a spatio-temporal energy minimization for-
mulation to simultaneously discover and co-segment the
target objects from multiple videos containing irrelevant
frames. The flowchart of our method is presented in Fig. 2.
Bootstrapped from just a few (often 1 to 3) labeled frames
indicating whether they are relevant or not, our method per-
forms a top-down modeling to propagate the frame-level
label to the superpixels through a multiple instance boost-
ing algorithm with spatial reasoning, namely Spatial-MIL-
Boost. From bottom up, the labels of the superpixels are
jointly determined by a spatio-temporal auto-context model
induced from the Spatial-MILBoost algorithm and an
appearance model using colors.

The learning of the spatio-temporal auto-context model,
cast together with the color based appearance model as the
data term, is embedded in a spatio-temporal energy minimi-
zation framework for joint object discovery and co-segmen-
tation. Due to the embedded formulation, the learning of
the spatio-temporal auto-context model (hence the object
discovery), and the minimization of the energy function
conducted by min-cut [6], [7] (hence the object co-segmenta-
tion), are performed iteratively until convergence. The final
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output of our method includes a frame-level label for each
frame indicating if it contains the target object, and a super-
pixel-level labeling of the target object for each identified
relevant frame.

As a key component of our formulation, our proposed spa-
tio-temporal auto-context model extends the original auto-
context model [8] to also capture the temporal context. Our
embedded formulation also facilitates learning the model
with only weak supervision with frame-level labels using the
Spatial-MILBoost algorithm. Spatial-MILBoost allows infor-
mation to be propagated between the frame level and the
superpixel level, and hence facilitates both the discovery and
the co-segmentation of the target objects by effectively exploit-
ing the spatio-temporal context acrossmultiple videos.

To summarize, the key contributions of this paper are:

1) We propose a method to address the problem of
simultaneous discovery and co-segmentation of a
common category of objects from multiple videos
containing irrelevant frames.

2) To facilitate both object discovery and co-segmenta-
tion, we model the spatio-temporal contextual infor-
mation across multiple videos by a spatio-temporal
auto-context model learned from a Spatial-MILBoost
algorithm.

3) To exactly evaluate the proposed method, we collect
and release a new 10-category video object co-seg-
mentation and classification dataset with ground
truth frame-level labels for all frames and pixel-wise
foreground labels for all relevant frames.

We perform extensive studies to evaluate our method in
three aspects, and compare with state-of-the-art in terms of
both qualitative and quantitative results, including 1) object
segmentation from a single video on the SegTrack data-
set [9], [10], 2) object co-segmentation from multiple videos
on the video co-segmentation dataset [2], [11], [12], and 3)
joint object discovery and co-segmentation from multiple
videos containing irrelevant frames on the MOViCS data-
set [13] and a new 10-category video object co-segmentation
and classification dataset collected by ourselves.

Furthermore, to better understand the contributions of
different aspects of our proposed method, we implement
four variants of our method to conduct extensive ablative
studies; we also implement two groups of experiments to
evaluate the impacts of different components we leveraged
in our method. It is shown that our method compares
favorably with the state-of-the-art, and has the ability to
simultaneously discover and co-segment the target objects
from multiple videos containing irrelevant frames.

This paper is an extension of our conference
paper [14]. Compared with it, first of all, this paper pro-
vides a more comprehensive and systematic report of
our work. Second, the most recent related work after the
publication of our conference paper are also added in
this paper. Moreover, we provide more details of the
problem formulation and implementation. Last but not
least, the experimental section is fully reorganized, and
more extensive experiments are conducted to validate
our method and its variants.

In Section 2, we give a review on related work. In Sec-
tion 3, we present the problem formulation. In Section 4, we
present the optimization procedure. In Section 5, we evalu-
ate the framework on four datasets with detailed discus-
sions. In Section 6, we conclude the paper.

2 RELATED WORK

Since our work addresses the problem of object discovery
and co-segmentation from multiple videos, we review
related work in video object discovery, video object segmen-
tation and co-segmentation, and image co-segmentation.

2.1 Video Object Discovery

Video object discovery has recently been extensively stud-
ied, in both unsupervised [15], [16], [17], [18] or weakly
supervised [19], [20] settings. Liu and Chen [15] proposed
a latent topic model for unsupervised object discovery in
videos by combining Probabilistic Latent Semantic Analy-
sis (PLSA) with Probabilistic Data Association (PDA)
filter. Zhao et al. [16] proposed a topic model by incorpo-
rating a word co-occurrence prior into Latent Dirichlet
Allocation (LDA) for efficient discovery of topical video
objects from a set of key frames. Kwak et al. [17] pro-
posed an algorithm to automatically localize the objects
as spatio-temporal tubes in an unlabeled video set by
combining object discovery and tracking. Yang et al. [18]
proposed a method to detect primary objects by integrat-
ing the local saliency and global appearance consistency.
Liu et al. [19] engaged human in the loop to provide a
few labels at the frame level to roughly indicate the main
object of interest. Prest et al. [20] proposed a fully auto-
matic method to learn a class-specific object detector from
weakly annotated real-world videos.

Tuytelaars et al. [21] surveyed the unsupervised object
discovery methods, but with the focus on still images.
Wang et al. [22] summarized the abundant literature of
visual pattern discovery, and discussed both bottom-up
and top-down techniques as well as their diverse applica-
tions. In contrast, our video object discovery is achieved by
propagating superpixel-level labels to frame level through a
Spatial-MILBoost algorithm.

Fig. 1. Problem setting: Input—multiple videos capturing a common cate-
gory of objects. Some of whichmay contain irrelevant frames.Output—a
label for each frame indicating if it is relevant, and a detailed pixel labeling
of the common object for each relevant frame identified.

Fig. 2. The flowchart of our video object discovery and co-segmentation
method.
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2.2 Video Object Segmentation and
Co-Segmentation

Video object segmentation refers to the task of separating
the objects from the background in a video, either interac-
tively [9], [23], [24], [25], [26], [27] or automatically [10],
[12], [28], [29], [30], [31], [32], [33]. A number of methods
focus on finding the object-like proposals for this prob-
lem [26], [28], [29], [30], [31], [33]. Several methods track fea-
ture points or local regions over frames, and then cluster the
resulting tracks based on pairwise [9], [25] or triplet similar-
ity measures [10]. Tang et al. [24] proposed an algorithm for
annotating spatio-temporal segments based on video-level
labels. Grundmann et al. [12] clustered a video into spatio-
temporal consistent supervoxels. Jain and Grauman [27]
recently proposed a higher order supervoxel label consis-
tency potential for semi-supervised foreground segmenta-
tion. Fragkiadaki et al. [32] segmented moving objects by
ranking spatio-temporal segment proposals according to
moving objectness. Perazzi et al. [33] employed a fully con-
nected spatio-temporal graph built over object proposals for
video segmentation.

Only a few video object co-segmentation methods [1], [2],
[3], [4], [5] have been proposed recently to simultaneously
segment a common category of objects from two or more
videos. They all leveraged the low-level categorized fea-
tures (i.e., color and texture) shared between multiple vid-
eos to achieve object co-segmentation, and thus often
encountered difficulties when the objects of the same cate-
gory in different videos exhibit large variations in color,
size, shape, pose, and viewpoint. Moreover, they made the
assumption that all frames from all videos should contain
the target object, and thus cannot deal with noisy web vid-
eos which contain irrelevant frames.

There are also several methods focusing on multi-class
video object co-segmentation from multiple videos [13],
[34], [35], [36], where the number of object classes and the
number of object instances are unknown in each frame and
video. Chiu and Fritz [13] proposed a non-parametric algo-
rithm to cluster pixels into different regions by using a
global appearance model and a spatio-temporal segmenta-
tion prior. However, this method may not be robust to
appearance variations caused by pose change of the target
objects in different videos. Fu et al. [34] presented a co-selec-
tion graph to formulate correspondences between different
videos, and extended this framework to handle multiple
objects using a multi-state selection graph model. Lou and
Gevers [35] employed the appearance, saliency and motion
gradient consistency of object proposals to extract the pri-
mary objects, but they can only extract the objects of one
common category each time. Zhang et al. [36] proposed an
algorithm for object co-segmentation by selecting object pro-
posal tracklets that are spatially salient and temporally con-
sistent, and by iteratively extracting weighted groupings of
objects with similar shape and appearance. Although it can
handle multiple objects, temporary occlusions, and objects
going in and out of view, it may encounter difficulties when
handling objects with large intra-category variations, such
as appearance and shape.

The differences between our work and the above works
are that: 1) we address the problem of simultaneously dis-
covering and segmenting the objects of interest from noisy

videos, in which many frames do not contain the target
objects, 2) we cast the tasks of object discovery and co-seg-
mentation into a unified spatio-temporal energy minimiza-
tion framework, and 3) we leverage the spatio-temporal
contextual information to facilitate both object discovery
and co-segmentation of the target objects of the common
category from multiple videos.

2.3 Image Co-Segmentation

Our work is also related to image co-segmentation [37],
[38], [39], [40], [41], [42], [43], [44], [45], where the appear-
ance or structure consistency of the foreground objects
across the image collection is exploited to benefit object
segmentation. The objective of image co-segmentation is to
jointly segment a specific object from two or more images,
and it is assumed that all images contain that object. There
are also several image co-segmentation methods [46], [47]
that further conduct the co-segmentation of multiple
objects of multiple categories, in which they assumed that
each image should contain at least one object among the
multiple categories.

Recently, a few methods have been proposed to conduct
the joint discovery and co-segmentation of the objects of a
common category from noisy web image collections [48],
[49], in which several images do not contain the target
objects. In our work, we focus on video object discovery
and co-segmentation with noisy video collections, where
many frames may not contain the target objects.

3 PROBLEM FORMULATION

For ease of presentation, we first summarize the main nota-
tions in Table 1. Then we present the proposed spatio-tem-
poral energy minimization framework for simultaneous
object discovery and co-segmentation across multiple vid-
eos, along with details of the spatio-temporal context model
and the Spatial-MILBoost algorithm.

Given a set of videos V, our objective is to obtain a frame-
level label lni for each frame fn

i indicating if it is a relevant
frame that contains the target objects, and a superpixel-level
labeling bni of the target object for each identified relevant
frame fn

i (i.e., lni ¼ 1). We cast this problem into a spatio-
temporal energy minimization framework. Then, our
energy function for simultaneous object discovery and co-
segmentation from multiple videos V becomes

TABLE 1
Principal Notations

V A collection ofN videos
L The frame-level labels of V
B A segmentation of V
V n The nth video in V with Nn frames
Ln The frame-level labels of V n

Bn A segmentation of V n

fni The ith frame of V n with Nn
i superpixels

lni The label of fni , l
n
i 2 f0; 1g, where 1 means that fni is

relevant, i.e., fn
i contains the target object

bni A segmentation of fn
i

snij The jth superpixel in fni
bnij The label of snij, b

n
ij 2 f0; 1g, where 1 means that snij

belongs to the target object
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ij
;sn
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Sintra
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X
sn
ij
;sn
uk
2 �N j

Sinter
jk ðbnij; bnukÞ;

n ¼ 1; . . . ; N; i ¼ 1; . . . ; Nn; j ¼ 1; . . . ; Nn
i ;

(1)

where Dcont
j ðbnijÞ and Dcol

j ðbnijÞ compose the data term, mea-
suring the cost of labeling superpixel snij to be bnij from a

spatio-temporal auto-context model and a color based
appearance model, respectively. The spatio-temporal
auto-context model builds a multi-layer Boosting classi-
fier on context features surrounding a superpixel to pre-
dict whether it is associated with the target concept or
not, where subsequent layer is working on the probabil-
ity maps from the previous layer, detailed below in
Section 3.1. Hence, Dcont

j ðbnijÞ relies on the discriminative

probability maps estimated by a learned spatio-temporal
auto-context model, which captures the spatio-temporal
contextual information across multiple videos V. Thus, it
is video independent. While the appearance model is
estimated by capturing the color distributions of the tar-
get objects and the backgrounds for each video V n, and
thus is video dependent.

Sintra
jk ðbnij; bnikÞ and Sinter

jk ðbnij; bnukÞ compose the consistency

term, constraining the segmentation labels to be spatially
consistent from a color based intra-frame consistency
model, and temporally consistent from a spatio-temporal
auto-context feature based inter-frame consistency model,
respectively. N j is the spatial neighborhood of snij in fn

i .
�N j ¼ fs(n

ij; s
*n

ijg is the temporal neighborhood of snij, i.e.,

its corresponding next superpixel s*n
ij in fniþ1 and previous

superpixel s(n
ij in fni�1. The superpixels are computed by

using SLIC [50], due to its superiority in terms of adherence
to boundaries, as well as computational and memory effi-
ciency. However, the proposed method is not tied to any
specific superpixel method, and one can choose others.

The particular spatio-temporal auto-context model
embedded in the energy function is learned through a mul-
tiple instance learning algorithm with spatial reasoning (i.e.,
Spatial-MILBoost), and hence it can propagate information
between the frame level and the superpixel level. From top
down, the label of frame is propagated to the superpixel
level to facilitate the energy minimization for co-segmenta-
tion; from bottom up, the labels of superpixels are propa-
gated to the frame level to identify which frame is relevant.
Bootstrapped from just a few frame-level labels, the learn-
ing of the spatio-temporal auto-context model (hence the
object discovery), and the minimization of the energy func-
tion conducted by min-cut [6], [7] (hence the object co-seg-
mentation) are performed iteratively until it converges. At
each iteration, the spatio-temporal auto-context model, the
appearance model, and the consistency term are updated
based on the new segmentation B of V.

We proceed to present the spatio-temporal auto-context
model and the Spatial-MILBoost algorithm in Section 3.1,
the appearance model in Section 3.2, the consistency term in
Section 3.3, and the optimization procedure for object dis-
covery and co-segmentation in Section 4.

3.1 Spatio-Temporal Auto-Context Model

We extend the auto-context model originally proposed by
Tu [8] and later tailored by Wang et al. [49], [51], [52],
[53] for video object discovery and co-segmentation. The
original auto-context model builds a multi-layer Boosting
classifier on image and context features surrounding a
pixel to predict if it is associated with the target concept,
where subsequent layer is working on the probability
maps from the previous layer. In previous works, it just
modeled the spatial contextual information, either from a
single image [51], [53], or a set of labeled [8] or unla-
beled [49], [52] images. Here, we extend it to capture both
the spatial and temporal contextual information across
multiple videos, and the extended model operates on
superpixels instead of pixels.

Spatio-Temporal Auto-Context Feature. Let cnij denote the
context feature of superpixel snij, Pn 2 P the probability

map set for video V n, Pn
i the probability map for frame fn

i ,
pnij the probability value of superpixel snij. The sampling

structure of the spatio-temporal auto-context model on the
discriminative probability maps are illustrated in Fig. 3. cnij
consists of a previous-frame part, a current-frame part and
a next-frame part as

cnij ¼ ffp
(n

ijðkÞg; fpnijðkÞg; fp
*n

ijðkÞggNc
k¼1; (2)

where pnijðkÞ, p(n
ijðkÞ and p*n

ijðkÞ are the probability values
of the kth point on the sampling structure centered at super-
pixel snij in Pn

i , its corresponding previous superpixel s(n
ij in

Pn
i�1, and its corresponding next superpixel s*n

ij in Pn
iþ1,

respectively. Nc is the number of sampled points on the
sampling structure for the current superpixel in each frame,
and it is set to be 41 in our experiments. Here, we find the
corresponding previous and next superpixels of current
superpixel between neighboring frames using optical
flow [54], due to its high accuracy and low time consump-
tion. If the number of pixels in the intersection between a
superpixel in the current frame and its corresponding
superpixel in neighboring frames, identified from the opti-
cal flow vector displacements of the current superpixel, is
greater than half of the number of pixels in the current
superpixel, it is selected as the temporal neighbor.

Update the Spatio-Temporal Auto-Context Classifier. In
the first round of the iterative learning of the spatio-
temporal auto-context model, the training set is built on
multiple videos V with a few manually annotated frame-
level labels as

Fig. 3. The spatio-temporal auto-context feature.
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S1 ¼ ffCn
i0 ðaÞ; lni0 ðaÞgjn ¼ 1; . . . ; N; i0 ¼ 10; . . . ; Nn0;

a ¼ 0; 1g; (3)

where i0 is the index of frame fni0 that was manually labeled
by the user as relevant (i.e., lni0 ¼ 1) or irrelevant (i.e., lni0 ¼ 0).

Nn0 is the number of labeled frames in video V n, and it is set

to be 1 to 3 in our experiments. Cn
i0 ¼ fcni0jg

Nn
i0

j¼1 are the context
features of superpixels in fn

i0 , and Cn
i0 ðaÞ are the context fea-

tures in the object (i.e., a ¼ 1) or background (i.e., a ¼ 0) of
fn
i0 . We treat Cn

i0 ðaÞ as a bag, and cni0j as an instance. lni0 ðaÞ is
the label of bag Cn

i0 ðaÞ, and it equals to 1 when both lni0 and a

equal to 1, and 0 otherwise. In other words, we treat the
objects of the relevant frames as positive bags, the back-
grounds of the relevant frames and both the objects and
backgrounds of the irrelevant frames as negative bags. The
initial segmentations B for V are obtained by using an
objectness measure [55] and a saliency measure [56], and
the probability maps P for V are initialized by averaging the
scores returned by objectness and saliency.

Then, the first spatio-temporal auto-context classifier Hð�Þ
is learned on S1 using a Spatial-MILBoost algorithm, detailed
immediately below. We proceed to use the learned classifier
to classify all the context features of the objects and back-
grounds of all frames in V, and obtain the new probability
map set P for V. This way, the spatio-temporal contextual
information extracted from a few frames of V are leveraged to
help estimating the probability of each of the superpixels in V
belonging to the target object. The new probability of super-
pixel snij being positive is updated by the learned classifier as

pnij ¼
1

1þ expð�HðcnijÞÞ
: (4)

The data term based on the spatio-temporal auto-context
model in Eq. (1) is defined as

Dcont
j ðbnijÞ ¼ �log pnij: (5)

The probability of the object or background (bag) of frame
fn
i being positive is a Noisy-OR defined as

pni ðaÞ ¼ 1�
YNn
i
ðaÞ

j¼1
ð1� pnijÞ; (6)

where Nn
i ðaÞ denotes the number of superpixels (instances)

in the object or background (bag) of frame fn
i . In this way,

the trained spatio-temporal auto-context classifier can prop-
agate superpixel-level labels (indicating if the superpixels
belong to the target objects) to the object-level label (indicat-
ing if it contains the target object).

From the second round of the iterative learning process,
we update the training set built on all frames of V as

S2 ¼ ffCn
i ðaÞ; lni ðaÞgjn ¼ 1; . . . ; N ; i ¼ 1; . . . ; Nn;

a ¼ 0; 1g; (7)

and learn a new spatio-temporal auto-context classifier on
the updated context features, which are based on the dis-
criminative probability map set P obtained from the previ-
ous iteration. Then, the new P for V are computed by the

new spatio-temporal auto-context classifier. This process
will iterate until convergence, where P no longer changes.
Indeed, the spatio-temporal auto-context model is alterna-
tively updated with the iterative co-segmentation of V, i.e.,
the iterative minimization of the energy in Eq. (1).

Since the training set built in each iteration consists of the
context features of superpixels in the form of bags (i.e.,
objects and backgrounds of the relevant and irrelevant
frames from multiple videos V), the spatio-temporal auto-
context classifier learned on it naturally captures both the
spatial and temporal contextual information from V to pre-
dict the probability of a superpixel belonging to the target
object. Thus, the spatio-temporal auto-context model bene-
fits both object discovery and object co-segmentation.

Algorithm 1. Spatial-MILBoost-Training

Input: Training set fxi; ligNi¼1 of N bags, where each bag

xi ¼ fxijgNi
j¼1 containing Ni instances, the bag label li 2 f0; 1g.

1) Initialize the instance weights wij ¼ 2ðli � 0:5Þ and
the instance classifierH ¼ 0

2) Initialize estimated margins fŷijgN;Ni
i;j¼1 to 0

3) For t ¼ 1; . . . ; T
a. Set �xij ¼ fŷikjxik 2 NbrðxijÞg
b. Train weak data classifier hd

t on the data fxij;

ligN;Ni
i;j¼1 and the weights fvijgN;Ni

i;j¼1 as

hd
t ðxijÞ ¼ argmax

ĥð�Þ

X
i;j

ĥðxijÞwij

c. Train weak spatial classifier hs
t on the data f�xij;

ligN;Ni
i;j¼1 and the weights fvijgN;Ni

i;j¼1 as

hs
t ð�xijÞ ¼ argmax

ĥð�Þ

X
i;j

ĥð�xijÞwij

d. Set
�d ¼P

i;j vijjhd
t ðxijÞ � lij

�s ¼P
i;j vijjhs

t ð�xijÞ � lij
�

e. Set htðxijÞ ¼ hd
t ðxijÞ if �d < �s

hs
t ð�xijÞ otherwise

�

f. Find �t via line search to minimize likelihood

LðHÞ ¼Q
i ðqiÞlið1� qiÞð1�liÞ as �t ¼ argmax�LðH þ �htÞ

g. Update margins ŷij to be ŷij ¼ HðxijÞ ¼ ŷij þ
�thtðxijÞ

h. Compute the instance probability

qij ¼ 1
1þexpð�ŷijÞ

i. Compute the bag probability

qi ¼ 1�QNi
j¼1ð1� qijÞ

j. Update the instance weights wij ¼ @logLðHÞ
@yij

¼
li�qi
qi

qij

Output: Instance classifierHðxijÞ ¼
PT

t¼1 �thtðxijÞ.

Spatial-MILBoost Algorithm. The training and testing
details of Spatial-MILBoost are presented in Algorithms 1
and 2, respectively. Compared to the originalMILBoost algo-
rithm [57], we incorporate the spatial information between
the neighboring superpixels [58] into the multiple instance
boosting algorithm [19], [57] to infer whether the superpixel
is positive or not, and name this algorithm Spatial-MILBoost.
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To present the algorithm in amore general sense, we use xi, li
and xij 2 xi instead of Cn

i ðaÞ, lni ðaÞ and cnij 2 Cn
i ðaÞ to denote

the bag, its label and its instance, respectively.

Algorithm 2. Spatial-MILBoost-Testing

Input: Testing set fxijgN;Ni
i;j¼1, and the instance classifierHð�Þ.

1) Initialize estimated margins fŷijgN;Ni
i;j¼1 to 0

2) For t ¼ 1; . . . ; T
a. Set �xij ¼ fŷikjxik 2 NbrðxijÞg
b. Update margins ŷij to be ŷij ¼ ŷij þ �thtðxijÞ

Output: Labels fŷijgN;Ni
i;j¼1.

The score of the instance xij is yij ¼ HðxijÞ, where

HðxijÞ ¼
PT

t¼1 �thtðxijÞ is a weighted sum of weak classi-
fiers. The probability of the instance xij being positive is
defined as a standard logistic function,

qij ¼ 1

1þ expð�yijÞ : (8)

The probability of the bag xi being positive is a Noisy-OR,

qi ¼ 1�
YNi

j¼1
ð1� qijÞ: (9)

The goal now is to estimate �t and ht, so qij approaches
its true value. The likelihood assigned to a set of training

bags is LðHÞ ¼Q
i ðqiÞlið1� qiÞð1�liÞ, and is maximum when

qi ¼ li, where li 2 f0; 1g is the label of bag xi. To find an
instance classifier that maximizes the likelihood, we com-
pute the derivative of the log-likelihood with respect to yij

as @logLðHÞ
@yij

¼ wij ¼ li�qi
qi

qij.

In each round t of gradient descent, one solves the opti-
mal weak instance classifier htðxijÞ. Here, we train a weak

data classifier on the data fxij; ligN;Ni
i;j¼1 and the weights

fvijgN;Ni
i;j¼1 as hd

t ðxijÞ ¼ argmaxĥð�Þ
P

i;j ĥðxijÞwij. Meanwhile,

we train a weak spatial classifier on the data f�xij; ligN;Ni
i;j¼1 and

the weights fvijgN;Ni
i;j¼1 as hs

t ð�xijÞ ¼ argmaxĥð�Þ
P

i;j ĥð�xijÞwij,

where �xij ¼ fŷikjxik 2 NbrðxijÞg are the predicted labels of
the neighbors NbrðxijÞ of the current instance xij. The classi-
fier with lower training error is selected as the weak instance
classifier htðxijÞ,

htðxijÞ ¼ hd
t ðxijÞ if �d < �s

hs
t ð�xijÞ otherwise

�
; (10)

where �d ¼P
i;j vijjhd

t ðxijÞ � lij and �s ¼P
i;j vijjhs

t ð�xijÞ � lij
are the training errors of hd

t ðxijÞ and hs
t ð�xijÞ, respectively.

This is the major difference between the proposed Spatial-
MILBoost algorithm and the traditional MILBoost algo-
rithm [19], [57].

The parameter �t is determined using a line search as
�t ¼ argmax�LðH þ �htÞ. Then, the instance classifier Hð�Þ
is updated byHð�Þ  Hð�Þ þ �thtð�Þ.

3.2 Appearance Model

Since the appearance of the object instances (also the back-
grounds) are similar in color within each video V n, while

exhibiting large variations across multiple videos V, we
independently learn the color distributions of the target
objects and the backgrounds for each video V n.

In detail, with a segmentation B for V, we estimate two
color Gaussian Mixture Models (GMMs) for the target
objects and the backgrounds of each video V n, denoted as
hn
1 and hn

0 , respectively. The corresponding data term based
on the appearance model in Eq. (1) is defined as

Dcol
j ðbnijÞ ¼ �loghn

bn
ij
ðsnijÞ; (11)

where Dcol
j ðbnijÞ measures the contribution of labeling snij to

be bnij, based on the appearance model learned from V n.

3.3 Consistency Term

The consistency term is composed of an intra-frame consis-
tency model and an inter-frame consistency model, and is
leveraged to constrain the segmentation labels to be both
spatially and temporally consistent.

Intra-Frame Consistency Model. The intra-frame consis-
tency model encourages the spatially adjacent superpixels
in the same frame to have the same label. As the spatially
adjacent superpixels in the same frame either have similar
color or distinct color contrast, we adopt the well-known
standard contrast-dependent function [29], [36] to constrain
the labels of spatially adjacent superpixels with similar color
to be consistent. In Eq. (1), the consistency term computed
between spatially adjacent superpixels snij and snik in frame
fni of video V n is defined as

Sintra
jk ðbnij; bnikÞ ¼ dðbnij; bnikÞexpð�jjInij � Inikjj22Þ; (12)

where I is the color vector of the superpixel. bnij and bnik are the
segmentation labels of snij and snik, respectively. dð�Þ is an indi-

cator variable, which is 1 when bnij 6¼ bnik, and 0 otherwise.

Inter-Frame Consistency Model. The inter-frame consis-
tency model encourages the temporally adjacent superpixels
in consecutive frames to have the same label. Since there often
exist large variations of motion, shape and lighting between
temporally adjacent superpixels from consecutive frames,
resulting in large appearance differences between them, the
spatial-temporal auto-context feature capturing both spatial
and temporal contextual information across multiple videos
has better invariance against these variations. Thus, we use a
L1 distance based function to assign the same label to tempo-
rally adjacent superpixels that have similar spatial-temporal
auto-context features. In Eq. (1), the consistency term com-
puted between temporally adjacent superpixels snij and snuk in

consecutive frames of video V n is defined as

Sinter
jk ðbnij; bnukÞ ¼ dðbnij; bnukÞexpð�jjcnij � cnukjj1Þ; (13)

where c is the context vector of the superpixel. bnij and bnuk are
the segmentation labels of snij and snuk, respectively. s

n
uk is the

temporal neighbor of snij, i.e., its corresponding next super-

pixel s*n
ij in fn

iþ1 or previous superpixel s
(n

ij in fn
i�1.

4 OPTIMIZATION

The proposed approach is bootstrapped from a few manu-
ally annotated relevant and irrelevant frames (e.g., usually 1
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to 3), and an objectness measure [55] and a saliency mea-
sure [56] to initialize the segmentation B and the discrimina-
tive probability map set P of V. We proceed to start the first
round learning of the spatio-temporal auto-context model,
and propagate the superpixel labels estimated from the
learned auto-context classier Hð�Þ to frame-level labels L of
V through the Spatial-MILBoost algorithm. We then update
the spatio-temporal auto-context model together with the
appearance model and consistency term, and perform
energy minimization on Eq. (1) by using min-cut [6], [7] to
obtain an updated segmentation B of V.

The learning of the spatio-temporal auto-context model
(the object discovery), and the minimization of the energy
function in Eq. (1) (the object co-segmentation) are itera-
tively performed until convergence, which returns not only
a frame-level label L of V and a segmentation B of V, but
also a spatio-temporal auto-context model.

4.1 Object Discovery

Object discovery is to identify the relevant frames containing
the target objects from multiple videos V. As we obtained a
current frame-level label L, segmentation B, and discrimina-
tive probability map set P estimated by the spatio-temporal
auto-contextmodel from the previous iteration, the probabil-
ity of frame fn

i containing the target object is updated as

pni ¼ 1� ð1� pni ð1ÞÞð1� pni ð0ÞÞ; (14)

which is a Noisy-OR on pni ð1Þ and pni ð0Þ calculated with
Eqs. (6) and (4), indicating the probabilities of the current
segmented object and background of fn

i being positive,
respectively. It is consistent with the practical situations
that 1) if both the segmented object and background of fni
do not contain any part of the target object, fn

i will certainly
not contain the target object, and 2) if at least one of the seg-
mented object and background of fni contains some parts of
the target object, fni will contain the target object. This way,
no matter the current segmentation of fn

i is accurate or not,
as long as the segmented object or background contains
parts of the target object, fni will be predicted to contain the
target object (hence the object discovery).

Then, the label lni indicating whether fn
i is relevant can be

predicted by binarizing pni ,

lni ¼
1 if pni � �
0 otherwise

�
; (15)

where the threshold � is fixed to be 0.45 empirically. lni
equals to 1 when fn

i is relevant, and equals to 0 otherwise.
This way, the label lni can be inferred from the probabilities
of the segmented object and background inside fn

i indicat-
ing if they contain the target object or not; while the proba-
bility of the segmented object (or background) can be
inferred from the probabilities of the superpixels inside it
denoting if they belong to the target object.

4.2 Object Co-Segmentation

The video object co-segmentation is to simultaneously find a
superpixel-level labeling B for the relevant frames identified
from V. As we obtain a current frame-level label L, segmen-
tation B and discriminative probability map set P estimated

by the spatio-temporal auto-context model from the previ-
ous iteration, we update the video independent spatio-tem-
poral auto-context model. Naturally, the spatio-temporal
contextual information across V are leveraged for the seg-
mentation of each frame. The new segmentation Bn of each
video V n also serves to update the corresponding video
dependent appearance model and consistency term. We
then minimize the energy function in Eq. (1) using min-
cut [6], [7] to obtain the new segmentation B of V.

5 EXPERIMENTS AND DISCUSSIONS

5.1 Experimental Setup

Evaluation Datasets. We conduct extensive experiments to
evaluate our method in 3 cases, i.e., 1) object segmentation
from a single video on the SegTrack dataset [9], [10], 2) object
co-segmentation from multiple videos only containing rele-
vant frames on the video co-segmentation dataset [2], [11],
[12], and 3) joint object discovery and co-segmentation from
multiple videos containing irrelevant frames on the
MOViCS dataset [13] and a new 10-category video object
co-segmentation and classification dataset collected by our-
selves. As there are indeed specific assumptions for each of
the above three tasks, we use different initialization to boot-
strap our method according to the specific assumptions,
and accurately evaluate our method on the corresponding
benchmark dataset or its subset.

Evaluation Metric. We employ the intersection-over-union
(IoU) score [13] for the evaluation of segmentation perfor-
mance, which is one of the most widely adopted metric to
evaluate the performance of image/video segmentation
methods. It is defined as

IoU ¼ jSeg \GT j
jSeg [GT j ; (16)

where Seg is the segmentation result, and GT is the ground
truth segmentation.

Baselines. To fully and exactly evaluate our proposed
method, we compare our method with 12 state-of-the-art
methods, including five single video segmentation methods
(VS [12], VOS [28], VST [10], SVOS [29], and FOS [30]), three
video object co-segmentation methods (VC [2], VOC [3],
and VCA [4]), one multi-class image co-segmentation
method (MIC [47]), and 3 multi-class video co-segmentation
methods (MVC [13], MFVC [34], and MVOC [36]). They are

� VS [12], a video segmentation method which
achieves hierarchical segmentations of a video by
using a hierarchical graph-based algorithm.

� VOS [28], a video object segmentation method which
automatically discovers key segments and groups
them to predict the foreground object in a video.

� VST [10], a video segmentation method which is
achieved by simultaneously tracking multiple holis-
tic figure-ground segments on each frame.

� SVOS [29], a video object segmentation method
which segments the primary object from a single
video in a layered directed acyclic graph framework.

� FOS [30], a video object segmentation method which
separates the target objects from a video based on a
rapid estimate of which pixels are inside the object.
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� VC [2], a video co-segmentation method which gath-
ers information from multiple videos to jointly sepa-
rate the foreground object from the background.

� VOC [3], a video object co-segmentation method
which is realized by subspace clustering and a subse-
quent quadratic pseudo-boolean optimization.

� VCA [4], a video co-segmentation method for com-
mon action extraction by using dense trajectories.

� MIC [47], a multi-class image co-segmentation
method which jointly segments a large number of
images into regions of multiple classes.

� MVC [13], a multi-class video co-segmentation
method which produces a segmentation of multiple
classes from multiple videos by formulating a non-
parametric bayesian model across multiple videos.

� MFVC [34], an object-based multiple foreground
video co-segmentation method which can handle
multiple foreground co-segmentation with a multi-
state selection graph model.

� MVOC [36], a video object co-segmentation method
which can segment multiple objects by sampling,
tracking and matching object proposals via a regu-
lated maximum weight clique extraction scheme.

Ablative Studies. To better understand the contributions of
different components of our method, we also implement
four variants of our full video object discovery and co-seg-
mentation method (VODC) to perform extensive ablative
studies. They are

� woC, a variant of VODC without the spatio-
temporal auto-context model, which becomes an
object segmentation method with an appearance
model learned on a video and a consistency
model computed on a frame. Thus, we can only
evaluate its object segmentation performance from
a single video.

� wSV, a variant of VODC by learning the spatio-tem-
poral auto-context model from a single video instead
of multiple videos, which becomes a video segmen-
tation method.

� wSC, a variant of VODC by replacing the spatio-tem-
poral auto-context model with spatial auto-context
model, which is also a video object discovery and co-
segmentation method.

� wMIL, a variant of VODC by replacing the proposed
Spatial-MILBoost algorithm with MILBoost [57],
which is also a video object discovery and co-seg-
mentation method.

5.2 Object Segmentation from a Single Video

We first evaluate the performance of object segmentation
from a single video on the SegTrack dataset [9], [10]. The
SegTrack v1 dataset [9] consists of six videos, in which
three videos contain only one object, and the others contain
multiple adjacent/interacting objects. The SegTrack v2
dataset [10] extends the SegTrack v1 dataset to contain
eight additional videos, in which five videos contain only
one object, and the rest of them contain multiple ones. The
videos have full pixel-level annotations on the objects at
each frame.

As our method focuses on single object segmentation,
we evaluate it on the eight videos that contain only one
object, and compare with five single video segmentation
methods (VS [12], VOS [28], VST [10], SVOS [29], and
FOS [30]). By initializing all frames as relevant, we segment
each video using our full methods (VODC) and four var-
iants of it (woC, wSV, wSC, and wMIL), respectively.
Here, VODC equals to wSV, as it learns the spatio-tempo-
ral auto-context model on a single video. The average IoU
scores are presented in Table 2, and some example results
are given in Fig. 4.

The results show that, 1) VODC has the ability to seg-
ment the objects with certain variations in appearance (bird
of paradise), shape (girl and frog), size (soldier), and back-
grounds (parachute). It is superior among all other methods
on the five videos, but has encountered some difficulties
when the objects are too small (birdfall), or the background
are too complex (birdfall and parachute), or the boundaries
between the objects and background are too weak (worm).

TABLE 2
The Average IoU Scores of Our Methods and Five Competing
Single Video Segmentation Methods on Eight Videos That

Contain Only One Object on the SegTrack Dataset

Video VS
[12]

VOS
[28]

SVOS
[29]

FOS
[30]

VST
[10]

woC wSC wMIL VODC
(wSV)

birdfall 57 49 71 59 63 52 65 68 70

girl 32 88 82 73 89 63 88 90 91

parachute 69 96 94 91 93 76 90 91 92
frog 67 75 74 77 72 65 77 81 83
worm 35 84 60 74 83 57 74 78 80
soldier 67 67 60 69 84 55 82 84 85

monkey 62 79 62 65 85 71 86 90 90

bird of paradise 87 92 - 66 94 69 89 92 95

Avg. 60 79 72 72 83 64 81 84 86

Higher values are better.

Fig. 4. Some visual example results of our methods and five state-of-the-
art single video segmentation methods on eight videos that contain only
one object on the SegTrack dataset.
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2) woC is only better than VS [12], as it simply leverages the
color information and lacks the consistency constraint
between adjacent frames. 3) wSC performs worse than three
methods, since it only uses a spatial auto-context model
without employing the temporal contextual information. 4)
wMIL using the original MILBoosting outperforms all other
methods except VODC, because it does not consider the
spatial reasoning while predicting the segmentation label.

5.3 Object Co-Segmentation from Multiple Videos

We then evaluate the performance of object co-segmentation
frommultiple videos of our method on the video co-segmen-
tation (VCoSeg) dataset [2], [11], [12], which consists of three
categories of videos, i.e., four videos of the chachacha cate-
gory from [11], three videos of the kite surfer category and
three videos of the ice skater category both from [2] and [12].

As all frames of all videos in each category contain the tar-
get objects, we simultaneously segment the videos of each
category using our methods (VODC, wSV, wSC, and wMIL)
by treating all frames of each category as relevant, and com-
pare with 12 state-of-the-art methods (i.e., five single video
segmentation methods [10], [12], [28], [29], [30], three video
object co-segmentation methods [2], [3], [4], one multi-class
image co-segmentation method [47], and three multi-class
video co-segmentation methods [13], [34], [36]). Since
VCA [4] produces the results in terms of dense trajectories,
they use the method in [59] to turn their trajectory labels into
pixel labels for comparison. For the five single video segmen-
tation methods [10], [12], [28], [29], [30], each video is indi-
vidually segmented by them. ForMIC [47], all frames of each
category are treated as a set of individual images.

The average IoU scores and some example results of our
methods and the above methods are presented in Table 3
and Fig. 5, respectively. They show that, 1) our full method
(VODC) is better than the five single video segmentation
methods [10], [12], [28], [29], [30]. This is because that VODC
can leverage the information of the target object acrossmulti-
ple videos for co-segmentation, but the single video segmen-
tationmethods can only use the appearance andmotion cues

from one video. 2) VODC,which leverages a spatio-temporal
auto-context model, outperforms the compared video object
co-segmentation methods [2], [3], [4] that only utilize the
low-level appearance and motion cues across multiple vid-
eos. Moreover, VODC is not limited to the initial segmenta-
tion generated by combining the objectness and saliency
measures that VC [2] is sensitive to. 3) VODCperforms better
than the image co-segmentation method [47], as MIC [47]
lacks the consideration of temporal consistency between
frames. 4) VODC achieves better performances than the
three multi-class video co-segmentation methods [13], [34],
[36]. This is due to that MVC [13] often separates some parts
instead of the integral foreground object, andMFVC [34] and
MVOC [36] often encounter difficulties when selecting the
accurate object proposal for each frame. In addition, the rea-
sons why wSC and wMIL are poorer than VODC have
already been discussed in Section 5.2.

5.4 Joint Object Discovery and Co-Segmentation
from Multiple Videos

We further evaluate the performance of joint object discov-
ery and co-segmentation of our method from multiple

TABLE 3
The Average IoU Scores of Our Methods and 12
State-of-the-Art Methods on the VCoSeg Dataset

Algorithm chachacha ice skater kite surfer Avg.

VS [12] 55.1 51.2 38.3 48.2
VOS [28] 54.2 83.3 68.7 68.7
VST [10] 74.8 75.0 44.9 64.9
SVOS [29] 32.1 57.4 36.8 42.1
FOS [30] 65.1 83.2 43.0 63.8
VC [2] 57.6 47.2 14.1 39.6
VOC [3] 70.4 81.5 62.2 71.4
VCA [4]+[59] 80.1 72.4 69.5 74.0
MIC [47] 36.3 44.8 14.5 31.9
MVC [13] 59.5 67.8 36.6 54.6
MFVC [34] 73.1 84.1 72.8 76.7
MVOC [36] 55.5 67.2 50.6 57.8
wSV 78.2 81.7 76.3 78.7
wSC 81.8 85.6 80.7 82.7
wMIL 82.1 87.5 82.9 84.2
VODC 83:3 89:9 84:1 85:8

Higher values are better.

Fig. 5. Some visual example results of our methods and 12 state-of-the-
art methods on the VCoSeg dataset.
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videos on the MOViCS dataset [13] and a new 10-category
video object co-segmentation and classification dataset.

1) Evaluation on MOViCS Dataset
The MOViCS dataset [13] includes four groups of videos

which has 11 videos in total. Each video group contains one
or two objects, and five frames of each video have pixelwise
ground truth.

In the experiments, we provide each video with one rele-
vant or irrelevant frame to bootstrap our method. For the
videos of chicken, giraffe and tiger, as all frames of all vid-
eos contain one primary object (i.e., the chicken, giraffe and
tiger), we randomly select one frame from each video as the
relevant one. As the initial segmentations of all frames cover
the primary object, our method can co-segment the primary
object from the video set without the interference of the
other object (i.e., the turtle or elephant). For the four videos
of lion, all frames of two videos contains the lion, some
frames of one video do not contain the lion because of occlu-
sion, and all frames of one video do not contain the lion at
all. We randomly select one frame from each video as rele-
vant or irrelevant according to its ground truth label. As the
initial segmentations of all the relevant frames cover the
lion, our method can identify all the relevant frames from
the irrelevant ones, and meanwhile co-segment the lion out.

Since the videos of each group (except the tiger group) in
the MOViCS dataset [13] contain two objects, we compare

our methods (VODC, wSC, and wMIL) with one multi-class
image co-segmentation method (MIC [47]) and three multi-
class video co-segmentation methods (MVC [13],
MFVC [34], and MVOC [36]). The average IoU scores and
some example results of them are presented in Table 4 and
Fig. 6, respectively.

MIC [47] does not perform well because it do not employ
motion cue to enhance the temporal smoothness of the target
object. Since MVC [13] relies on pixel-level features, the seg-
mentation results tend to be over-segmented. Moreover, it
may link different objects from different videos, as shown in
the third tiger video in Fig. 6. MFVC [34] formulates video
co-segmentation as a co-selection graph to connect object
proposals in multiple videos, and thus its segmentation
results are highly dependent on the method of generating
object proposals. MVOC [36] makes a strong assumption
that the object proposal tracklets for the same class of objects
should have similar appearance both within a video and
across videos. Thus, it may assign incorrect class labeling for
the object of the same class, as illustrated in the second video
of giraffe and the third video of tiger.

As the above results shown, our methods outperform all
the compared methods, and the average improvements of
wSC, wMIL, and VODC are more than 1, 3, and 5 percent,
respectively. This strongly demonstrates the efficacy of the
spatio-temporal auto-context model which captures the cat-
egorized contextual information across multiple videos,
and the Spatial-MILBoost algorithm which considers the
spatial reasoning while predicting the segmentation label.
Moreover, our methods identifies all the relevant frames
from the irrelevant ones, while most of the above methods
do not assign correct class labeling for most of the frames
(MIC [47], MVC [13], and MVOC [36]).

2) Evaluation on XJTU-Stevens Video Co-Segmentation and
Classification Dataset

The existing video object co-segmentation datasets [1],
[2], [3], [13], [34], [35], [36] have the following limitations:
1) they only contain the relevant frames or a small number
of irrelevant frames, 2) the categories, the videos of each

TABLE 4
The Average IoU Scores of Our Methods and Four
State-of-the-Art Methods on the MOViCS Dataset

Algorithm chicken giraffe lion Tiger Avg.

MIC [47] 46.7 41.9 59.6 42.4 47.7
MVC [13] 70.5 56.4 67.2 53.0 61.8
MFVC [34] 87.2 66.8 82.8 71.4 77.1
MVOC [36] 83.9 58.1 80.7 53.1 69.0
wSC 86.5 67.3 81.3 77.4 78.1
wMIL 89.2 69.7 83.5 78.7 80.3
VODC 91:5 71:1 86:2 80:6 82:4

Higher values are better.

Fig. 6. Some visual example results of our methods and four state-of-the-art methods on the MOViCS dataset. The different colors in the 2nd, 3rd, and
5th rows denote the class labels.
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category and the frames of each video are relatively lim-
ited, 3) the object instances in different videos are fre-
quently the same object, or only exhibit small variations
in color, shape, pose, size, and location, and 4) the anno-
tations for the videos and frames are usually small.
Thus, to exactly evaluate the efficacy of our method and
to establish a benchmark for future research, we have
collected a new dataset consisting of 10 categories of 101
publicly available internet videos (13,398 frames in total),
and call it XJTU-Stevens video co-segmentation and classifi-
cation dataset, in which some videos include irrelevant
frames. The objects in videos of each category are of the
common category, but exhibit large differences in
appearance, size, shape, viewpoint, and pose. In support
of the final evaluation of our end-to-end system, we
manually assign each frame a label (1 for relevant and 0
for irrelevant) denoting whether the frame contains the
target object, and also manually assign pixel-wise
ground truth foreground labels for each relevant frame.
We present some example relevant and irrelevant
frames, the pixel-wise ground truth foreground labels
for relevant frames, and the statistical details of the new
dataset in Fig. 7.

Performance Evaluation. As the videos of each category
always contain irrelevant frames which can be regarded
as objects of different categories, we compare our video
object discovery and co-segmentation methods (VODC,
wSC, and wMIL) with three multi-class video co-segmen-
tation methods (MVC [13], MFVC [34], and MVOC [36])
for fair comparison.

We first evaluate the discovery performance of our
methods by varying the number of manually annotated
relevant and irrelevant frames. The number of manually
annotated relevant and irrelevant frames of each video is
set from 1 to 3, and they are randomly selected from each
video given the ground truth frame-level labels. We pres-
ent the number of misclassified frames of each category
in Table 5. As the results shown, all the irrelevant frames

are misclassified as relevant ones by MVC [13],
MFVC [34], and MVOC [36]. This is due to that all of
them leverage the low-level color, shape and/or location
cues. All of our methods work better than MVC [13],
MFVC [34], and MVOC [36] even when we just provide
each video with 1 relevant or irrelevant frame. Moreover,
our full method (VODC) can identify almost all the rele-
vant frames from multiple videos when we provide three
relevant and irrelevant frames. This validates the efficacy
of VODC and the spatio-temporal auto-context model
learned through the Spatial-MILBoost algorithm.

We further present the average IoU scores of our meth-
ods when providing with 3 relevant and irrelevant
frames, and compare with MVC [13], MFVC [34], and
MVOC [36] in Table 6. Some example results of them are
presented in Fig. 8. Here, the average IoU score is com-
puted on the relevant frames containing the target object.
The results show that all of our methods can co-segment
the intact objects with dramatic variations in appearance,
size, pose, viewpoint, and shape out on most of the cate-
gories, and outperform MVC [13], MFVC [34], and

Fig. 7. The example relevant (
p
) and irrelevant (�) frames, the pixel-

wise ground truth foreground labels (binary mask) for relevant frames,
and the statistical details of the XJTU-Stevens video co-segmentation
and classification dataset. For the airplane category, 11(4/7) denotes
that the numbers of all videos, videos only containing relevant frames,
and videos containing irrelevant frames are 11, 4, and 7, respectively;
“1763(1702/61)” denotes that the numbers of all frames, relevant
frames, and irrelevant frames are 1,763, 1,702, and 61, respectively.

TABLE 5
The Number of Misclassified Frames of Our Methods by Varying

the Number of Manually Annotated Frames (I, II or III in the
2nd Row), and Three Multi-Class Video Co-Segmentation
Methods on the XJTU-Stevens Video Co-Segmentation

and Classification Dataset

Category MVC MFVC MVOC wSCjwMILjVODC

[13] [34] [36] I II III

airplane 61 61 61 30j27j20 17j14j10 2j2j0
balloon 65 65 65 17j17j13 8j7j4 4j4j3
bear 56 56 56 10j7j3 5j4j3 4j3j2
cat 14 14 14 11j9j4 5j5j5 5j5j5
eagle 38 38 38 31j29j23 19j16j12 11j9j8
ferrari 28 28 28 20j18j11 14j14j7 12j10j6
figure skating 58 58 58 2j0j0 0j0j0 0j0j0
horse 55 55 55 17j11j5 9j4j1 4j2j1
parachute 40 40 40 22j20j14 16j15j10 4j4j2
single diving 76 76 76 35j26j18 26j21j13 17j11j5
Avg. 49 49 49 20j16j11 12j10j7 6j5j3

Lower values are better.

TABLE 6
The Average IoU Scores of Our Methods and Three Multi-Class
Video Co-Segmentation Methods on the XJTU-Stevens Video

Co-Segmentation and Classification Dataset

Category MVC

[13]

MFVC

[34]

MVOC

[36]

wSC wMIL VODC

-NC

VODC

-QS

VODC

airplane 58.4 46.4 61.2 83.1 84.7 85.4 86:6 86.4

balloon 86.9 91.5 87.4 93.2 93.9 94.1 94.5 94:6

bear 81.4 85.4 85.9 88.5 89.3 88.5 89.4 90:5

cat 75.6 70.4 80.7 85.2 89.4 90.7 91.5 92:1

eagle 72.8 81.4 79.5 82.3 86.2 87.4 88.2 89:5

ferrari 75.8 77.9 62.1 81.5 86.3 85.8 87.1 87:7

figure skating 62.1 55.4 65.8 83.4 86.9 86.2 86.7 88:5

horse 80.2 84.0 86.2 89.6 90.7 91.3 92.5 92:0

parachute 80.8 74.3 84.7 87.9 91.7 91.9 92.4 94:0

single diving 59.3 49.2 72.0 81.6 85.2 86.0 87.3 87:7

Avg. 73.3 71.6 76.6 85.6 88.4 88.7 89.6 90:3

Higher values are better.
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MVOC [36] with an average improvement from 9 to 13.7
percent. The results of MVC [13] are over-segmented, and
cannot capture the target object in its entirety (especially
for the bear, ferrari and single diving categories).
MFVC [34] highly relies on the object proposals, and thus
sometimes cannot focus on the target object, as illustrated
in the cat category. In summary, the above results demon-
strate the advantages of our full method (VODC), the lev-
eraged spatio-temporal auto-context model, and also the
Spatial-MILBoost algorithm.

Parameter Analysis.Nc in Eq. (2) is the number of sampled
points on the sampling structure of the spatio-temporal
auto-context model. To evaluate its impact, we test our
method by setting Nc to be 25, 33, 41, 49, and 57, respec-
tively. We present the average IoU scores and the numbers
of misclassified frames in Fig. 9. They show that both the
object discovery and co-segmentation performances of our
method almost always reach the best when Nc equals 41.
Thus, Nc is set to be 41 in all our experiments.

Impact of Superpixel Methods. To study the impact of the
superpixel methods to our method, we replace the super-
pixel method (SLIC [50]) used in our full method (VODC)
with two other superpixel methods (NC [60] and
QS [61]), and denote them as VODC-NC and VODC-QS,
respectively. The results on the new dataset showed that
they both have the same object discovery performance
with VODC, and the differences of the average IoU scores
are within 1.6 percent, as given in Table 6. This clearly
demonstrates that our method is not tied to any specific
superpixel method.

5.5 Strengths and Limitations

To summarize, as the above results on four datasets
shown, our method 1) achieves superior performance of
segmenting the target object from a single video com-
pared to the state-of-the-art single video object segmenta-
tion methods, 2) compares favorably with the state-of-
the-art video object co-segmentation methods in object
co-segmentation from multiple videos only containing
relevant frames, 3) outperforms the state-of-the-art multi-
class video co-segmentation methods in joint object dis-
covery and co-segmentation from multiple videos con-
taining irrelevant frames. Moreover, the ablative studies
demonstrate the advantages of the spatio-temporal auto-
context model which captures the categorized spatio-tem-
poral contextual information across multiple videos, and
the Spatial-MILBoost algorithm which considers the spa-
tial relationship of neighboring superpixels while predict-
ing the segmentation label of superpixel.

Our method is capable of discovering and co-segmenting
a common category of objects from multiple videos contain-
ing irrelevant frames, but it needs to be bootstrapped with 1
to 3 manually annotated frame-level labels. Since the recon-
struction errors of an autoencoder are discriminative
enough to well separate the inliers and outliers, and it has
been proven that the autoencoder is a simple yet effective
tool for separating inliers and outliers in an unsupervised
fashion, thus in our future work, we plan to utilize the
reconstruction errors of an autoencoder [62] to automati-
cally select dozens of relevant frames (inliers) and irrelevant
frames (outliers) to initialize our method.

Moreover, our method cannot handle the case where the
common objects of multiple categories are present in the
video. In our future work, we will extend our method to dis-
cover and co-segment the common objects of multiple cate-
gories from multiple videos. One possible solution is to
generate initial segmentations for the common objects of
each category (e.g., using a co-saliency measure [63]), and
proceed to iteratively learn an appearance model, a spatio-
temporal auto-context model, and a consistency term for
the common objects of each category and perform optimiza-
tion on Eq. (1). Through these steps, we may be able to
extend our current method to not only discover the relevant

Fig. 8. Some visual example results of our methods and three multi-class video co-segmentation methods on the XJTU-Stevens video co-segmenta-
tion and classification dataset. The different colors in the 2nd and 4th rows denote the class labels.

Fig. 9. (a) The numbers of misclassified frames and (b) the average IoU
scores of our method by varying the value ofNc.
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frames, but also co-segment the common objects of multiple
categories from the relevant frames, respectively.

6 CONCLUSION

We presented a spatio-temporal energy minimization for-
mulation to simultaneously discover and co-segment a
common category of objects from multiple videos contain-
ing irrelevant frames, which only requires extremely
weak supervision (i.e., 1 to 3 frame-level labels). Our for-
mulation incorporates a spatio-temporal auto-context
model to capture the spatio-temporal contextual informa-
tion across multiple videos. It facilitates both object dis-
covery and co-segmentation through a multiple instance
learning algorithm with spatial reasoning. Our method
overcomes an important limitation of previous video
object co-segmentation methods, which assume all frames
from all videos contain the target objects. Experiments on
four datasets demonstrated the superior performance of
our proposed method.
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