"Self-Paced Learning for Matrix Factorization": Supplementary Material

Qian Zhao ${ }^{1}$, Deyu Meng ${ }^{1, *}$, Lu Jiang ${ }^{2}$, Qi Xie 1, Zongben Xu ${ }^{1}$, Alexander G. Hauptmann ${ }^{2}$
${ }^{1}$ School of Mathematics and Statistics, Xi'an Jiaotong University
${ }^{2}$ School of Computer Science, Carnegie Mellon University timmy.zhaoqian@gmail.com, dymeng@mail.xjtu.edu.cn, lujiang@cs.cmu.edu
xq.liwu@stu.xjtu.edu.cn, zbxu@mail.xjtu.edu.cn, alex@cs.cmu.edu
*Corresponding author

Abstract

In this supplementary material, we give the proof of Theorem 1 in the maintext.

A Lemmas

We first give some useful lemmas before proving the main theorem.
Lemma A. 1 (Boucheron, Lugosi, and Bousquet 2004). Let X be a random variable with $\mathbb{E}[X]=0$ and $a \leq X \leq b$ with $b>a$. Then for any $s>0$, the following inequality holds:

$$
\begin{equation*}
\mathbb{E}[\exp (s X)] \leq \exp \left(\frac{s^{2}(b-a)^{2}}{8}\right) \tag{1}
\end{equation*}
$$

Lemma A.2. Let $C=\left\{c_{1}, \ldots, c_{N}\right\}$ be a finite set, X_{1}, \ldots, X_{n} denote a random sample without replacement from C and Y_{1}, \ldots, Y_{n} denote a random sample with replacement from C. Then for any $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ with $w_{i}>0$, if the function $f(x)$ is continuous and convex, then the following inequality holds:

$$
\begin{equation*}
\mathbb{E}\left[f\left(\sum_{i=1}^{n} w_{i} X_{i}\right)\right] \leq \mathbb{E}\left[f\left(\sum_{i=1}^{n} w_{i} Y_{i}\right)\right] \tag{2}
\end{equation*}
$$

Proof. Let $g\left(x_{1}, \ldots, x_{n}\right)=f\left(w_{1} x_{1}+\cdots+w_{n} x_{n}\right)$. As mentioned in (Hoeffding 1963), we can find a function g^{*}, which is not uniquely determined, such that

$$
\begin{equation*}
\mathbb{E}\left[g\left(Y_{1}, \ldots, Y_{n}\right)\right]=\mathbb{E}\left[g^{*}\left(X_{1}, \ldots, X_{n}\right)\right] \tag{3}
\end{equation*}
$$

Specifically, we can find one of the g^{*} s, denoted as \bar{g}, with the following form:

$$
\begin{align*}
\bar{g} & \left(x_{1}, \ldots, x_{n}\right) \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{n}} p_{i_{1} i_{2} \ldots i_{n}} f\left(w_{1} x_{i_{1}}+w_{2} x_{i_{2}}+\cdots+w_{n} x_{i_{n}}\right) \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{n}} p_{i_{1} i_{2} \ldots i_{n}} f\left(\sum_{i=1}^{n}\left(\sum_{k=1}^{n} \mathbb{I}\left(i_{k}=l\right) w_{k}\right) x_{l}\right) \tag{4}
\end{align*}
$$

[^0]where $\mathbb{I}(\cdot)$ is the indicator function (equals 1 if the equation within the brackets holds, and 0 otherwise), and the outside sum is taken over $i_{k}=1, \ldots, n$ for $k=1, \ldots, n$. The coefficients $p_{i_{1} i_{2} \ldots i_{n}}$ s are positive and do not depend on the function f. Let $f(x)=1$, by (3) and (4), we have
\[

$$
\begin{equation*}
\sum_{i_{1}, i_{2}, \ldots, i_{n}} p_{i_{1} i_{2} \ldots i_{n}}=1 . \tag{5}
\end{equation*}
$$

\]

We also have

$$
\begin{align*}
& \mathbb{E}\left[g\left(Y_{1}, \ldots, Y_{n}\right)\right]=\mathbb{E}\left[\bar{g}\left(X_{1}, \ldots, X_{n}\right)\right] \\
& =\mathbb{E}\left[\sum_{i_{1}, i_{2}, \ldots, i_{n}} p_{i_{1} i_{2} \ldots i_{n}} f\left(\sum_{i=1}^{n}\left(\sum_{k=1}^{n} \mathbb{I}\left(i_{k}=l\right) w_{k}\right) x_{l}\right)\right] \\
& =\sum_{i_{1}, i_{2}, \ldots, i_{n}} p_{i_{1} i_{2} \ldots i_{n}} p_{i_{1} i_{2} \ldots i_{n}} \mathbb{E}\left[f\left(\sum_{i=1}^{n}\left(\sum_{k=1}^{n} \mathbb{I}\left(i_{k}=l\right) w_{k}\right) x_{l}\right)\right] . \tag{6}
\end{align*}
$$

Since (5) holds, it suffices to prove (2) by showing that

$$
\begin{equation*}
\mathbb{E}\left[f\left(\sum_{i=1}^{n} w_{i} X_{i}\right)\right] \leq \mathbb{E}\left[f\left(\sum_{i=1}^{n}\left(\sum_{k=1}^{n} \mathbb{I}\left(i_{k}=l\right) w_{k}\right) x_{l}\right)\right] \tag{7}
\end{equation*}
$$

holds for any $k, r_{1}, \ldots, r_{k}, i_{1}, \ldots, i_{k}$ satisfying the same condition as in (4).

If $i_{k}, i_{2}, \ldots, i_{n}$ are taken pairwise different values from $\{1,2, \ldots, n\}$, then (7) holds by equality. Otherwise, it suffices to show

$$
\begin{align*}
\mathbb{E}\left[f\left(\sum_{i=1}^{n} w_{i} X_{i}\right)\right] & \leq \mathbb{E}\left[f\left(\left(w_{1}+w_{2}\right) X_{1}+\sum_{i=3}^{n} w_{i} X_{i}\right)\right] \\
& =\mathbb{E}\left[f\left(\left(w_{1}+w_{2}\right) X_{2}+\sum_{i=3}^{n} w_{i} X_{i}\right)\right] \tag{8}
\end{align*}
$$

since other cases of (7) can be induced by it. Now we prove
(8). We have

$$
\begin{align*}
& \mathbb{E}\left[f\left(\sum_{i=1}^{n} w_{i} X_{i}\right)\right]=\mathbb{E}\left[f\left(w_{1} X_{1}+w_{2} X_{2} \sum_{i=3}^{n} w_{i} X_{i}\right)\right] \\
&= \mathbb{E}\left[f \left(\frac{w_{1}}{w_{1}+w_{2}}\left(\left(w_{1}+w_{2}\right) X_{1}+\sum_{i=3}^{n} w_{i} X_{i}\right)\right.\right. \\
&\left.\left.+\frac{w_{2}}{w_{1}+w_{2}}\left(\left(w_{1}+w_{2}\right) X_{2}+\sum_{i=3}^{n} w_{i} X_{i}\right)\right)\right] \\
& \leq \frac{w_{1}}{w_{1}+w_{2}} \mathbb{E}\left[f\left(\left(w_{1}+w_{2}\right) X_{1}+\sum_{i=3}^{n} w_{i} X_{i}\right)\right] \\
&+\frac{w_{2}}{w_{1}+w_{2}} \mathbb{E}\left[f\left(\left(w_{1}+w_{2}\right) X_{2}+\sum_{i=3}^{n} w_{i} X_{i}\right)\right] \tag{9}
\end{align*}
$$

where the inequality holds by convexity of f. By symmetry, we have

$$
\begin{align*}
& \mathbb{E}\left[f\left(\left(w_{1}+w_{2}\right) X_{1}+\sum_{i=3}^{n} w_{i} X_{i}\right)\right] \\
& \quad=\mathbb{E}\left[f\left(\left(w_{1}+w_{2}\right) X_{2}+\sum_{i=3}^{n} w_{i} X_{i}\right)\right] \tag{10}
\end{align*}
$$

Then (8) holds by taking (10) back to (9), which completes the proof.

Lemma A.3. Let $C=\left\{c_{1}, \ldots, c_{N}\right\}$ be a finite set with mean $\mu=\frac{1}{N} \sum_{i=1}^{N} c_{i}, X_{1}, \ldots, X_{n}$ denote a random sample without replacement from $C, a \triangleq \min _{i} c_{i}, b \triangleq \max _{i} c_{i}$ and $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ satisfying $\sum_{i=1}^{n} w_{i}=n$ and $w_{i}>0$ for $i=1, \ldots, n$. Then we have:
$\operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{2 n^{2} t^{2}}{\sum_{i=1}^{n} w_{i}^{2}(b-a)^{2}}\right)$

Proof. We first introduce Y_{1}, \ldots, Y_{n} as a random sample with replacement from C. It is obvious that Y_{i} s are independent with $\mathbb{E}\left[Y_{i}\right]=\mu$ for $i=1, \ldots, n$. For any $s>0$, by Markov's inequality, we have

$$
\begin{align*}
& \operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu \geq t\right) \\
& \quad=\operatorname{Pr}\left(\exp \left(s\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu\right)\right) \geq \exp (s t)\right) \tag{12}\\
& \quad \leq \exp (-s t) \mathbb{E}\left[\exp \left(s\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu\right)\right)\right]
\end{align*}
$$

Applying Lemma A. 2 to $\exp \left(s\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu\right)\right)$ and

$$
\begin{aligned}
& \exp \left(s\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} Y_{i}-\mu\right)\right), \text { we get } \\
& \mathbb{E}\left[\exp \left(s\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu\right)\right)\right] \\
& \\
& \quad \leq \mathbb{E}\left[\exp \left(s\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} Y_{i}-\mu\right)\right)\right] \\
& \\
& =\mathbb{E}\left[\exp \left(\frac{s}{n}\left(\sum_{i=1}^{n} w_{i}\left(Y_{i}-\mu\right)\right)\right)\right] \\
& \\
& \left.=\prod_{i=1}^{n} \mathbb{E}\left[\exp \left(\frac{s w_{i}}{n}\left(Y_{i}-\mu\right)\right)\right)\right] \\
&
\end{aligned}
$$

where the second equality holds by the independence of $Y_{i} \mathrm{~s}$ and the second inequality holds by Lemma A.1. Substitute this result to (12), and then we obtain

$$
\begin{aligned}
& \operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu \geq t\right) \\
& \quad \leq \exp (-s t) \exp \left(\frac{s^{2} \sum_{i=1}^{n} w_{i}^{2}(b-a)^{2}}{8 n^{2}}\right) \\
& \quad \leq \exp \left(-\frac{2 n^{2} t^{2}}{\sum_{i=1}^{n} w_{i}^{2}(b-a)^{2}}\right)
\end{aligned}
$$

where the last equality holds by taking $s=\frac{4 n^{2} t}{\sum_{i=1}^{n} w_{i}^{2}(b-a)^{2}}$ to minimize the upper bound. Similarly, we can prove
$\operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu \leq-t\right) \leq \exp \left(-\frac{2 n^{2} t^{2}}{\sum_{i=1}^{n} w_{i}^{2}(b-a)^{2}}\right)$.
Thus we can conclude
$\operatorname{Pr}\left(\left|\frac{1}{n} \sum_{i=1}^{n} w_{i} X_{i}-\mu\right| \geq t\right) \leq 2 \exp \left(-\frac{2 n^{2} t^{2}}{\sum_{i=1}^{n} w_{i}^{2}(b-a)^{2}}\right)$.

Lemma A. 4 (Wang and Xu 2012). Let $S_{r}=\{\mathbf{X} \in$ $\left.\mathbb{R}^{n_{1} \times n_{2}}: \operatorname{rank}(\mathbf{X}) \leq r,\|\mathbf{X}\|_{F} \leq K\right\}$. Then there exists an ϵ-net \bar{S}_{r} for Frobenius norm obeying

$$
\left|\bar{S}_{r}\right| \leq(9 K / \epsilon)^{\left(n_{1}+n_{2}+1\right) r}
$$

B Proof of Theorem 1

To prove Theorem 1, we need the following result:
Theorem B.1. Let $\hat{\mathcal{L}}(\mathbf{X})=\frac{1}{\sqrt{|\Omega|}}\|\sqrt{\mathbf{W}} \odot(\mathbf{X}-\hat{\mathbf{Y}})\|_{F}$ and $\mathcal{L}(\mathbf{X})=\frac{1}{\sqrt{m n}}\|\mathbf{X}-\hat{\mathbf{Y}}\|_{F}$. Furthermore, assume $\max _{(i, j)}\left|x_{i j}\right| \leq b$. Then given matrix \mathbf{W} satisfying

$$
w_{i j} \begin{cases}>0, & (i, j) \in \Omega \\ =0, & \text { otherwise }\end{cases}
$$

$\sum_{(i, j) \in \Omega} w_{i j}=|\Omega|$, and $\sum_{(i, j) \in \Omega} w_{i j}^{2} \leq 2|\Omega|$, for all rank$r$ matrices \mathbf{X}, with probability greater than $1-2 \exp (-n)$, there exists a fixed constant C such that

$$
\sup _{\mathbf{X} \in S_{r}}|\hat{\mathcal{L}}(\mathbf{X})-\mathcal{L}(\mathbf{X})| \leq C k\left(\frac{n r \log (n)}{|\Omega|}\right)^{\frac{1}{4}}
$$

Here, we assume $m \leq n$.
Proof. This proof follows the similar way as the proof of Theorem 2 in (Wang and Xu 2012). Fix $\mathbf{X} \in S_{r}$. Define

$$
\begin{aligned}
& \hat{u}(\mathbf{X})=\frac{1}{|\Omega|}\|\sqrt{\mathbf{W}} \odot(\mathbf{X}-\hat{\mathbf{Y}})\|_{F}^{2}=(\hat{\mathcal{L}}(\mathbf{X}))^{2} \\
& u(\mathbf{X})=\frac{1}{m n}\|\mathbf{X}-\hat{\mathbf{Y}}\|_{F}^{2}=(\mathcal{L}(\mathbf{X}))^{2}
\end{aligned}
$$

Then by Lemma A.3, we have

$$
\begin{equation*}
\operatorname{Pr}(|\hat{u}(\mathbf{X})-u(\mathbf{X})| \geq t) \leq 2 \exp \left(-\frac{2|\Omega|^{2} t^{2}}{\sum_{(i, j) \in \Omega} w_{i j}^{2} M^{2}}\right) \tag{14}
\end{equation*}
$$

where $M \triangleq \max _{(i, j)}\left(x_{i j}-\hat{y}_{i j}\right)^{2} \leq 4 b^{2}$. Applying union bound over all $\mathbf{X} \in \bar{S}_{r}(\epsilon)$, we have

$$
\begin{aligned}
& \operatorname{Pr}\left(\sup _{\overline{\mathbf{x}} \in \bar{S}_{r}(\epsilon)}|\hat{u}(\overline{\mathbf{X}})-u(\overline{\mathbf{X}})| \geq t\right) \\
& \quad \leq 2\left|\bar{S}_{r}(\epsilon)\right| \exp \left(-\frac{2|\Omega|^{2} t^{2}}{\sum_{(i, j) \in \Omega} w_{i j}^{2} M^{2}}\right)
\end{aligned}
$$

Equivalently, with probability at least $1-2 \exp (-n)$, it holds that

$$
\begin{aligned}
& \sup _{\overline{\mathbf{x}} \in \bar{S}_{r}(\epsilon)}|\hat{u}(\overline{\mathbf{X}})-u(\overline{\mathbf{X}})| \\
& \quad \leq\left[\frac{M^{2}}{2}\left(\log \left|\bar{S}_{r}(\epsilon)\right|+n\right) \frac{\sum_{(i, j) \in \Omega} w_{i j}^{2}}{|\Omega|^{2}}\right]^{\frac{1}{2}} .
\end{aligned}
$$

Since $\|\overline{\mathbf{X}}\|_{F} \leq \sqrt{m n} b$, by Lemma A.4, we obtain
$\sup _{\overline{\mathbf{X}} \in \bar{S}_{r}(\epsilon)}|\hat{u}(\overline{\mathbf{X}})-u(\overline{\mathbf{X}})|$
$\leq\left[\frac{M^{2}}{2}((m+n+1) r \log (9 b \sqrt{m n} / \epsilon)+n) \frac{\sum_{(i, j) \in \Omega} w_{i j}^{2}}{|\Omega|^{2}}\right]^{\frac{1}{2}}$ $:=\xi(\Omega, \mathbf{W})$.
Notice that $\hat{u}(\overline{\mathbf{X}})=(\hat{\mathcal{L}}(\overline{\mathbf{X}}))^{2}$ and $u(\overline{\mathbf{X}})=(\mathcal{L}(\overline{\mathbf{X}}))^{2}$, and thus we have

$$
\sup _{\overline{\mathbf{x}} \in \bar{S}_{r}(\epsilon)}|\hat{\mathcal{L}}(\mathbf{X})-\mathcal{L}(\mathbf{X})| \leq \sqrt{\xi(\Omega, \mathbf{W})}
$$

For any $\mathbf{X} \in S_{r}$, there exists $c(\mathbf{X}) \in S_{r}(\epsilon)$ such that
$\|\mathbf{X}-c(\mathbf{X})\|_{F} \leq \epsilon, \quad\left\|\sqrt{\mathbf{W}} \odot P_{\Omega}(\mathbf{X}-c(\mathbf{X}))\right\|_{F} \leq(2|\Omega|)^{\frac{1}{4}} \epsilon$, where the second inequality holds due to the assumption $\sum_{(i, j) \in \Omega} w_{i j}^{2} \leq 2|\Omega|$. These two inequalities imply

$$
\begin{aligned}
|\mathcal{L}(\mathbf{X})-\mathcal{L}(c(\mathbf{X}))| & =\frac{1}{\sqrt{m n}}\left|\|\mathbf{X}-\overline{\mathbf{Y}}\|_{F}-\|c(\mathbf{X})-\overline{\mathbf{Y}}\|_{F}\right| \\
& \leq \frac{\epsilon}{\sqrt{m n}}
\end{aligned}
$$

$$
\begin{aligned}
& |\hat{\mathcal{L}}(\mathbf{X})-\hat{\mathcal{L}}(c(\mathbf{X}))| \\
& =\frac{1}{\sqrt{|\Omega|}}\left|\|\sqrt{\mathbf{W}} \odot(\mathbf{X}-\overline{\mathbf{Y}})\|_{F}-\|\sqrt{\mathbf{W}} \odot(c(\mathbf{X})-\overline{\mathbf{Y}})\|_{F}\right| \\
& \leq\left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \sup _{\mathbf{X} \in S_{r}}|\hat{\mathcal{L}}(\mathbf{X})-\mathcal{L}(\mathbf{X})| \\
& \leq \sup _{\mathbf{X} \in S_{r}}\{|\hat{\mathcal{L}}(\mathbf{X})-\hat{\mathcal{L}}(c(\mathbf{X}))|+|\mathcal{L}(c(\mathbf{X}))-\mathcal{L}(\mathbf{X})| \\
& \quad+|\hat{\mathcal{L}}(c(\mathbf{X}))-\mathcal{L}(c(\mathbf{X}))|\} \\
& \leq\left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon+\frac{\epsilon}{\sqrt{m n}}+\sup _{\mathbf{X} \in S_{r}}|\hat{\mathcal{L}}(c(\mathbf{X}))-\mathcal{L}(c(\mathbf{X}))| \\
& \leq\left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon+\frac{\epsilon}{\sqrt{m n}}+\sup _{\overline{\mathbf{X}} \in S_{r}}|\hat{\mathcal{L}}(\overline{\mathbf{X}})-\mathcal{L}(\overline{\mathbf{X}})| \\
& \leq \\
& \leq\left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon+\frac{\epsilon}{\sqrt{m n}}+\sqrt{\xi(\Omega, \mathbf{W})}
\end{aligned}
$$

Substitute the expression of $\sqrt{\xi(\Omega, \mathbf{W})}$ into the above inequality and take $\epsilon=9 b$, and then we have

$$
\begin{aligned}
& \sup _{\mathbf{X} \in S_{r}}|\hat{\mathcal{L}}(\mathbf{X})-\mathcal{L}(\mathbf{X})| \\
\leq & 2\left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon+\left(\frac{M^{2}}{2} \frac{3 n r \log (n) \sum_{(i . j) \in \Omega} w_{i j}^{2}}{|\Omega|^{2}}\right)^{\frac{1}{4}} \\
\leq & 18 b\left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}}+2 \sqrt[4]{3}\left(\frac{n r \log (n)}{|\Omega|}\right)^{\frac{1}{4}} \\
\leq & C k\left(\frac{n r \log (n)}{|\Omega|}\right)^{\frac{1}{4}}
\end{aligned}
$$

for a constant C.

Now we can prove Theorem 1 in the maintext.
Theorem B. 2 (Theorem 1 in the maintext). For a given matrix \mathbf{W} which satisfies $w_{i j}\left\{\begin{array}{ll}>0, & (i, j) \in \Omega \\ =0, & \text { otherwise }\end{array}\right.$ with $\sum_{(i, j) \in \Omega} w_{i j}=|\Omega|$, and $\sum_{(i, j) \in \Omega} w_{i j}^{2} \leq 2|\Omega|$, there exists an constant C, such that with probability at least $1-2 \exp (-n)$,
$\operatorname{RMSE} \leq \frac{1}{\sqrt{|\Omega|}}\|\sqrt{\mathbf{W}} \odot \mathbf{E}\|_{F}+\frac{1}{\sqrt{m n}}\|\mathbf{E}\|_{F}+C k\left(\frac{n r \log (n)}{|\Omega|}\right)^{\frac{1}{4}}$.
Here, we assume $m \leq n$ without loss of generality.

Proof.

$$
\begin{aligned}
\mathrm{RMSE}= & \frac{1}{\sqrt{m n}}\left\|\mathbf{Y}^{*}-\mathbf{Y}\right\|_{F}=\frac{1}{\sqrt{m n}}\left\|\mathbf{Y}^{*}-\hat{\mathbf{Y}}+\mathbf{E}\right\|_{F} \\
\leq & \frac{1}{\sqrt{m n}}\left\|\mathbf{Y}^{*}-\hat{\mathbf{Y}}\right\|_{F}+\frac{1}{\sqrt{m n}}\|\mathbf{E}\|_{F} \\
\leq & \frac{1}{\sqrt{|\Omega|}}\left\|\sqrt{\mathbf{W}} \odot\left(\mathbf{Y}^{*}-\hat{\mathbf{Y}}\right)\right\|_{F}+\frac{1}{\sqrt{m n}}\|\mathbf{E}\|_{F} \\
& +\left|\frac{1}{\sqrt{|\Omega|}}\left\|\sqrt{\mathbf{W}} \odot\left(\mathbf{Y}^{*}-\hat{\mathbf{Y}}\right)\right\|_{F}-\frac{1}{\sqrt{m n}}\left\|\mathbf{Y}^{*}-\hat{\mathbf{Y}}\right\|_{F}\right| \\
\leq & \frac{1}{\sqrt{|\Omega|}\|\sqrt{\mathbf{W}} \odot(\mathbf{Y}-\hat{\mathbf{Y}})\|_{F}+\frac{1}{\sqrt{m n}}\|\mathbf{E}\|_{F}} \\
& +\left|\frac{1}{\sqrt{|\Omega|}}\left\|\sqrt{\mathbf{W}} \odot\left(\mathbf{Y}^{*}-\hat{\mathbf{Y}}\right)\right\|_{F}-\frac{1}{\sqrt{m n}}\left\|\mathbf{Y}^{*}-\hat{\mathbf{Y}}\right\|_{F}\right| \\
\leq & \frac{1}{\sqrt{|\Omega|}\|\sqrt{\mathbf{W}} \odot \mathbf{E}\|_{F}+\frac{1}{\sqrt{m n}}\|\mathbf{E}\|_{F}} \\
& +\left|\frac{1}{\sqrt{|\Omega|}}\|\sqrt{\mathbf{W}} \odot(\mathbf{Y}-\hat{\mathbf{Y}})\|_{F}-\frac{1}{\sqrt{m n}}\left\|\mathbf{Y}^{*}-\hat{\mathbf{Y}}\right\|_{F}\right|
\end{aligned}
$$

Here, the third inequality holds because \mathbf{Y}^{*} is the optimal solution of optimization (9) in maintext. Since $\mathbf{Y}^{*} \in S_{r}$, applying Theorem B. 1 completes the proof.

References

Boucheron, S.; Lugosi, G.; and Bousquet, O. 2004. Concentration inequalities. In Advanced Lectures on Machine Learning. Springer. 208-240.
Hoeffding, W. 1963. Probability inequalities for sums of bounded random variables. Journal of the American statistical association 58(301):13-30.
Wang, Y., and Xu, H. 2012. Stability of matrix factorization for collaborative filtering. In ICML.

[^0]: Copyright © \mathfrak{C} 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

