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Abstract

In this supplementary material, we give the proof of
Theorem 1 in the maintext.

A Lemmas
We first give some useful lemmas before proving the main
theorem.

Lemma A.1 (Boucheron, Lugosi, and Bousquet 2004). Let
X be a random variable with E[X] = 0 and a ≤ X ≤ b
with b > a. Then for any s > 0, the following inequality
holds:

E[exp(sX)] ≤ exp

(
s2(b− a)2

8

)
. (1)

Lemma A.2. Let C = {c1, . . . , cN} be a finite set,
X1, . . . , Xn denote a random sample without replacement
from C and Y1, . . . , Yn denote a random sample with re-
placement from C. Then for any w = (w1, . . . , wn) with
wi > 0, if the function f(x) is continuous and convex, then
the following inequality holds:

E[f(

n∑
i=1

wiXi)] ≤ E[f(

n∑
i=1

wiYi)]. (2)

Proof. Let g(x1, . . . , xn) = f(w1x1 + · · · + wnxn). As
mentioned in (Hoeffding 1963), we can find a function g∗,
which is not uniquely determined, such that

E[g(Y1, . . . , Yn)] = E[g∗(X1, . . . , Xn)]. (3)

Specifically, we can find one of the g∗s, denoted as ḡ, with
the following form:

ḡ(x1, . . . , xn)

=
∑

i1,i2,...,in

pi1i2...inf(w1xi1 + w2xi2 + · · ·+ wnxin)

=
∑

i1,i2,...,in

pi1i2...inf

(
n∑
i=1

(
n∑
k=1

I(ik = l)wk

)
xl

)
,

(4)
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where I(·) is the indicator function (equals 1 if the equation
within the brackets holds, and 0 otherwise), and the outside
sum is taken over ik = 1, . . . , n for k = 1, . . . , n. The co-
efficients pi1i2...ins are positive and do not depend on the
function f . Let f(x) = 1, by (3) and (4), we have

∑
i1,i2,...,in

pi1i2...in = 1. (5)

We also have

E[g(Y1, . . . , Yn)] = E[ḡ(X1, . . . , Xn)]

= E

 ∑
i1,i2,...,in

pi1i2...inf

(
n∑
i=1

(
n∑
k=1

I(ik = l)wk

)
xl

)
=

∑
i1,i2,...,in

pi1i2...inpi1i2...inE

[
f

(
n∑
i=1

(
n∑
k=1

I(ik = l)wk

)
xl

)]
.

(6)

Since (5) holds, it suffices to prove (2) by showing that

E

[
f

(
n∑
i=1

wiXi

)]
≤ E

[
f

(
n∑
i=1

(
n∑
k=1

I(ik = l)wk

)
xl

)]
(7)

holds for any k, r1, . . . , rk, i1, . . . , ik satisfying the same
condition as in (4).

If ik, i2, . . . , in are taken pairwise different values from
{1, 2, . . . , n}, then (7) holds by equality. Otherwise, it suf-
fices to show

E

[
f

(
n∑
i=1

wiXi

)]
≤ E

[
f

(
(w1 + w2)X1 +

n∑
i=3

wiXi

)]

= E

[
f

(
(w1 + w2)X2 +

n∑
i=3

wiXi

)]
,

(8)

since other cases of (7) can be induced by it. Now we prove



(8). We have

E

[
f

(
n∑
i=1

wiXi

)]
= E

[
f

(
w1X1 + w2X2

n∑
i=3

wiXi

)]

= E
[
f

(
w1

w1 + w2

(
(w1 + w2)X1 +

n∑
i=3

wiXi

)

+
w2

w1 + w2

(
(w1 + w2)X2 +

n∑
i=3

wiXi)

)]

≤ w1

w1 + w2
E
[
f

(
(w1 + w2)X1 +

n∑
i=3

wiXi

)]

+
w2

w1 + w2
E
[
f

(
(w1 + w2)X2 +

n∑
i=3

wiXi

)]
,

(9)

where the inequality holds by convexity of f . By symmetry,
we have

E

[
f

(
(w1 + w2)X1 +

n∑
i=3

wiXi

)]

= E

[
f

(
(w1 + w2)X2 +

n∑
i=3

wiXi

)]
.

(10)

Then (8) holds by taking (10) back to (9), which completes
the proof.

Lemma A.3. Let C = {c1, . . . , cN} be a finite set with
mean µ = 1

N

∑N
i=1 ci, X1, . . . , Xn denote a random sam-

ple without replacement from C, a , mini ci, b , maxi ci
and w = (w1, . . . , wn) satisfying

∑n
i=1 wi = n andwi > 0

for i = 1, . . . , n. Then we have:

Pr(| 1
n

n∑
i=1

wiXi−µ| ≥ t) ≤ 2 exp

(
− 2n2t2∑n

i=1 w
2
i (b− a)2

)
(11)

Proof. We first introduce Y1, . . . , Yn as a random sample
with replacement from C. It is obvious that Yis are indepen-
dent with E[Yi] = µ for i = 1, . . . , n. For any s > 0, by
Markov’s inequality, we have

Pr(
1

n

n∑
i=1

wiXi − µ ≥ t)

= Pr

(
exp

(
s(

1

n

n∑
i=1

wiXi − µ)

)
≥ exp(st)

)

≤ exp(−st)E

[
exp

(
s(

1

n

n∑
i=1

wiXi − µ)

)]
.

(12)

Applying Lemma A.2 to exp
(
s( 1
n

∑n
i=1 wiXi − µ)

)
and

exp
(
s( 1
n

∑n
i=1 wiYi − µ)

)
, we get

E

[
exp

(
s(

1

n

n∑
i=1

wiXi − µ)

)]

≤ E

[
exp

(
s(

1

n

n∑
i=1

wiYi − µ)

)]

= E

[
exp

(
s

n
(

n∑
i=1

wi(Yi − µ))

)]

=

n∏
i=1

E
[
exp

(swi
n

(Yi − µ))
)]

≤
n∏
i=1

exp

(
s2w2

i (b− a)2

8n2

)
= exp

(
s2
∑n
i=1 w

2
i (b− a)2

8n2

)
,

where the second equality holds by the independence of Yis
and the second inequality holds by Lemma A.1. Substitute
this result to (12), and then we obtain

Pr(
1

n

n∑
i=1

wiXi − µ ≥ t)

≤ exp(−st) exp

(
s2
∑n
i=1 w

2
i (b− a)2

8n2

)
≤ exp

(
− 2n2t2∑n

i=1 w
2
i (b− a)2

)
,

where the last equality holds by taking s = 4n2t∑n
i=1 w

2
i (b−a)2

to minimize the upper bound. Similarly, we can prove

Pr(
1

n

n∑
i=1

wiXi−µ ≤ −t) ≤ exp

(
− 2n2t2∑n

i=1 w
2
i (b− a)2

)
.

Thus we can conclude

Pr(| 1
n

n∑
i=1

wiXi−µ| ≥ t) ≤ 2 exp

(
− 2n2t2∑n

i=1 w
2
i (b− a)2

)
.

(13)

Lemma A.4 (Wang and Xu 2012). Let Sr = {X ∈
Rn1×n2 : rank(X) ≤ r, ‖X‖F ≤ K}. Then there exists
an ε-net S̄r for Frobenius norm obeying

|S̄r| ≤ (9K/ε)(n1+n2+1)r.

B Proof of Theorem 1
To prove Theorem 1, we need the following result:

Theorem B.1. Let L̂(X) = 1√
|Ω|
‖
√
W � (X − Ŷ)‖F

and L(X) = 1√
mn
‖X − Ŷ‖F . Furthermore, assume

max(i,j) |xij | ≤ b. Then given matrix W satisfying

wij

{
> 0, (i, j) ∈ Ω

= 0, otherwise
,



∑
(i,j)∈Ω wij = |Ω|, and

∑
(i,j)∈Ω w

2
ij ≤ 2|Ω|, for all rank-

r matrices X, with probability greater than 1− 2 exp(−n),
there exists a fixed constant C such that

sup
X∈Sr

|L̂(X)− L(X)| ≤ Ck
(
nr log(n)

|Ω|

) 1
4

.

Here, we assume m ≤ n.

Proof. This proof follows the similar way as the proof of
Theorem 2 in (Wang and Xu 2012). Fix X ∈ Sr. Define

û(X) =
1

|Ω|
‖
√
W � (X− Ŷ)‖2F = (L̂(X))2,

u(X) =
1

mn
‖X− Ŷ‖2F = (L(X))2.

Then by Lemma A.3, we have

Pr(|û(X)− u(X)| ≥ t) ≤ 2 exp

(
− 2|Ω|2t2∑

(i,j)∈Ω w
2
ijM

2

)
(14)

where M , max(i,j)(xij − ŷij)2 ≤ 4b2. Applying union
bound over all X ∈ S̄r(ε), we have

Pr

(
sup

X̄∈S̄r(ε)

|û(X̄)− u(X̄)| ≥ t

)

≤ 2|S̄r(ε)| exp

(
− 2|Ω|2t2∑

(i,j)∈Ω w
2
ijM

2

)
.

Equivalently, with probability at least 1−2 exp(−n), it holds
that

sup
X̄∈S̄r(ε)

|û(X̄)− u(X̄)|

≤

[
M2

2

(
log |S̄r(ε)|+ n

) ∑(i,j)∈Ω w
2
ij

|Ω|2

] 1
2

.

Since ‖X̄‖F ≤
√
mnb, by Lemma A.4, we obtain

sup
X̄∈S̄r(ε)

|û(X̄)− u(X̄)|

≤

[
M2

2

(
(m+ n+ 1)r log(9b

√
mn/ε) + n

) ∑(i,j)∈Ω w
2
ij

|Ω|2

] 1
2

:= ξ(Ω,W).

Notice that û(X̄) = (L̂(X̄))2 and u(X̄) = (L(X̄))2, and
thus we have

sup
X̄∈S̄r(ε)

|L̂(X)− L(X)| ≤
√
ξ(Ω,W).

For any X ∈ Sr, there exists c(X) ∈ Sr(ε) such that

‖X−c(X)‖F ≤ ε, ‖
√
W�PΩ(X−c(X))‖F ≤ (2|Ω|) 1

4 ε,

where the second inequality holds due to the assumption∑
(i,j)∈Ω w

2
ij ≤ 2|Ω|. These two inequalities imply

|L(X)− L(c(X))| = 1√
mn

∣∣‖X− Ȳ‖F − ‖c(X)− Ȳ‖F
∣∣

≤ ε√
mn

,

|L̂(X)− L̂(c(X))|

=
1√
|Ω|

∣∣∣‖√W � (X− Ȳ)‖F − ‖
√
W � (c(X)− Ȳ)‖F

∣∣∣
≤
(

2

|Ω|

) 1
4

ε.

Thus we have

sup
X∈Sr

|L̂(X)− L(X)|

≤ sup
X∈Sr

{
|L̂(X)− L̂(c(X))|+ |L(c(X))− L(X)|

+ |L̂(c(X))− L(c(X))|
}

≤
(

2

|Ω|

) 1
4

ε+
ε√
mn

+ sup
X∈Sr

|L̂(c(X))− L(c(X))|

≤
(

2

|Ω|

) 1
4

ε+
ε√
mn

+ sup
X̄∈Sr

|L̂(X̄)− L(X̄)|

≤
(

2

|Ω|

) 1
4

ε+
ε√
mn

+
√
ξ(Ω,W).

Substitute the expression of
√
ξ(Ω,W) into the above in-

equality and take ε = 9b, and then we have

sup
X∈Sr

|L̂(X)− L(X)|

≤ 2

(
2

|Ω|

) 1
4

ε+

(
M2

2

3nr log(n)
∑

(i.j)∈Ω w
2
ij

|Ω|2

) 1
4

≤ 18b

(
2

|Ω|

) 1
4

+ 2
4
√

3

(
nr log(n)

|Ω|

) 1
4

≤ Ck
(
nr log(n)

|Ω|

) 1
4

,

for a constant C.

Now we can prove Theorem 1 in the maintext.

Theorem B.2 (Theorem 1 in the maintext). For a giv-

en matrix W which satisfies wij

{
> 0, (i, j) ∈ Ω

= 0, otherwise
, with∑

(i,j)∈Ω wij = |Ω|, and
∑

(i,j)∈Ω w
2
ij ≤ 2|Ω|, there

exists an constant C, such that with probability at least
1− 2 exp(−n),

RMSE≤ 1√
|Ω|

∥∥∥√W �E
∥∥∥
F
+

1√
mn
‖E‖F+Ck

(
nr log(n)

|Ω|

) 1
4

.

(15)
Here, we assume m ≤ n without loss of generality.



Proof.

RMSE =
1√
mn
‖Y∗ −Y‖F =

1√
mn
‖Y∗ − Ŷ + E‖F

≤ 1√
mn
‖Y∗ − Ŷ‖F +

1√
mn
‖E‖F

≤ 1√
|Ω|
‖
√
W � (Y∗ − Ŷ)‖F +

1√
mn
‖E‖F

+

∣∣∣∣∣ 1√
|Ω|
‖
√
W � (Y∗ − Ŷ)‖F −

1√
mn
‖Y∗ − Ŷ‖F

∣∣∣∣∣
≤ 1√

|Ω|
‖
√
W � (Y − Ŷ)‖F +

1√
mn
‖E‖F

+

∣∣∣∣∣ 1√
|Ω|
‖
√
W � (Y∗ − Ŷ)‖F −

1√
mn
‖Y∗ − Ŷ‖F

∣∣∣∣∣
≤ 1√

|Ω|
‖
√
W �E‖F +

1√
mn
‖E‖F

+

∣∣∣∣∣ 1√
|Ω|
‖
√
W � (Y − Ŷ)‖F −

1√
mn
‖Y∗ − Ŷ‖F

∣∣∣∣∣ .
Here, the third inequality holds because Y∗ is the optimal
solution of optimization (9) in maintext. Since Y∗ ∈ Sr,
applying Theorem B.1 completes the proof.
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