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Abstract

In this supplementary material, we give the proof of
Theorem 1 in the maintext.

A Lemmas

We first give some useful lemmas before proving the main
theorem.

Lemma A.1 (Boucheron, Lugosi, and Bousquet 2004). Let
X be a random variable with E[X] = Oanda < X <)
with b > a. Then for any s > 0, the following inequality

holds: 2(h a)?
Elexp(sX)] < exp <s8a> .

Lemma A.2. Let C = {c1,...,cn} be a finite set,
X1,...,X, denote a random sample without replacement
from C and Y1, ...,Y, denote a random sample with re-
placement from C. Then for any w = (w1,...,w,) with
w; > 0, if the function f(x) is continuous and convex, then
the following inequality holds:

ey

E[f(z w; X;)] < E[f(Z w; ;). @)

Proof. Let g(x1,...,2,) = flwizy + -+ + wpxy). As
mentioned in (Hoeffding 1963), we can find a function g*,
which is not uniquely determined, such that

Elg(Yi,.... V) =Elg"(X1,.... X))l ()

Specifically, we can find one of the g*s, denoted as g, with
the following form:

g1, .., zn)

= Y Puizean ST+ womiy, + -+ wpms,)

11,225--45tn

= Z Divig...in (Z < I(ix = l)wk> xz) ,
11,82,00,0n i=1 \k=1
“4)

Copyright (© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where I(-) is the indicator function (equals 1 if the equation
within the brackets holds, and O otherwise), and the outside
sum is taken over iy, = 1,...,n for k = 1,...,n. The co-
efficients p;,;,..4, s are positive and do not depend on the
function f. Let f(x) = 1, by (3) and (4), we have

> Pirigein =1 ©)

i1,i2,eyi
We also have

Elg(Y1,...,Ya)] = E[g(Xy, ..., X5)]

=E| Y pinidt (Z <Z L(ix = l)wk> Il)

11,82, 000 i=1

= E Pivis...ipDivis...in B

1151254500

Since (5) holds, it suffices to prove (2) by showing that

o) = (5 (o))
)

holds for any k,r1,...,7g,41,...,% satisfying the same
condition as in (4).

<E

If i, %9, ...,1, are taken pairwise different values from
{1,2,...,n}, then (7) holds by equality. Otherwise, it suf-
fices to show

E lf (i wiXi) <E|f ((wl +wy) X1 + iwin)}
=1 =3
=E|f (('LUl + w2)X2 + ile’>] ,
i=3

®)

since other cases of (7) can be induced by it. Now we prove



(8). We have

() o e o)

= |:f<wllj_1w2 <(’LU1 + ’LU2)X1 + szXz)

=3

wo ~
+ ——— (wy + w2) X + E w; X;
w1y + wo <( ! 2) 2 )>}

=3

)

=3

)

1=3

©))

where the inequality holds by convexity of f. By symmetry,
we have

E lf <(w1 +wa) X1 + ilez>]

=3

=E lf ((wl + wg) Xo + zn:win)] .

=3

(10)

Then (8) holds by taking (10) back to (9), which completes
the proof.
O

Lemma A3. Let C = {cy,...
1 N

mean i = 5 Y i Ciy X1,.. .,

ple without replacement from C, a = 2 min; ¢;, b £ max; ¢;

andw = (w1, ..., wy) satisfying >+, w; = nand w; > 0
fori=1,... n Then we have:

,CN} be a finite set with
Xn denote a random sam-

\—§ w; X; — u|>t)<26xp( W)
et Yimawi(b—a)?
(11)

Proof. We first introduce Y7,...,Y, as a random sample
with replacement from C. It is obvious that Y;s are indepen-
dent with E[Y;] = p foré = 1,...,n. For any s > 0, by
Markov’s inequality, we have

1 n
Pr(— WXy —p >t
r(nzw p>t)

= <exp< sz >2exp(st>> (12)
eXp( LS - )}

Applying Lemma A.2 to exp (s(: Y7 w; X; — p)) and

1=

< exp(—st)E

exp (s(5 Yojm, wiY; — ), we get

oo ()

<E lexp (s(i > wi¥ - u))]
[wp<?§:wO€—M0]

i=1
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(fZ?uﬁw—wj,

8n?

where the second equality holds by the independence of Y;s
and the second inequality holds by Lemma A.l. Substitute
this result to (12), and then we obtain

Pr(l E w; X; — p>t)
n
i=1
(£ Sk uiomo?)

8n?

<e oIn22
ot
=P UTS wh—a)?)

where the last equality holds by taking s =

= exp

< exp(—st) exp

an’t
>y wi(b—a)?
to minimize the upper bound. Similarly, we can prove

2n2t?
w; X; — ,u<—t)<exp( >
; Zz 1 W3 (b - a’)

Thus we can conclude

|—ZwX ,u|>t)<26xp< W)
i=1 ' 21 1w2(b_a)2 '
(13)

O

Lemma A.4 (Wang and Xu 2012). Let S, = {X €
R™>72 : rank(X) < r, || X||p < K}. Then there exists
an e-net S, for Frobenius norm obeying

1S, < (9K Je)(mtnatir,

B Proof of Theorem 1

To prove Theorem 1, we need the following result:

Theorem B.1. Ler £L(X) = \/ﬁ”r © X -Y)|r
and L(X) = \/;WHX Y||r. Furthermore, assume

max(; ;) |2i;| < b. Then given matrix W satisfying

o [70 e
“1=0, otherwise’



Y yea Wiy =@ and 37 eq wy; < 2|9, for all rank-
r matrices X, with probability greater than 1 — 2 exp(—n),
there exists a fixed constant C such that

£(X)| < Ck (Wk)g(”)) .

sup |£(X) Q

Xes,
Here, we assume m < n.

Proof. This proof follows the similar way as the proof of
Theorem 2 in (Wang and Xu 2012). Fix X € S,.. Define

wX) = IQ‘II\ﬁG(X V)i = (£(X))%,

X) = L IX — V|2 = (£(X))2
u(X) = — X = Y[} = (£(X))
Then by Lemma A.3, we have

Pr(i(X) — u(X)| > £) < 2exp 207
_ >t)<%exp | ——— 1 7
2(ij)en wi; M2
(14)
where M £ max(; ;)(z;; — 9:;)* < 4b%. Applying union

bound over all X € S,.(¢), we have

Pr ( sup |a(X) — uw(X)| > t)

XeS,(€)

. 2|02
< 2[S;(e)| exp <_Z)U)2W .
(4,)en Wij

Equivalently, with probability at least 1—2 exp(—n), it holds

that

sup [a(X) — u(X)]
XeS(€)

M? 5 LigeaWiy |’
< [2 (log[Sy-(e)| +n) 0P
Since || X||r < v/mnb, by Lemma A.4, we obtain

sup  |4(X) — u(X)]
XeS, ()

< []\52 ((m + n+ 1)rlog(9bv/mn/e) +n)

=&(Q, W).
Notice that 4(X) = (£(X))? and u(X) = (£(X))2, and
thus we have

sup |£(X) — £(X)] <
XeS,(e)

For any X € S, there exists ¢(X) € S,.(€) such that
IX—c(X)|[r <€ [VWOP(X-c(X))|r < (21207,

where the second inequality holds due to the assumption
> jyea Wi < 29 These two inequalities imply

22

I£(X) = L(e(X))| = X = Y|r = [[e(X) = YF|

1
vmn

<

9
:u

1
2772
Z(i,j)eﬂ Wij

£(X) ~ £(e(X)
T VW 0 =9l VW & 600 = Dl

()
— €.
=\l

Thus we have
sup [£(X) — L(X)]
XeS,

< sup {I£(X) = £(e(X))]| + [£(e(X)) - £(X)|
XeS,.

(@) o
— | €
N |Q mn  Xes.
1
2

€
<[ -—= €+
(|Q> Vmn - xes,
1
<(Z) er Sy
— 9 vmn

Substitute the expression of 1/£(£2, W) into the above in-
equality and take e = 9b, and then we have

sup |£(X) — L(X)|
XeS

1
(2Nt (M2 nriostn) Senwh )
- \9 2 |22

<186<|ﬂ) +M<m|?zg|( ))i

nrlog(n))‘11
<Ck ( )
1]

for a constant C. O

Now we can prove Theorem 1 in the maintext.

Theorem B.2 (Theorem 1 in the maintext). For a giv-

>0, (i,j) €
en matrix W which satisfies w;; (4, 7) S with
=0, otherwise
Z(i7j)eﬂ Wij , and Z(i,j)eﬂ ng , there

exists an constant C, such that with probability at least
1 —2exp(—n),

nrlog(n) 1

1
= B O (P2
(15)

RMSE< ——— H\/WQEHF+

Here, we assume m < n without loss of generality.



Proof.

RMSE = \/%HY* — Y| = \/%IIY* ~Y+E|r
S\;HY*—YHFW%HEHF
<ﬁnre< Y)HFW%HEHF

mnr@( Y)IIF—\/%IIY*—YIIF
<\/1§T|||F®(Y Y>||F+F||E||F
+mnf@< Y)HF—FHY* Y|r
< VIKZT"JWQEIF + \/%HEIIF
+mnra< Y)HF—J%HY*—YHF.

Here, the third inequality holds because Y* is the optimal
solution of optimization (9) in maintext. Since Y* € S,
applying Theorem B.1 completes the proof. O
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