"Self-Paced Learning for Matrix Factorization": Supplementary Material

Qian Zhao¹, Deyu Meng^{1,*}, Lu Jiang², Qi Xie¹, Zongben Xu¹, Alexander G. Hauptmann²

¹School of Mathematics and Statistics, Xi'an Jiaotong University ²School of Computer Science, Carnegie Mellon University timmy.zhaoqian@gmail.com, dymeng@mail.xjtu.edu.cn, lujiang@cs.cmu.edu xq.liwu@stu.xjtu.edu.cn, zbxu@mail.xjtu.edu.cn, alex@cs.cmu.edu *Corresponding author

Abstract

In this supplementary material, we give the proof of Theorem 1 in the maintext.

A Lemmas

We first give some useful lemmas before proving the main theorem.

Lemma A.1 (Boucheron, Lugosi, and Bousquet 2004). Let X be a random variable with $\mathbb{E}[X] = 0$ and $a \le X \le b$ with b > a. Then for any s > 0, the following inequality holds:

$$\mathbb{E}[\exp(sX)] \le \exp\left(\frac{s^2(b-a)^2}{8}\right). \tag{1}$$

Lemma A.2. Let $C = \{c_1, \ldots, c_N\}$ be a finite set, X_1, \ldots, X_n denote a random sample without replacement from C and Y_1, \ldots, Y_n denote a random sample with replacement from C. Then for any $\mathbf{w} = (w_1, \ldots, w_n)$ with $w_i > 0$, if the function f(x) is continuous and convex, then the following inequality holds:

$$\mathbb{E}[f(\sum_{i=1}^{n} w_i X_i)] \le \mathbb{E}[f(\sum_{i=1}^{n} w_i Y_i)].$$
(2)

Proof. Let $g(x_1, \ldots, x_n) = f(w_1x_1 + \cdots + w_nx_n)$. As mentioned in (Hoeffding 1963), we can find a function g^* , which is not uniquely determined, such that

$$\mathbb{E}[g(Y_1,\ldots,Y_n)] = \mathbb{E}[g^*(X_1,\ldots,X_n)].$$
(3)

Specifically, we can find one of the g^*s , denoted as \overline{g} , with the following form:

$$\bar{g}(x_1, \dots, x_n) = \sum_{i_1, i_2, \dots, i_n} p_{i_1 i_2 \dots i_n} f(w_1 x_{i_1} + w_2 x_{i_2} + \dots + w_n x_{i_n})$$
$$= \sum_{i_1, i_2, \dots, i_n} p_{i_1 i_2 \dots i_n} f\left(\sum_{i=1}^n \left(\sum_{k=1}^n \mathbb{I}(i_k = l) w_k\right) x_l\right),$$
(4)

Copyright © 2015, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

where $\mathbb{I}(\cdot)$ is the indicator function (equals 1 if the equation within the brackets holds, and 0 otherwise), and the outside sum is taken over $i_k = 1, \ldots, n$ for $k = 1, \ldots, n$. The coefficients $p_{i_1 i_2 \ldots i_n}$ s are positive and do not depend on the function f. Let f(x) = 1, by (3) and (4), we have

$$\sum_{i_1, i_2, \dots, i_n} p_{i_1 i_2 \dots i_n} = 1.$$
(5)

We also have

$$\mathbb{E}[g(Y_1, \dots, Y_n)] = \mathbb{E}[\bar{g}(X_1, \dots, X_n)]$$

$$= \mathbb{E}\left[\sum_{i_1, i_2, \dots, i_n} p_{i_1 i_2 \dots i_n} f\left(\sum_{i=1}^n \left(\sum_{k=1}^n \mathbb{I}(i_k = l)w_k\right) x_l\right)\right]$$

$$= \sum_{i_1, i_2, \dots, i_n} p_{i_1 i_2 \dots i_n} \mathbb{E}\left[f\left(\sum_{i=1}^n \left(\sum_{k=1}^n \mathbb{I}(i_k = l)w_k\right) x_l\right)\right].$$
(6)

Since (5) holds, it suffices to prove (2) by showing that

$$\mathbb{E}\left[f\left(\sum_{i=1}^{n} w_i X_i\right)\right] \le \mathbb{E}\left[f\left(\sum_{i=1}^{n} \left(\sum_{k=1}^{n} \mathbb{I}(i_k = l) w_k\right) x_l\right)\right]$$
(7)

holds for any $k, r_1, \ldots, r_k, i_1, \ldots, i_k$ satisfying the same condition as in (4).

If i_k, i_2, \ldots, i_n are taken pairwise different values from $\{1, 2, \ldots, n\}$, then (7) holds by equality. Otherwise, it suffices to show

$$\mathbb{E}\left[f\left(\sum_{i=1}^{n} w_i X_i\right)\right] \le \mathbb{E}\left[f\left((w_1 + w_2)X_1 + \sum_{i=3}^{n} w_i X_i\right)\right]$$
$$= \mathbb{E}\left[f\left((w_1 + w_2)X_2 + \sum_{i=3}^{n} w_i X_i\right)\right].$$
(8)

since other cases of (7) can be induced by it. Now we prove

(8). We have

$$\mathbb{E}\left[f\left(\sum_{i=1}^{n} w_{i}X_{i}\right)\right] = \mathbb{E}\left[f\left(w_{1}X_{1} + w_{2}X_{2}\sum_{i=3}^{n} w_{i}X_{i}\right)\right]$$
$$= \mathbb{E}\left[f\left(\frac{w_{1}}{w_{1} + w_{2}}\left((w_{1} + w_{2})X_{1} + \sum_{i=3}^{n} w_{i}X_{i}\right)\right)\right]$$
$$+ \frac{w_{2}}{w_{1} + w_{2}}\left((w_{1} + w_{2})X_{2} + \sum_{i=3}^{n} w_{i}X_{i}\right)\right)\right]$$
$$\leq \frac{w_{1}}{w_{1} + w_{2}}\mathbb{E}\left[f\left((w_{1} + w_{2})X_{1} + \sum_{i=3}^{n} w_{i}X_{i}\right)\right]$$
$$+ \frac{w_{2}}{w_{1} + w_{2}}\mathbb{E}\left[f\left((w_{1} + w_{2})X_{2} + \sum_{i=3}^{n} w_{i}X_{i}\right)\right],$$
(9)

where the inequality holds by convexity of f. By symmetry, we have

$$\mathbb{E}\left[f\left((w_1+w_2)X_1+\sum_{i=3}^n w_iX_i\right)\right]$$

$$=\mathbb{E}\left[f\left((w_1+w_2)X_2+\sum_{i=3}^n w_iX_i\right)\right].$$
(10)

Then (8) holds by taking (10) back to (9), which completes the proof.

Lemma A.3. Let $C = \{c_1, \ldots, c_N\}$ be a finite set with mean $\mu = \frac{1}{N} \sum_{i=1}^{N} c_i, X_1, \ldots, X_n$ denote a random sample without replacement from C, $a \triangleq \min_i c_i, b \triangleq \max_i c_i$ and $\mathbf{w} = (w_1, \ldots, w_n)$ satisfying $\sum_{i=1}^{n} w_i = n$ and $w_i > 0$ for $i = 1, \ldots, n$. Then we have:

$$\Pr(|\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}-\mu| \ge t) \le 2\exp\left(-\frac{2n^{2}t^{2}}{\sum_{i=1}^{n}w_{i}^{2}(b-a)^{2}}\right)$$
(11)

Proof. We first introduce Y_1, \ldots, Y_n as a random sample with replacement from C. It is obvious that Y_i s are independent with $\mathbb{E}[Y_i] = \mu$ for $i = 1, \ldots, n$. For any s > 0, by Markov's inequality, we have

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}-\mu \geq t\right)$$

$$=\Pr\left(\exp\left(s\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}-\mu\right)\right)\geq\exp(st)\right) \quad (12)$$

$$\leq\exp(-st)\mathbb{E}\left[\exp\left(s\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}-\mu\right)\right)\right].$$

Applying Lemma A.2 to $\exp\left(s\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}-\mu\right)\right)$ and

$$\exp\left(s\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}Y_{i}-\mu\right)\right), \text{ we get}\right)$$
$$\mathbb{E}\left[\exp\left(s\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}-\mu\right)\right)\right]$$
$$\leq \mathbb{E}\left[\exp\left(s\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}Y_{i}-\mu\right)\right)\right]$$
$$=\mathbb{E}\left[\exp\left(\frac{s}{n}\left(\sum_{i=1}^{n}w_{i}(Y_{i}-\mu)\right)\right)\right]$$
$$=\prod_{i=1}^{n}\mathbb{E}\left[\exp\left(\frac{sw_{i}}{n}(Y_{i}-\mu)\right)\right]$$
$$\leq \prod_{i=1}^{n}\exp\left(\frac{s^{2}w_{i}^{2}(b-a)^{2}}{8n^{2}}\right)$$
$$=\exp\left(\frac{s^{2}\sum_{i=1}^{n}w_{i}^{2}(b-a)^{2}}{8n^{2}}\right),$$

where the second equality holds by the independence of Y_i s and the second inequality holds by Lemma A.1. Substitute this result to (12), and then we obtain

$$\Pr\left(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}-\mu \geq t\right)$$

$$\leq \exp(-st)\exp\left(\frac{s^{2}\sum_{i=1}^{n}w_{i}^{2}(b-a)^{2}}{8n^{2}}\right)$$

$$\leq \exp\left(-\frac{2n^{2}t^{2}}{\sum_{i=1}^{n}w_{i}^{2}(b-a)^{2}}\right),$$

where the last equality holds by taking $s = \frac{4n^2t}{\sum_{i=1}^{n}w_i^2(b-a)^2}$ to minimize the upper bound. Similarly, we can prove

$$\Pr(\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i} - \mu \leq -t) \leq \exp\left(-\frac{2n^{2}t^{2}}{\sum_{i=1}^{n}w_{i}^{2}(b-a)^{2}}\right).$$

Thus we can conclude

$$\Pr(|\frac{1}{n}\sum_{i=1}^{n}w_{i}X_{i}-\mu| \geq t) \leq 2\exp\left(-\frac{2n^{2}t^{2}}{\sum_{i=1}^{n}w_{i}^{2}(b-a)^{2}}\right).$$
(13)

Lemma A.4 (Wang and Xu 2012). Let $S_r = \{\mathbf{X} \in \mathbb{R}^{n_1 \times n_2} : \operatorname{rank}(\mathbf{X}) \leq r, \|\mathbf{X}\|_F \leq K\}$. Then there exists an ϵ -net \overline{S}_r for Frobenius norm obeying

$$|\bar{S}_r| \le (9K/\epsilon)^{(n_1+n_2+1)r}.$$

B Proof of Theorem 1

To prove Theorem 1, we need the following result:

Theorem B.1. Let $\hat{\mathcal{L}}(\mathbf{X}) = \frac{1}{\sqrt{|\Omega|}} \|\sqrt{\mathbf{W}} \odot (\mathbf{X} - \hat{\mathbf{Y}})\|_F$ and $\mathcal{L}(\mathbf{X}) = \frac{1}{\sqrt{mn}} \|\mathbf{X} - \hat{\mathbf{Y}}\|_F$. Furthermore, assume $\max_{(i,j)} |x_{ij}| \le b$. Then given matrix \mathbf{W} satisfying

$$w_{ij} \begin{cases} > 0, & (i,j) \in \Omega \\ = 0, & \text{otherwise} \end{cases},$$

 $\sum_{(i,j)\in\Omega} w_{ij} = |\Omega|$, and $\sum_{(i,j)\in\Omega} w_{ij}^2 \leq 2|\Omega|$, for all rankr matrices **X**, with probability greater than $1 - 2\exp(-n)$, there exists a fixed constant C such that

$$\sup_{\mathbf{X}\in S_r} |\hat{\mathcal{L}}(\mathbf{X}) - \mathcal{L}(\mathbf{X})| \le Ck \left(\frac{nr\log(n)}{|\Omega|}\right)^{\frac{1}{4}}$$

Here, we assume $m \leq n$ *.*

Proof. This proof follows the similar way as the proof of Theorem 2 in (Wang and Xu 2012). Fix $\mathbf{X} \in S_r$. Define

$$\hat{u}(\mathbf{X}) = \frac{1}{|\Omega|} \|\sqrt{\mathbf{W}} \odot (\mathbf{X} - \hat{\mathbf{Y}})\|_F^2 = (\hat{\mathcal{L}}(\mathbf{X}))^2$$
$$u(\mathbf{X}) = \frac{1}{mn} \|\mathbf{X} - \hat{\mathbf{Y}}\|_F^2 = (\mathcal{L}(\mathbf{X}))^2.$$

Then by Lemma A.3, we have

$$\Pr(|\hat{u}(\mathbf{X}) - u(\mathbf{X})| \ge t) \le 2 \exp\left(-\frac{2|\Omega|^2 t^2}{\sum_{(i,j)\in\Omega} w_{ij}^2 M^2}\right)$$
(14)

where $M \triangleq \max_{(i,j)} (x_{ij} - \hat{y}_{ij})^2 \leq 4b^2$. Applying union bound over all $\mathbf{X} \in \bar{S}_r(\epsilon)$, we have

$$\Pr\left(\sup_{\bar{\mathbf{X}}\in\bar{S}_{r}(\epsilon)}|\hat{u}(\bar{\mathbf{X}})-u(\bar{\mathbf{X}})|\geq t\right)$$
$$\leq 2|\bar{S}_{r}(\epsilon)|\exp\left(-\frac{2|\Omega|^{2}t^{2}}{\sum_{(i,j)\in\Omega}w_{ij}^{2}M^{2}}\right).$$

Equivalently, with probability at least $1-2\exp(-n),$ it holds that

$$\sup_{\mathbf{\bar{X}}\in\bar{S}_{r}(\epsilon)} |\hat{u}(\mathbf{\bar{X}}) - u(\mathbf{\bar{X}})| \\ \leq \left[\frac{M^{2}}{2} \left(\log|\bar{S}_{r}(\epsilon)| + n\right) \frac{\sum_{(i,j)\in\Omega} w_{ij}^{2}}{|\Omega|^{2}}\right]^{\frac{1}{2}}$$

Since $\|\bar{\mathbf{X}}\|_F \leq \sqrt{mnb}$, by Lemma A.4, we obtain sup $|\hat{u}(\bar{\mathbf{X}}) - u(\bar{\mathbf{X}})|$

 $\bar{\mathbf{X}} \in \bar{S}_r(\epsilon)$

$$\leq \left[\frac{M^2}{2} \left((m+n+1)r\log(9b\sqrt{mn}/\epsilon) + n\right)\frac{\sum_{(i,j)\in\Omega}w_{ij}^2}{|\Omega|^2}\right]^{\frac{1}{2}}$$
$$:= \xi(\Omega, \mathbf{W}).$$

Notice that $\hat{u}(\bar{\mathbf{X}}) = (\hat{\mathcal{L}}(\bar{\mathbf{X}}))^2$ and $u(\bar{\mathbf{X}}) = (\mathcal{L}(\bar{\mathbf{X}}))^2$, and thus we have

$$\sup_{\bar{\mathbf{X}}\in\bar{S}_r(\epsilon)} |\hat{\mathcal{L}}(\mathbf{X}) - \mathcal{L}(\mathbf{X})| \leq \sqrt{\xi(\Omega,\mathbf{W})}.$$

For any $\mathbf{X} \in S_r$, there exists $c(\mathbf{X}) \in S_r(\epsilon)$ such that

 $\|\mathbf{X}-c(\mathbf{X})\|_F \leq \epsilon, \quad \|\sqrt{\mathbf{W}} \odot P_{\Omega}(\mathbf{X}-c(\mathbf{X}))\|_F \leq (2|\Omega|)^{\frac{1}{4}}\epsilon,$ where the second inequality holds due to the assumption $\sum_{(i,j)\in\Omega} w_{ij}^2 \leq 2|\Omega|.$ These two inequalities imply

$$\begin{aligned} |\mathcal{L}(\mathbf{X}) - \mathcal{L}(c(\mathbf{X}))| &= \frac{1}{\sqrt{mn}} \left| \|\mathbf{X} - \bar{\mathbf{Y}}\|_F - \|c(\mathbf{X}) - \bar{\mathbf{Y}}\|_F \right| \\ &\leq \frac{\epsilon}{\sqrt{mn}}, \end{aligned}$$

$$\begin{split} & |\hat{\mathcal{L}}(\mathbf{X}) - \hat{\mathcal{L}}(c(\mathbf{X}))| \\ &= \frac{1}{\sqrt{|\Omega|}} \left| \|\sqrt{\mathbf{W}} \odot (\mathbf{X} - \bar{\mathbf{Y}})\|_F - \|\sqrt{\mathbf{W}} \odot (c(\mathbf{X}) - \bar{\mathbf{Y}})\|_F \right| \\ &\leq \left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon. \end{split}$$

Thus we have

$$\begin{split} \sup_{\mathbf{X}\in S_{r}} |\hat{\mathcal{L}}(\mathbf{X}) - \mathcal{L}(\mathbf{X})| \\ &\leq \sup_{\mathbf{X}\in S_{r}} \left\{ |\hat{\mathcal{L}}(\mathbf{X}) - \hat{\mathcal{L}}(c(\mathbf{X}))| + |\mathcal{L}(c(\mathbf{X})) - \mathcal{L}(\mathbf{X})| \\ &+ |\hat{\mathcal{L}}(c(\mathbf{X})) - \mathcal{L}(c(\mathbf{X}))| \right\} \\ &\leq \left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon + \frac{\epsilon}{\sqrt{mn}} + \sup_{\mathbf{X}\in S_{r}} |\hat{\mathcal{L}}(c(\mathbf{X})) - \mathcal{L}(c(\mathbf{X}))| \\ &\leq \left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon + \frac{\epsilon}{\sqrt{mn}} + \sup_{\bar{\mathbf{X}}\in S_{r}} |\hat{\mathcal{L}}(\bar{\mathbf{X}}) - \mathcal{L}(\bar{\mathbf{X}})| \\ &\leq \left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon + \frac{\epsilon}{\sqrt{mn}} + \sqrt{\xi(\Omega, \mathbf{W})}. \end{split}$$

Substitute the expression of $\sqrt{\xi(\Omega, \mathbf{W})}$ into the above inequality and take $\epsilon = 9b$, and then we have

$$\begin{split} \sup_{\mathbf{X}\in S_r} |\hat{\mathcal{L}}(\mathbf{X}) - \mathcal{L}(\mathbf{X})| \\ &\leq 2\left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} \epsilon + \left(\frac{M^2}{2} \frac{3nr\log(n)\sum_{(i,j)\in\Omega} w_{ij}^2}{|\Omega|^2}\right)^{\frac{1}{4}} \\ &\leq 18b\left(\frac{2}{|\Omega|}\right)^{\frac{1}{4}} + 2\sqrt[4]{3}\left(\frac{nr\log(n)}{|\Omega|}\right)^{\frac{1}{4}} \\ &\leq Ck\left(\frac{nr\log(n)}{|\Omega|}\right)^{\frac{1}{4}}, \end{split}$$

for a constant C.

1

Now we can prove Theorem 1 in the maintext.

Theorem B.2 (Theorem 1 in the maintext). For a given matrix **W** which satisfies $w_{ij} \begin{cases} > 0, \quad (i,j) \in \Omega \\ = 0, \quad \text{otherwise} \end{cases}$, with $\sum_{(i,j)\in\Omega} w_{ij} = |\Omega|$, and $\sum_{(i,j)\in\Omega} w_{ij}^2 \leq 2|\Omega|$, there exists an constant C, such that with probability at least $1 - 2\exp(-n)$,

$$\operatorname{RMSE} \leq \frac{1}{\sqrt{|\Omega|}} \left\| \sqrt{\mathbf{W}} \odot \mathbf{E} \right\|_{F} + \frac{1}{\sqrt{mn}} \left\| \mathbf{E} \right\|_{F} + Ck \left(\frac{nr \log(n)}{|\Omega|} \right)^{\frac{1}{4}}.$$
(15)

Here, we assume $m \leq n$ *without loss of generality.*

Proof.

$$\begin{split} \text{RMSE} &= \frac{1}{\sqrt{mn}} \|\mathbf{Y}^* - \mathbf{Y}\|_F = \frac{1}{\sqrt{mn}} \|\mathbf{Y}^* - \hat{\mathbf{Y}} + \mathbf{E}\|_F \\ &\leq \frac{1}{\sqrt{mn}} \|\mathbf{Y}^* - \hat{\mathbf{Y}}\|_F + \frac{1}{\sqrt{mn}} \|\mathbf{E}\|_F \\ &\leq \frac{1}{\sqrt{|\Omega|}} \|\sqrt{\mathbf{W}} \odot (\mathbf{Y}^* - \hat{\mathbf{Y}})\|_F + \frac{1}{\sqrt{mn}} \|\mathbf{E}\|_F \\ &+ \left|\frac{1}{\sqrt{|\Omega|}} \|\sqrt{\mathbf{W}} \odot (\mathbf{Y}^* - \hat{\mathbf{Y}})\|_F - \frac{1}{\sqrt{mn}} \|\mathbf{Y}^* - \hat{\mathbf{Y}}\|_F \\ &\leq \frac{1}{\sqrt{|\Omega|}} \|\sqrt{\mathbf{W}} \odot (\mathbf{Y} - \hat{\mathbf{Y}})\|_F + \frac{1}{\sqrt{mn}} \|\mathbf{E}\|_F \\ &+ \left|\frac{1}{\sqrt{|\Omega|}} \|\sqrt{\mathbf{W}} \odot (\mathbf{Y}^* - \hat{\mathbf{Y}})\|_F - \frac{1}{\sqrt{mn}} \|\mathbf{Y}^* - \hat{\mathbf{Y}}\|_F \\ &\leq \frac{1}{\sqrt{|\Omega|}} \|\sqrt{\mathbf{W}} \odot \mathbf{E}\|_F + \frac{1}{\sqrt{mn}} \|\mathbf{E}\|_F \\ &+ \left|\frac{1}{\sqrt{|\Omega|}} \|\sqrt{\mathbf{W}} \odot (\mathbf{Y} - \hat{\mathbf{Y}})\|_F - \frac{1}{\sqrt{mn}} \|\mathbf{Y}^* - \hat{\mathbf{Y}}\|_F \right| \end{split}$$

Here, the third inequality holds because \mathbf{Y}^* is the optimal solution of optimization (9) in maintext. Since $\mathbf{Y}^* \in S_r$, applying Theorem B.1 completes the proof.

References

Boucheron, S.; Lugosi, G.; and Bousquet, O. 2004. Concentration inequalities. In *Advanced Lectures on Machine Learning*. Springer. 208–240.

Hoeffding, W. 1963. Probability inequalities for sums of bounded random variables. *Journal of the American statistical association* 58(301):13–30.

Wang, Y., and Xu, H. 2012. Stability of matrix factorization for collaborative filtering. In *ICML*.