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Rds~md 

Le pr6sent article a pour objet la d6termination des limites et des possibilit6s de 
1'observation infra-rouge au moyen d 'un dispositif optique d6termin6. On d6crit des 
possibilit6s susceptibles de r6duire au maximum la limitation de l ' information bas6e 
sur la #catistique du ph6nombne visuel. 
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On Prager's Hardening Rule 
By RICH. THORPE S~IELD, Providence, R. I., USA1), and HANS ZIEGLER, Ziirich 2) 

1. I n t r o d u c t i o n  

In  order to describe the behaviour  of a r igid-work-hardening material ,  one 
needs 
(a) an initial yield condition, specifying the states of stress for which plastic 

flow first sets in; 
(b) a flow rule, connecting the plastic s train increment  with the stress and the 

stress increment ;  
(c) a hardening rule, specifying the modificat ion of the yield condition in the 

course of plastic flow. 
I t  is cus tomary  to represent  the yield condition as a surface in stress space, 

convex EI~ 3) and initially containing the origin. The  current  yield conditions 
for a meta l  are those of v. MISES E21 and of TRESCA [31. The flow rule general ly 
accepted is also due to v. MISES [41. I t  is justified to a certain extent  b y  physical  
reasons [5, 1], and it s tates t ha t  the strain increment  vector  lies in the exter ior  
normal  of the yield surface at  the stress point.  As to the hardening rule, there 
are various versions in use. The  rule of isotropic work-hardening E6, 71 assumes 
tha t  the yield surface expands  during plastic flow, retaining its shape and 
si tuat ion with respect  to the origin. Another  rule, developed b y  PRAGER ES], 
assumes tha t  the yield surface is rigid but  undergoes a t ranslat ion in the direc- 
t ion of the strain increment.  This rule accounts for the Bauschinger  effect 
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observed in the materials in question. The main advantage of the rule is that  
for piecewise linear yield conditions, such as that  of TRESCA, the law exhibits a 
limited path  independence of the final plastic strain with a resulting simplifi- 
cation in the mathematical  analysis. 

The following sections contain a discussion of PRAGER'S hardening rule and 
its implications for special states of stress prevalent in practical applications. 

Mention should be made of the work of HODGE (see [10], for example), 
which uses a strain-hardening rule which is a combination of the PRAGER 
rule and isotropic hardening. 

2. Treatment in 9-Space 

Let us consider an element of a rigid-work-hardening solid, referred to an 
orthogonal coordinate system xi. The state of stress of this element can be 
represented by a stress point P in a 9-space a~.  In this space, the initial yield 
surface is represented by  an equation 

F(aiT~) = k 2 = const. (2.1) 

In the following, for simplicity attention will be confined to initially isotropic 
materials for which the form of the function F is invariant with respect to a 
rotation of the stress state. An initially anisotropic material  can be treated in 
an analogous manner. 

The hardening rule suggested by  PRAGER assumes that  during plastic de- 
formation the yield surface moves in translation. After a certain amount of 
plastic flow, it is given by 

F ( ~ , ~  - ~ )  = k2,  (2.2) 

where the tensor 0~i~ represents the total  translation. Because 0ciT~ is not neces- 
sarily the isotopic tensor c3i~, where c3~7: is the Kronecker delta, the mater ia l  

becomes an i so t rop ic  as a resul t  o/ the harden ing  process.  Accordingly, direction is 
important  and we shall fix the coordinate system x i with respect to the element, 
small deformations being assumed. 

Due to the flow rule of v. MISES, the plastic strain increment deity, con- 
sidered as a vector in the space ai~, lies in the exterior normal of the surface 
(2.2) at P. Thus, it is represented by  

OF dei~ = ~ d~,  dZ > 0 .  (2.3) 

The definition of a Prager-hardening material is completed by  assuming that  
the surface (2.2) moves in the direction of de, k; more explicitly 

d~.i k = c dei ~ , (2.4) 
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where c is a constant  characterizing the material. This work-hardening law is a 
generalization to complex states of stress of a linear work-hardening law in 
simple tension (Figure 1), which exhibits a Bauschinger effect. ~The work- 
hardening modulus q in simple tension (Figure 1) is related to the work- 
hardening modulus  c by  q = (3/2) c.~ 
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Figure 1 
Response of the material considered in simple tension or compression. 

The hardening rule described is physically acceptable because the compo- 
nents 

~ik = c ~ik (2.5) 

form a tensor of the second order, and the law is therefore independent of the 
particular coordinate system x~ chosen. 

The scalar d2 in (2.3) is determined by  the condition tha t  P remains on the 
yield surface in plastic flow. From this condition, 

OF 
(da,~ -- d~,~) 0alk = 0 ,  (2.6) 

and from (2.4) and (2.3) follows at once 

d). = 1 . (OF/OaiJ) daiJ (2.7) 
c (dF/Oak~) (OF/Oa~z) ' 

if the summat ion  convention is adopted in 9-space. 
In  an initially isotropic solid the yield function takes the torm 

f ( ~ ,  ~) = G E I I ( ~  ~), I 2 (~  ~), ~ ( ~  ~)~, (2.8) 
where 

1 1 (2.9) I i = a i i ,  1 2 = ~ a  i j a i l ,  I a = ~ a i a a j k a ~ : i  

are the invariants  of the stress tensor. Moreover, if the initial yield is independ- 
ent of the mean normal  stress, 

f ( a i k  + ~ di~) = F(a/k) , (2.10) 
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where fl is an arbitrary scalar. When plastic flow has set in, the yield function 
becomes, on account of (2.2) and (2.8), 

F ( f f i l  c - -  O~ilc) = G [Ii((7ik - -  o~itc) , I 2 ( f f i k  - -  g i k ) ,  iT3(ffi/c 7- 0~ik)] �9 (2.11) 

From (2.10) it follows that the values of (2.11) remain unchanged when aik is 
replaced by a~ k + fl ~ k : PRAGE~'S hardening rule implies that  during the whole 
hardening process yield is independent o/ the  mean normal stress. 

With (2.11), the flow rule (2.3) reads 

OG / OG OI  1 \ 
= dZ  = q - -  + . . . p  dX (2 .121  

O i l  / Oai \ 

Since 

Or1 0[2 O[a _ ( a ~  - ~ )  (~Jk  - o~ak) , (2.13) 
3 f i l l  r - -  d i k  , O(~iTz - -  (7il c - -  O~ik , Of f ik  

we obtain from (2.12) 

OG OG (cri ~ _ c~i~ ) (ask -- gje)] d2 (2.14) 
( ~ i l c ~ [ ~ I i  ~ i t c + O ~ 2 2  ( ( ~ i k - - ~ i k ) @  O~3 

Let us assume now that the physical coordinate axes originally coincide 
with the principal axes of stress. Then we have first 

From (2.14) follows 

a i e  = 0 (i + k) a n d  oci~ = O. (2.15) 

d c ~  - 0 ( i .  k ) .  (2.16) 

I.e., since the material is isotropic at the beginning, the strain increment tensor 
is coaxial with the stress tensor. By (2.4) and (2.16), also 

d ~ k  = 0 (i # k ) .  (2.17) 

The last result remains valid if the second assumption (2.15) is replaced by 
the weaker assumption 

~i,~ = 0 ( i .  k). (2.18) 

It  follows that, i /  the principal axes o/ stress remain fixed in the element/rom the 
start, the strain increment tensor and thus the strain tensor remain coaxial with the 
stress tensor. 

If the principal axes of stress rotate, (2.16) holds only in a first step, pro- 
vided the principal system of stress is used as the physical coordinate system. 
If (2.16) shall hold in a second step, the coordinate system must be rotated 
between the first step and the second one. This rotation, however, violates (2.18) : 
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D u e  to the an i so t ropy  caused by s t ra in  hardening ,  the s t ra in  incremen t  tensor is in  

general  not  coaxial  wi th  the stress t emor .  

Many problems of practical importance can be treated in a space of less than 
9 dimensions. In certain cases, e.g., a 3-space defined by the principal stresses is 
useful. From our last result follows, however, that this 3-space is inadequate 
where the principal axes of stress are not fixed in the element. In addition, we 
shall see in the next sections that the reduction in dimensions is not without 
influence on the/orm of the hardening rule. 

3. T r e a t m e n t  in 6 - S p a c e  

On account of the symmetry of the stress and strain tensors, the problem 
may as well be treated in 6-space. I t  is convenient here and particularly for the 
subsequent specializations to denote the physical coordinates by x, y, z, the 
stresses by ~x . . . . .  T~ ~, . . . ,  and the strains by e . . . . . .  eye, . . . ,  where the dots 
indicate cyclic permutations. 

In the new notations the yield condition (2.2) reads 

~ ( ~ ,  - ~ . . . . . .  T ~  - ~ . . . . . .  ~ - ~ ,  . . . .  ) = k 2 , ( 3 . 1 )  

where "c~, z-~y . . . .  have to be considered as independent variables. The flow rule 
(2.3) becomes 

OF OF OF 
de,  = Oc~ d)~ . . . . .  d e ~  = -0- ,~ d2 . . . . .  d e ~  &~v d,~ . . . .  , (3.2) 

and the hardening rule (2.4) takes the form 

dor --  c de . . . . . .  d%~ = c de~ . . . . . .  d~z~ ~, = c de~ y . . . . .  (3.3) 

Treatment in 6-space, however, requires the elimination of the stress compo- 
nents **v, . . . ,  of the strain components e ~ v , . . . ,  and of the displacements 
O { z y  , . . . .  

Because of the symmetry of the stress tensor 

F(a ,  . . . . .  % . . . . . .  *~y . . . .  ) = / ( ~  . . . . . .  % . . . . .  ) .  (3.4) 

Thus, the yield surface in 6-space is given by 

l ( c ~ ,  - o~ . . . . . .  ~ - ~ . . . . .  ) = F E e t ,  - c~ . . . . . .  ~ - o: , ,  . . . . . .  T ~  - ~ . . . .  ~ = k 2 . 

(3.5) 

From (3.2) and (3.5) we obtain 

Ol Ol 
de .  = -ha 7 d2 . . . . .  d y ~  = 2 d e ~  = ~ d2 . . . . .  (3.6) 
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This is the well-known result that  the/low rule o[ v. MISES remains valid in 6- 
space, i/ the state o/strain is represented by the engineering components e~ . . . . .  

If PRAOER'S hardening rule holds in 9-space, the yield surface (3.5) in 
6-space also moves in a translation. On account of (3.3), this translation is given 
by  

1 
d ~  = c dex . . . .  , d ~  = ~- e dTv . . . . .  ; (3.7) 

in general it is not in the direction o/the exterior normal at the point P. (3.7) is 
the form that  PRAGER'S hardening rule takes in the new strain components 
in 6-space. 

I t  might seem that,  dropping the factors 1/2 in (3.7), one might postulate 
the validity of PRAGER'S rule in its original form in 6-space, thereby renouncing 
its validity in this form in 9-space. Since both sides of (3.7) represent tensors, 
such a procedure would involve the sacrifice of the invariance of the rule with 
respect to rotations of the physical coordinate system. I t  is clear that  this is 
inacceptable, and that  we have to accept, conversely, the fact that  the form of 
PRAGER'S rule is apt to deteriorate in a subspace. The next sections will show 
different stages of this process. 

4 .  S p e c i a l  C a s e s  

In many  practically important  cases some of the stress components are 
absent. Starting once more in 9-space, we may  denote the stress components 
present by a},, the zero ones by a~. The initial yield condition is then 

F ' " = 0) ' k ~ (~k ,  ~ k  = / - / ( % )  = . (4 .1)  

" corresponding to the zero stresses a/~, If  we are not interested in the strains e~ 
we may  treat  the problem in a subspace a~k. Here, H(a~k) defines a new yield 
surface. 

After plastic flow has set in, the yield surface is given by 

_]7, ' _ ' " k2 /ai~ ~ i k , -  ~ )  = �9 (4.2) 

We will not be able, in general, to express (4.2) by  means of the function H:  
in general, hardening implies a deformation o! the yield sur/ace in a sub@ace. 

From (4.1) follows 
d ' OF ( OH ) ~ = ~ dZ = ~ d~ . (4 .3)  

Thus, the/low rule remains valid h~ any sub@ace. However, it supplies only the 
strain components e~k defined in this subspace although the ei"k, too, may  be 
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different  from zero. I t  is clear, therefore,  t ha t  even in cases where the yield sur/ace 
undergoes a translation, it may move in a direction diNerent Jrom the outward nor- 
mal at the stress point P.  

The cases where the new yie ld  surface does not  deform are those in which i t  

0~ u is possible to conver t  the  left  hand  side of (4,2) such t ha t  the  t e rms  - i# 
vanish.  

When  the  ini t ia l  y ie ld  is independen t  of the  mean  norma l  stress, the  ini t ia l  
yield funct ion can be wr i t t en  

I( , .~  . . . . .  r .  . . . . .  ) = e ( L ,  L ) ,  
where 

i s 1 
f 2 =  T ( r ~ +  . . . .  ~ ~r~ ~ . . . .  + "r~ + . . . ,  

L : 2 ~ 7  ~ 1 4 

- - ~ . . . .  ~- 2 ~ ~ T ~  
3 

(4.4) 

(4.5) 

are the  invar ian t s  of the stress deviator .  W h e n  plas t ic  flow has  set in, crx, . . . ,  
z~ . . . . .  have  to be replaced  b y  ~ - ~  . . . . . .  T ~ -  ~ , , . . . .  I t  follows t h a t  
yield remains independent o/ the mean normal stress. 

B y  (3.6) 
oL og oL 

oL og (4.6) (og 
~ t dX, . 

where, on account  of (4.5) and  under  the  assumpt ion  t ha t  p las t ic  flow has  t aken  
place, 

0J2 
O% 3 

O f~ 

0(r~ 9 

- 2 ( ~  - ~.) (~ - ~ )  - 2 ( ~  - .~) (~ - ~ ) ~  ( 4 . 7 )  

OTuz 3 

+ 2 (~:~ -- ~'z.3 ( ~ u  - -  ~.,~) . . . . .  
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F rom (2.10) follows 

I ( r  - ~ + ~ . . . . .  * , o  - ~ , ~  . . . .  ) = 1 (r  - ~ . . . . .  ~ , :  - e ~ z  . . . .  ) .  ( 4 . 8 )  

Hence, in cases where one of the normal  stresses, e.g. ~ ,  is absent, the term 
- e, can be eliminated b y  addit ion of e, to the normal  stresses. 

If  Ts~ = T~ = 0, (4.6) and (4.7) yield, in connection with (3.7), 

dy~, = d7,~ = 0 (7w = 7 ~  = 0) .  (4.9) 

This is the proof, by  complete induction, tha t  

1 1 
~ v ~ = ~ - c y v ~ = 0 ,  e~x=  2 - c Y ~ x = 0  (rw = r~x - O) , (4.10) 

i.e, that ,  in the absence of at least two shear stresses, the corresponding shear 
strains and thus the corresponding displacements of the yield surface, are 
absent. This result might  have been inferred from the s y m m e t r y  (Figure 2) of 

Figure ,~ 
State of stress with T~z = Tzx = 0. 

the state of stress with respect to the middle plane x, y of an element. I t  is clear 
tha t  a similar result does not  hold in general if only one shear stress is absent;  
on the other  hand, (4.10) is the reason why  PRAGER'S hardening rule applies 
wi thout  change of form in the space of principal stresses. 

While the foregoing results hold for any  form of the yield function (4.4), 
we can obtain some more results by  restricting ourselves to the more common 
types of g. In  v. MISES' case, the function g reduces to f2,  and the initial yield 
condition is 

1 . 
dr2 = ~- a~, (4.11) 

where ao is the initial yield limit in simple tension or compression. In  TRESCA'S 
case, g also depends on J~. Here, the yield condition is bet ter  discussed in terms 
of max imum shear stress. 
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In (4.10), it is essential that  two shear stresses vanish: in cases where one 
shear stress only, i.e. z~v, is absent, it may  be impossible to eliminate the cor- 
responding displacement, exv, from the right hand side of (4.8), and this means 
that  tile yield surface deforms in the process of hardening. In TRESCA's case, 
this actually happens. However, if v. MISES' yield condition applies, it follows 
from (4.6), (4.7) and (3.7) that  

1 
~ = ~ -  c 7 ~  = 0 ( ~ , ~ -  0 ) .  ( 4 . 1 2 )  

If ev = cr~ = 0, we obtain from the same relations 

e y = e ~ ,  % = ~ ,  ( % - e , - 0 ) ,  (4.13) 

provided the material obeys the yield condition of v. MISES. I t  is easy to see, 
however, that  under TI~ESCA'S yield condition (4.13) does not apply. In the last 
case it is not possible to eliminate both ~ and c~ from the right hand side of 
(4.8) : the yield surface deforms in the course of hardening. 

In the next sections we shall make use of the fact that  the plastic volume 
change of the material is zero. That  is, 

e ~ + e ~ + e , = O ,  (4.14) 

a consequence of the flow rule and the independence of the yield function on the 
mean normal stress. 

Here, per definitionem, 

From (4.10) we obtain 

5. Plane Strain 

zyz=  ~ = 0 ,  e ~ = 0 .  (5.1) 

~ = ~ x = o .  ( 5 . 2 )  

I t  follows from (3.7) that  the yield function has the form 

( ) g (l x -  C~x, Cry-- C~v, (72, "Cxy-- 2- C 7 ~  �9 

On account of (3.6), 

and by (4.14) 

(5 .3)  

Og 
dez = ~ d2 = 0 ,  (5.4) 

e~ = - e x .  ( 5 . 5 )  
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Thus, we finally get the yield condition 

( 1 ) = k 2  (5.6) h (Tx--c~z,  ( 7 ~ + c ~ z ,  T x v - - ~ - c ) ~ x y  

I t  follows that  the yield surface moves in a translation, but, on account of the 
factor 1/2 in the last argument, not in the direction of the exterior normal. 

In many cases where the original form of PRAGER'S hardening rule does no t  
hold in the subspace appropriate to the problem, this defect can be remedied 
by a transformation. Here, for instance, the new quantities 

1 (5.7) 

can be introduced. The yield condition (5.6) becomes 

p((7~ - c e~, (7~ + c e~, t ~  - c g ~ )  = k S , (5 .8)  

and the form of PRAGER'S rule in 9-space is regained. 
In order to specialize (5.8) for v. MISES' yield condition, we start from 

(4.5) and obtain first 

1 1 ((7~ __ C ,Sy) ((Tz - -  C 8z)  . . . .  / = ,[2 = ~ ((7~ - c %)2 + . . . .  3 -  

(5.9) 
( 1 )2 

+ z ~ - y c y ~  + . . . .  

Carrying out the steps (5.3) through (5.8) with (5.9), we get 

4 ~ (5.10) p = [((7~ = c e~) - ((7~ + c e~)l 2 + 2 ( t ~  - c g ~ ) ~  = S-  (70. 

Figure 3 shows the yield surface, a circular cylinder of radius (2/3) 1/2 % the axis 
of which is parallel to the plane (7~, (Ty and bisects the angle between the axes 
a~ and %. 

In order to specialize (5.8) for TRESCA'S case, we start from the principal 
stresses 

O'x -~ - ( yy  [ ( ~ x @ ~ ) 2  2 "]1/2 
(71'2 --  2 Z~Z + T x y ]  , (73 = (Tz, (5.11) 

where (Ta lies between (71 and (72. The material yields initially when the maximum 
shear stress reaches a critical value, 

+ ~;y = ~- ao �9 (5.12) 

After plastic flow has set in, (5.12) takes the  form (5.10) with (7~ replacing 
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4 a~13 on the right hand  side. The yield surface is a circular cylinder (Figure 3) 

of radius aol~,  moving in the direction of the outward  normal. 
Subcase a: If  z ~  = 0, (4.10) yields 7 ~  = 0. The problem can be t reated in a 

(ax, a~)-plane and is a degenerate case of principal stress space with the prin- 
cipal strain e~ zero. The yield locus is the strip obtained by  bisecting the cylin- 
der of Figure 3 parallel to the plane a~, a~. 

l 
~xy 

L, , cg, s ~ cry 

Figu re  3 

Yield  su r f ace  in  p l ane  s t ra in .  

Subcase b." If  av = 0, the problem can be t reated in a (~ ,  z~y)-plane. The 
yield locus, obtained by  intersecting the cylinder of Figure 3 with a plane paral- 
lel to  the plane ~ ,  t~,  does not  move in the direction of the exterior normal. 
However,  if besides (5.7) the t ransformation 

1 ~2e~ s~ ~ ~ -  ~ ,  e ~=  (5.13) 

is used, the yield condition (5.10) with ~ = 0 becomes 

9 
- 2 (5 .14)  (s~ - c e~)2 + ( 6  ~ - c g ~ . ) 2  = 5 -  a 0 "  

The yield locus is a circle of radius (2/3) 1/2 if0 in v. MISES' case and (1/2) ~/2 ~0 in 
TRESCA'S case, moving in the direction of the exterior normal. 

Here, per definitionem, 

On account  of (4.10), 

6 .  P l a n e  S t r e s s  

a~ = ~v~ = -c~ = 0 . (6.1) 

7 ~  = 7~ �9 = 0 ,  (6.2) 
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and from (4.14) follows 
s~ = - (s~ + e~). (6.3) 

Hence, the yield function is 

[ ] g a~ - c %, a~ - c e~, c (s~ + e~), ~ - ~- c Y ~  �9 (6.4) 

After subtract ion of c(s~ + ev) from the normal  stresses in accordance with 
(4.8) we obtain the yield condition 

[ 1 ] k 2 (6.5) h a ~ - - c ( 2 e ~ + s ~ ) , G y - - c ( s ~ + 2 e ~ ) , r ~ y - - ~ - c T ~  = �9 

Again, the yield surface moves in a translation, bu t  not  in the direction of the 
exterior normal.  

I f  we make use of the t ransformations 

S ~ = ~ - I  ( ( 5 x + q y )  , S~ = ~ (6v--qx) , t-~ =~/3Txv, 

1 1 
e~ = ~ + ~ ,  e~ = ~ G - ~ ) ,  g ~  - l/5 7 ~ ,  

the yield surface becomes 

(6.6) 

and moves in the direction of the outward normal. 
In  the case of v. Mlszs '  yield condition, (6.7) takes the form 

( ( p =  s ~ - T c e  ~ + s ~ - ~ c e ~  + t~ - T c g ~  = % .  

The yield surface (an ellipsoid in the original stresses) is a sphere of radius go. 
In  TRESCA'S case, we obtain three sheets 

Thus, the yield surface (Figure 4) is a circular cylinder, closed by  two circular 
cones such tha t  the  intersections of the whole surface with the middle planes 
parallel to  s t, s~ and sr te~ are regular hexagons with sides a0- 

I t  often happens tha t  the yield surface contains singularities. In  3-space 
such singularities are edges where two smooth surfaces intersect (in Figure 4 
the circles of intersection between cylinder and cones) or corners where more 
than  two smooth surfaces meet. An isolated singularity or vertex (in Figure 4) 
the vertex of either cone) m a y  be considered as a limiting case of a corner. 

3 3 ce~, 3 ) = k 2 (6.7) p s ~ - ~ c e , ,  s , - ~  t e n - ~ c g ,  n 
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If  P is to remain in a corner or vertex, the yield surface must move with P ;  
hence, the displacement d~ coincides with the stress increment ds The strain 
increment d~follows from dK, since the components of ~ are the factors of c in 
the general equation ~here (6.5) or (6.7)] of the yield surface. If dK = c dK, then 
P remains in the corner or vertex as long as d~ lies in the pyramid or cone en- 
closed by  the exterior normals of the yield surface in the vicinity of the singu- 

]Figure 4 

Tresca  yield sur face  in p lane  stress,  

' \  , J "  �9 ~ / ~  ~ 

Figu re  5 

v. Mises y ie ld  locus  in  p lane  s t ress  w i th  " r x v  = O. 

larity. If  dK" 4= c dK, the pyramid or cone is obtained from the vectors d~instead 
of the normals. 

If  P is to remain in an edge, the components of d~ and d ;  normal to the 
edge must  coincide. Further, according to the flow rule, d~ has no component 
along the tangent of the edge. Thus, two components of d~ and the third one 
of d~ are known as soon as d~is given. The remaining components follow again 
from the equation of the yield surface. I f  d g  = c dK, P remains in the edge as 
long as d~ lies in the wedge enclosed by  the normals of the yield surface in the 
vicinity of the edge. If  d~ =~ c dK, the vectors dKtake the function of the normals. 

S u b c a s e  a: If  T~v = 0, (4.10) yields y~v = 0. The problem can be treated in 
a (r Cv)-plane, the section of principal stress space by  the plane a~ = 0. 

In v. MISES' case, the yield locus is the well-known ellipse illustrated in 
Figure 5 with the equation 

- E~, - c (2 ,~  + ~ ) l  [ ~  - c ( ~  + 2 *~),1 = ~ -  
(6.10) 

Comparing the vectors do, x, d %  and de~, den following from (6.10), we easily 
obtain 

dct~ = 3 c (a~ - -  o~) d)~ , do~ = 3 c (a~ - cry) d~. . (6.11) 

Hence, the ellipse moves in the direction of the radius C P. 
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Using the transformations (6.6), we obtain a representation in a plane 
s~, s~. Here, the yield locus is a circle of radius %, moving in the direction of the 
outward normal. 

In  TRESCA'S case, the yield locus in the (~,, ~)-plane is the hexagon of 
Figure 6. The arrows indicate the vectors d~, of constant direction on each side, 
given by  the line connecting the center of ' the side in question with the center 

Figure 6 

Tresca yield locus in plane stress with Txv = 0. 

s~ 

~ ~ St 

Figure 7 

Yield locus of Figure 6 in s~, s~. 

of the opposite side. If  d~ lies in one of the shaded regions, the hexagon moves 
with 20. Taking de~, day from (6.5), solving for de~, dev and setting d~ = ds we 
obtain 

1 1 
de, = 32-  (2 d ~  - d~v), de v = ~ (2 de~ - d~x) (6.12) 

for the strain increment in a corner of the hexagon. 
In the (s,, s~)-plane the yield locus becomes a regular hexagon (Figure 7) 

with side ~0 moving in the direction of the exterior normal. I t  is clear that  this 
hexagon is the section of the yield surface of Figure 4 with the plane of sym- 
met ry  parallel to s~, s~. 

I f  P remains in a corner, 

2 2 
de, = T c  ds,, d% ~ 3 c  d%; (6.13) 

thus, dd has the same direction as d~ = d~. 
Subcase a: If  ~ = 0, the problem can be treated in a (~,, T~v)-plane. How- 

ever, since (r only applies in v. MISES' case, the yield locus deforms in any 
other case in the process of hardening. 

In TRESCA'S case, for instance, the initial yield locus is the intersection of 
the yield surface of Figure 4 with one of the vertical planes passing through C 
and touching the two circular edges. The displacement of C, however, generally 
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does not lie in this plane, and it becomes clear, therefore, that  the yield locus 
deforms. 

In v. MISES' case, (4.13) applies. Hence, the yield locus does not deform. 
This follows also from the fact that  the yield surface corresponding to Figure 4 
is a sphere. The yield locus is the circle 

( )2( 

in the plane a~, t~,  where tr and g~, follow from r~v and y~v by  means of (6.6), 
The circle (6.14) is of radius a 0 and has been discussed by  PRAGER [91. I t  moves 
in the direction of the outward normal. 

7. Another  Spec ia l  Case  

In certain cases, e.g., if a cylinder is subjected to torsion and simple tension, 
we have a~ = av = z,v = 0. From (4.12) through (4.14) follows 

1 
~ = s ~ = - ~ s ~ ,  y ~ = O ,  (7.1) 

provided the material obeys v. MISES' yield condition. For any other yield 
condition (4.12) and (4.13) do not generally hold; hence, the yield surface in 
3-space deforms in the process of hardening. 

Restricting ourselves to materials obeying v. MISES' condition, we start  
from (4.5), i.e., from the yield condition 

1 1 
/ = d r ~ = y  (or x -  c e x ) z + .  3 . . . .  ( ,r~ - c ~ )  ( , r ,  - c ~,) . . . .  

( 1 )2 l r~, + "c w - ~ - c ~ , v z  + . . . .  ~- �9 

(7.2) 

Inserting (7.1) and subtracting c s~/2 from the normal stresses, we obtain in this 
particular case 

2 1 c~,~) = . (7.3) 

This yield surface (an ellipsoid of rotation) moves in a translation, but  not in 
the direction of the outward normal. 

If we use the transformations 

1/~ 1/3 ~ _ 1 t~ ~ ,  t ~ =  , ~ ,  g ~ = ~ - r ~ ,  ~o~ V 3 ~ ,  (;.4) 
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the yield surface becomes a sphere 

( 3 ) 2 (  3 ) 2 (  3 ) 2  2 
p =  ~ -- ~ c ez + t ~  - y c g ~  + t~x -- ~ c g~x = %  (7.5) 

of radius ~0, moving in the direction of the exterior normal. 
Subcase a: If ~, = 0, (4.13) and (4.14) yield ez == 0. For v. MISES' yield condi- 

tion, the problem can be treated in a (~v ~, zz ~)-plane. The yield locus is the circle 

( ~ - ~ C yvz + ~ - ~ c y ~  = 5 -  % 

of radius 3-~/2 a0, moving in the direction of its outward normal. 
I t  is interesting to note that  under TRESCA's yield condition the yield sur- 

face deforms even in this comparatively simple case and that  ?~v does not 
remain zero. 

Subcase b: If z ~  = 0, (4.10) yields yv~ = 0. If v. MISES' yield condition 
holds, the problem can be treated in a (~z, tzx)-plane. The yield locus is the circle 

( ~ - ~ c e ~  + t ~ - ~ - c g ~  =% 

of radius ~0, moving in the direction of the exterior normal. 
I t  is clear that  the last result, apart  from the difference in notation, is the 

one already obtained in the last subcase of section 6. 

8. Conclusion 

In sections 5 through 7 we have encountered the various possibilities discus- 
sed already in section 4. In most of the cases considered the yield surface moves 
in a translation, and a simple transformation at most suffices to make the 
original form of PRACER'S rule apply in the subspace appropriate to the problem. 
In certain cases, however, the yield surface deforms in the course of hardening. 
Incidentally, these exceptions occur, as far as our examples are concerned, in 
those cases where at the same time (a) more than one normal stress is different 
from zero and (b) the material obeys TRESCA'S yield condition. 

In section 1 the advantages of TRESCA'S yield condition have been emphasiz- 
ed. The deformation of the yieM surface which has been found in many  cases 
represents a serious drawback in this respect. 

REFERENCES 

[1] H. ZIEGLER, A n  Atle~44p[ to Generalize Onsager's Principle,  and Its Signi/ i -  
cance /or Rheological Problems, Z. angew. Math. Phys. 9b, 748 (1958). 

[2] R. v. MlSES, Mechanik  der /esten Kdrper im  plastisch de/ormablen Zustand,  
GGttinger Nachrichten, Math. phys. K1. 1973, 582 (1913). 

ZAMP IXa/18 



276 Kurze Mitteilungen - Brief Reports - Communications br~ves ZA.'aP 

[31 I'l. TRESCA, Mdmoire sur l'dcoulement des corps solides, M6m. pr6s. Acad. Sci., 
Paris 78, 733 (1868). 

[41 R. v. MISES, Mechanik der plastischen Formiinderung yon Kristallen, Z. angew. 
Math. Mech. 8, 161 (1928). 

[5] [D. C. DRUCKER, Some Implications o/ Work Hardening and Ideal Plasticity, 
Quart. appl. Math. 7, 411 (1950). 

[6] R. HILL, The Mathematical Theory o/ Plasticity (Oxford 1950). 
[71 P. G. HODGE, Jr., The Theory o/Piecewise Linear Isotropic Plasticity, IUTAM 

Colloquium Madrid 1955, De/ormation and Flow o/Solids (Berlin 1956). 
[8] W. PRAGER, The Theory o/ Plasticity: A Survey o~ Recent Achievements 

(James Clayton Lecture), Proc. Inst.  Mech. Eng. 769, 41 (1955). 
[9j W. PRAOER, Probleme der Plastizit~tstheorie (Basel 1955), p. 16. 

[10] P. G. I-loDGE, Jr., Piecewise Linear Plasticity, Proc. 9th Intern.  Congr. 
Appl. Mech., Brussels, 1956. 

Zusammen/assung 

Um das Verhalten eines Metalls mit  dem Spannungs-Dehnungs-Diagramm 
der Figur 1 unter  einem beliebigen r&Lumlichen Spannungszustand zu beschreiben, 
wird neben der Annahme isotroper Verfestigung, welche aber den Bauschinger- 
Effekt nicht erklS.rt, die Pragersche Verfestigungsregel [81 verwendet. Es wird 
hier untersucht,  weiche Formen diese Regel in den wichtigsten Spannungsr~Lumen 
yon weniger als neun Dimensionen annimmt.  
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On the Free  C on vec t ion  f r o m  a H o r i z o n t a l  P late  

By KXlTK STEWARTSON, Durham, England 1) 

The free convection of heat from a heated vertical plate in a fluid has been 
extensively studied in recent years. A review of the work done has been given by 
SQUIRE [43 ~) and subsequently numerical solutions of the governing equations 
has been given bY OSTRACH [2] for a wide range of values of the Prandt l  number  ~. 
The convection takes place in boundary  layers originating at the lower edge of 
the plate. Fluid is drawn into them, is heated and gaining buoyancy moves 
upwards. On the other hand if the plate is cooled relative to the surrounding fluid 
the si tuation is reversed for the boundary  layers originate at  the top of the plate, 
and the fluid drawn into them is forced downwards. When the plate is inclined 
to the vertical there is no change in the flow pattern,  since the vertical buoyancy 
force has a component along the plate which drives the fluid thus generating the 
boundary  layer. However, if the plate is horizontal the buoyancy has no compo- 
nent  along its length and the boundary  layer, if it exists, must  be of a different 
character. 

1) Department of 5Iathematics, The University. 
2) Numbers in brackets refer to References, page 281. 


