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It can easily be shown that the same limit locus results from an application
of the upper-bound theorem. Consider a velocity field in which only one of
the flanges elongates while the other remains rigid. In order for the mean
elongation rate of the beam to be ∆̇, that of the deforming flange must be
2∆̇, and the rotation rate, to within a sign, is θ̇ = 2∆̇/h. For the sake
of definiteness, let us take both ∆̇ and θ̇ as positive. The strain rate in
the deforming flange is 2∆̇/L, so that the total plastic dissipation — the
numerator on the right-hand side of (3.5.1) — is σY (2∆̇/L)(AL) = PU∆̇.
We take P as the reference load, and pick a loading direction by letting M =
αPh/2. The denominator in (3.5.1) is thus ∆̇ + (αh/2)(2∆̇/h) = (1 + α)∆̇,
and the upper bound for P is PU/(1 + α). Since MU = PUh/2, the upper
bound for M is αMU/(1 + α). The upper-bound values satisfy M/MU +
P/PU = 1, an equation describing the first quadrant of the previously found
limit locus. The remaining quadrants are found by varying the signs of ∆̇
and θ̇.

A velocity field with both flanges deforming leads to an upper-bound
load point lying outside the limit locus just found, with two exceptions: one
where the elongation rates of the flanges are the same, and one where they
are equal and opposite. Details are left to an exercise.

3.5.2. Nonstandard Limit-Analysis Theorems

The theorems of limit analysis can be stated in a form that does not directly
refer to any concepts from plasticity theory:

A body will not collapse under a given loading if a possible stress field can
be found that is in equilibrium with a loading greater than the given loading.

A body will collapse under a given loading if a velocity field obeying the
constraints (or a mechanism) can be found that so that the internal dissipa-
tion is less than the rate of work of the given loading.

In this form, the theorems appear intuitively obvious. In fact, the con-
cepts underlying the theorems were used long before the development of
plasticity theory. Use of what is essentially the upper-bound theorem goes
back to the eighteenth century: it was used in 1741 by a group of Italian
mathematicians to design a reinforcement method for the crumbling dome
of Saint Peter’s Church, and in 1773 by Coulomb to investigate the collapse
strength of soil. The latter problem was also studied by Rankine in the mid-
nineteenth century by means of a technique equivalent to the lower-bound
theorem.

The simple form of the theorems given above hides the fact that the
postulate of maximum plastic dissipation (and therefore the normality of the
flow rule) is an essential ingredient of the proof. It was therefore necessary
to find a counterexample showing that the theorems are not universally
applicable to nonstandard materials. One such counterexample, in which
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plasticity is combined with Coulomb friction at an interface, was presented
by Drucker [1954a]. Another was shown by Salençon [1973].

Radenkovic’s Theorems

A theory of limit analysis for nonstandard materials, with a view toward
its application to soils, was formulated by Radenkovic [1961, 1962], with
modifications by Josselin de Jong [1965, 1974], Palmer [1966], Sacchi and
Save [1968], Collins [1969], and Salençon [1972, 1977]. Radenkovic’s first
theorem may be stated simply as follows: The limit loading for a body made
of a nonstandard material is bounded from above by the limit loading for the
standard material obeying the same yield criterion.

The proof is straightforward. Let v∗ denote any kinematically admissible
velocity field, and P∗ the upper-bound load point obtained for the standard
material on the basis of this velocity field. If σ is the actual stress field at
collapse in the real material, then, since this stress field is also statically and
plastically admissible in the standard material,

Dp(ε̇∗) ≥ σij ε̇ij
∗,

and therefore, by virtual work,

P∗ · ṗ∗ ≥ P · ṗ∗.

Since v∗ may, as a special case, coincide with the correct collapse velocity
field in the fictitious material, P∗ may be the correct collapse loading in this
material, and the theorem follows.

Radenkovic’s second theorem, as modified by Josselin de Jong [1965],
is based on the existence of a function g(σ) with the following properties:

1. g(σ) is a convex function (so that any surface g(σ) = constant is
convex);

2. g(σ) = 0 implies f(σ) ≤ 0 (so that the surface g(σ) = 0 lies entirely
within the yield surface f(σ) = 0);

3. to any σ with f(σ) = 0 there corresponds a σ′ such that (a) ε̇p is
normal to the surface g(σ) = 0 at σ′, and (b)

(σij − σ′ij)ε̇ij ≥ 0. (3.5.4)

The theorem may then be stated thus: The limit loading for a body made
of a nonstandard material is bounded from below by the limit loading for the
standard material obeying the yield criterion g(σ) = 0.

The proof is as follows. Let σ denote the actual stress field at collapse,
P the limit loading, v the actual velocity field at collapse, ε̇ the strain-rate
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field, and ṗ the generalized velocity vector conjugate to P. Thus, by virtual
work,

P · ṗ =
∫

R
σij ε̇ij dV.

Now, the velocity field v is kinematically admissible in the fictitious standard
material. If σ′ is the stress field corresponding to σ in accordance with the
definition of g(σ), then it is the stress field in the fictitious material that is
plastically associated with ε̇, and, if P′ is the loading that is in equilibrium
with σ′, then

P′ · ṗ =
∫

R
σ′ij ε̇ij dV.

It follows from inequality (3.5.4) that

P′ · ṗ ≤ P · ṗ.

Again, σ′ may, as a special case, coincide with the correct stress field at
collapse in the standard material, and therefore P′ may be the correct limit
loading in this material. The theorem is thus proved.

In the case of a Mohr–Coulomb material, the function g(σ) may be
identified with the plastic potential if this is of the same form as the yield
function, but with an angle of dilatation that is less than the angle of internal
friction (in fact, the original statement of the theorem by Radenkovic [1962]
referred to the plastic potential only). The same is true of the Drucker–
Prager material.

It should be noted that neither the function g, nor the assignment of σ′ to
σ, is unique. In order to achieve the best possible lower bound, g should be
chosen so that the surface g(σ) = 0 is as close as possible to the yield surface
f(σ) = 0, at least in the range of stresses that are expected to be encountered
in the problem studied. Since the two surfaces do not coincide, however, it
follows that the lower and upper bounds on the limit loading, being based on
two different standard materials, cannot be made to coincide. The correct
limit loading in the nonstandard material cannot, therefore, be determined
in general. This result is consistent with the absence of a uniqueness proof
for the stress field in a body made of a nonstandard perfectly plastic material
(see 3.4.1).

3.5.3. Shakedown Theorems

The collapse discussed thus far in the present section is known as static
collapse, since it represents unlimited plastic deformation while the loads
remain constant in time. If the loads are applied in a cyclic manner, without
ever reaching the static collapse condition, other forms of collapse may occur.
If the strain increments change sign in every cycle, with yielding on both
sides of the cycle, then alternating plasticity is said to occur; the net plastic


