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The above title and authorship belong to an internal

Company Report that was issued in December 1966 [1]

and is continually referred to, but it has never been published

in the open literature. The report is reproduced in full below

as a paper, but Materials at High Temperatures has first

taken the opportunity to explore the background to what is

regarded by many in the field as a classic work. For reasons

discussed below, the names of authors have been reversed in

this published version.

Technical background

The structural integrity of power generating plant compo-

nents operating at elevated temperatures depends on the

amount of creep and fatigue damage accumulated over

long lifetimes. However, before this material damage can

be calculated, the deformation response of a structure to

externally applied loads or constraints must be assessed.

Quite often, the effects of plasticity and creep are allowed for

by using power law equations as an adjustment to initially

elastic conditions. This can lead to pessimistic (i.e., conser-

vative) results and recourse must be made to a fully detailed

inelastic analysis of the structure. For realistic predictions

therefore, good ‘constitutive relations’ are required. These

should accurately reflect true material behaviour as when, for

example, during start-up and shut-down operations in

service, the location of interest is taken into tension followed

by an excursion into compression. If the material of

construction ‘remembers’ its previous history, subsequent

behaviour should be predicted by the equations.

In the study of materials science this history effect had

already been given to some degree by the Bauschinger effect

[2]. This may be defined as the lowering of the absolute

value of the elastic limit in compression following a previous

tensile loading and vice versa. Similarly, if deformation in

one direction only is considered, loading a specimen beyond

the elastic limit raises the elastic limit for a subsequent load

in that direction. Early interpretations, which are effectively

still used today, were couched in terms of an internal ‘back

stress’ which changes sign according to the epoch in the

corresponding stress– strain cycle, which since plasticity is

invoked, takes the form of a hysteresis loop. Masing, a noted

investigator, was able to produce a simple model for the

Bauschinger effect during stress reversal [3,4], writing some

time later [5] that ‘‘ . . . a metal is no mere rigid, dead, body,

but is a material endowed with something almost like a life

of its own, as a result of which many and complex processes

may go on within it’’. In other words, a material may possess

a limited memory of its past history.

For engineering assessment, the mathematical form of the

constitutive laws governing stress – strain behaviour thus

depends on (a) the deformation characteristics of the mate-

rial, (b) the complexity of the structure and (c) the loading

spectrum. There are many constitutive models, see below,

which ideally should take the following into account:

� Non-linear stress – strain response of the material

� Material behaviour with repeated cycling (steady-state

response, cyclic hardening, or cyclic softening)

� Isotropic hardening (or softening) due to change in yield

stress

� Kinematic hardening (or softening) due to change in

plastic slope

� Presence of Bauschinger effect

� Relaxation of mean stress under strain control, or strain

ratchet under stress control

� Other memory of past deformation

Several constitutive models were reviewed recently [6].

Their properties are very briefly summarised in Table 1. All

models [7 – 13] distinguish between monotonic (unidirec-

tional) and cyclic behaviour and all take the Bauschinger

effect into account. The list is by no means exhaustive.

Models such as those listed above would be used when

more simple approaches (e.g., a power law) fails to predict a
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stabilised response for example when a component (a)

experiences only a few large cycles, (b) comprises isolated

regions undergoing plasticity at differing strain ranges or (c)

is subjected to a complex loading history [6]. As expected,

implementation of many of these models requires a large

computational resource. For the more advanced examples it

becomes necessary to describe the evolution of the stress

range (under total strain control) in terms of an appropriate

variable such as the accumulated plastic work (total area of

closed hysteresis loops) or the plastic path length. The latter

is defined as the accumulated plastic strain, independent of

sign. Some commercially available FE codes for structural

analysis make use of some of the above models. Further

background descriptions of constitutive models and their

broad classification into ‘Standard’ (decomposition of total

strain into elastic, plastic, creep and anelastic contributions)

and ‘Unified’ (creep and plasticity regarded as arising from

the same dislocation source) types can be found elsewhere

[6]. ‘Standard’ models require a definite yield stress and

‘yield surface’ and an incremental formulation since FE can

distinguish between elastic and plastic regions. This yield

surface can be allowed to expand or contract (isotropic

behaviour) or translate (kinematic behaviour). In principle,

distortion of the surface can also be allowed. Isotropic

hardening cannot predict the Bauschinger effect. In kine-

matic hardening the degree of translation is a measure of the

‘back stress’. These are not truly representative of material

behaviour but can lead to a high degree of accuracy.

Amongst the references listed in Table 1 occurs that of

Chaboche [13]. This model is able to capture evolutionary or

history-dependent aspects of material response. For practical

use it requires the appropriate hysteresis loop to be described

in terms of several coefficients which are in turn deduced

from experimental data. In its simplest form it employs a

kinematic hardening rule to describe a closed hysteresis loop,

but without functions for cumulative plastic strain. The work

is a development of the Armstrong – Frederick model [1]

which in turn (as will be seen below) is a development of the

Prager linear kinematic model [7]. Armstrong and Frederick

introduced a ‘recall’ term which influences plastic flow

differently for tensile or compressive loading, depending

on the accumulated plastic strain. The model has become

popular and has been incorporated into some FE codes (e.g.,

ref. [14]). A feature of the model is a tendency to predict

ratchetting under an asymmetrical stress cycle. This is a

result of the operation of the recall term which contains the

back stress.

Historical setting – structures, specimens, and

back stresses

The account given above is a very brief summary of how

plasticity theory is currently conceived and applied in high

temperature applications. Thirty to forty years ago matters

were not so clear-cut, and the division between the disci-

plines of ‘materials science’ and ‘engineering’ was far

sharper than perhaps it is today. The account in this

Section starts in 1977 (strictly, 1975, see below) when

Chaboche published a paper [15] on ‘viscoplastic constitu-

tive equations for the description of cyclic and anisotropic

behaviour of metals’. Computer techniques and capacity had

advanced so that non-linear problems, in this case the

deformation response of superalloy IN100 (used in aero-

engine turbine blades and discs) at 1000�C, could be tackled.

A set of constitutive equations, ‘including a hidden internal

state parameter’, was employed. The extra term in the

equations accounted for an ‘evanescent strain memory

effect’ or ‘delay trace hypothesis’. This was in fact the

Bauschinger effect, and the paper attributed this development

to the internal company report by Armstrong and Frederick,

issued some eleven years earlier [1]. The analysis was

extended to the 3-dimensional (multiaxial) state. According

to the complexity of the model assumptions, stabilisation of

the hysteresis loop could be predicted within a few cycles,

and the results were compared with experiments in load

control and strain control, including periods of stress

relaxation.

Further details on the development of the equations are

provided below by the authors themselves. The key point

about Chaboche’s (1977) paper [15] is that this was almost

certainly the first time that Armstrong and Frederick’s [1]

work had been referred to in the open literature. The report

was produced under the aegis of the erstwhile Central

Electricity Generating Board (CEGB), where publication

of unclassified material was openly encouraged. In the

present case this never happened (although an attempt
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Table 1 Capability of various models during cyclic deformation (after ref. [6])

Model Loop Cyclic Ratchet Memory
curvature hardening or softening effect

Bi-linear kinematic (ORNL) [7,8] No No Noa No
As aboveþ plastic work term No Yes No No
As aboveþmemory effect Yes Yes No Yes
Mroz [9] Yes Yes No No
Dafalias [10,11] Yes Yes No No
FRSV [12] Yes Yes No No
Armstrong – Frederick [1] Yes No Yes No
Chaboche (non-linear Kþ I) [13] Yes I or Kb Partial No
As aboveþmemory effect [13] Yes I or Kb Partial Yes

I, isotropic; K, kinematic.
aAllows a change between monotonic and cyclic response.
bDepending on number and form of linear kinematic terms.



was made) for reasons given by the authors below.

Armstrong and Frederick were given 10 copies each for

distribution amongst their colleagues and the report was

freely available from relevant CEGB libraries. In subse-

quent publications and personally, Chaboche himself has

always acknowledged his indebtedness to the work. The

report has been cited many times in the open literature (see

below) by investigators who surely cannot have seen the

original at first hand. This state of affairs has arisen because

Chaboche’s equations in turn have been incorporated into

finite element and other analytical computer programs [14],

see later.

There had in fact been a previous external publication

by Frederick and Armstrong in 1966 [16]. The authors

showed that ‘. . . if two structures differing only in their

initial internal stresses are subject to the same loading

history, the distributions of internal stress will approach

one another in regions of creep and plasticity as the

loading proceeds’. The paper was concerned with engi-

neering structures, for it is not immediately obvious why

such a structure should not ratchet (increase its dimensions

in a given direction) under a repeated load. The paper thus

concerned shakedown to a stable condition, and the

authors were able to show that a few cycles of computa-

tion should result in the steady cyclic state, regardless of

starting conditions. In fact the same effect has been

demonstrated experimentally in a specimen of stainless

steel at elevated temperatures [17]. Starting from the

same (compressive) load in each case, strain rates were

varied randomly over a 2 h period over a fixed total strain

range. As expected, the final stress value was path-

dependent. But if any one of those random strain

‘blocks’ were regularly repeated at 2 h intervals, it was

found that the resulting hysteresis loop closed within a

very few cycles. In terms of what was happening in the

microstructure of the material, it was proposed that hard-

ening (dislocation accumulation) was opposed by recovery

(dislocation annihilation) so that at corresponding stresses

in the random cycle, the to-and-fro motion of dislocations

within the internal (cell) structure were imagined to be

identical.

At the time the internal Armstrong – Frederick report [1]

was conceived, the editor was a friend and colleague of

Peter Armstrong, although we worked in different depart-

ments at the same CEGB establishment. Regular meetings

were held between ‘materials’ (mechanical properties) and

‘engineering’ staff so that we might appreciate the different

approaches to plasticity, creep and fatigue problems experi-

enced in power plant. Armstrong recalls that, whereas the

published paper [16] on convergence dealt specifically with

an engineering structure, he was struggling to account for

the Bauschingeryinternal stress effect as would occur on the

microstructural scale in a specimen in terms of (a) an

overall isotropic hardening, (b) a directional hardening

and (c) a scalar softening of the previous hardening. This

leads to the exponential expressions in the report [1].

From a ‘materials’ point of view we would now argue

that hardening cannot go on for ever with every reversed

cycle. This has been demonstrated by Halford [18] who,

coincidentally working at the same time as Armstrong and

Frederick, showed by calorimetric experiments that the

stored energy of deformation was dissipated as heat

energy twice every complete (tension-compression) cycle.

Halford called this the ‘storageyrelease’ mechanism and

was interpreted by Feltner and Laird [19] as due to a ‘flip-

flop’ motion of dislocations. (Halford had already shown

[20] that the strain hardening exponent of a material could

be identified with the energy stored every half cycle and

went on [21] to calculate the total energy required for

fatigue failure.) This shuttling of dislocations produces pile-

ups leading to an opposing back stress, say at the peak of a

compression cycle. This in turn would be destroyed during

the subsequent reversal into tension, and shuttle into a pile-

up in the other direction, giving a back stress of opposite

sign [22]. Such destruction requires the onset of plasticity,

and so in the elastic unloading from compression, the

residing back stress acts in the same direction, leading

effectively to a reduction in the tensile yield stress viz., the

Bauschinger effect.

These invisible back stresses have an important part to

play in explaining material response [13]. Tanaka and Mura

[23] developed the irreversible action of dislocations into a

quantitative model to predict fatigue endurance. Spindler

[24] has shown that the amount of creep damage induced

during stress relaxation depends on the starting position in

the hysteresis loop, which can be traced ultimately to the sign

of the initial back stress.

Citations

The editor has long been aware that the Armstrong –

Frederick model [1] has been widely quoted, despite its

never having appeared in the literature. The following

information has been provided by Peter Armstrong. The

ISI (Institute of Scientific Information) index goes back to

1970. Overall there are now 324 citations of the report. It

was not cited at all until 1977 by Chaboche [15], some 11

years after it was written. It is possible, though unlikely, that

there were citations before 1970. The citations remained at 3

per year until 1988, i.e., 22 years after the report first

appeared. Thereafter the rate increased rapidly and now

runs at around 30 per annum. Sometimes the rule goes by

other names, such as Chaboche, but also as the ‘Ohno-Wang

constitutive equations’. These last authors have based their

own work [25] on that of Chaboche, and hence by associa-

tion, on that of Armstrong and Frederick.

It is instructive to compare this citation rate with that for

an earlier paper in a different, but related, discipline

published in 1959 by Hull and Rimmer [26] on the stress-

induced growth of grain boundary cavities at elevated

temperature. This was the first numerical attempt at

predicting a quantitative rate of void growth and the work

has been referenced almost without fail by materials scien-

tists investigating creep and creep-fatigue failure mechan-

isms at elevated temperatures. There have been 560 citations

of this publication, currently running at 12 per annum.

It is time for the Armstrong – Frederick seminal work to

enter the public domain. Materials at High Temperatures is

proud to be able to publish the original, with permission of

British Energy Generation Ltd.
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Comments on the report, and developments since

At the time the report was written, there were few low cycle

fatigue (LCF) machines capable of producing requisite data

(discussed later). From a major conference 22 years later

[27], LCF tests at high temperature conducted at total strain

range were in proliferation, and continue to this day. Tests at

constant plastic strain range, as referred to in the report, are

possible [28,29] though generally reserved for specialised

studies of material response, such as cyclic deformation

under constant plastic strain rate [30]. Tests at small

plastic strain ranges are now routine with advanced exten-

sometry, and plastic strain ranges of 10� 4 are achievable

[31]. Many elevated temperature multiaxial tests have also

been undertaken since the report [27,32], again continuing to

the present time. There is now an abundance of (elevated

temperature) monotonic and cyclic stress– strain data which

Armstrong and Frederick could only have dreamed of.

In addition to the storageyrelease energy mechanisms

occurring every half cycle (as discussed previously) it is

now appreciated that many materials only achieve the steady

state after a period of evolutionary cycling, that is, the

hysteresis loop never completely closes during this stage.

Austenitic alloys, for example may harden cycle-by-cycle

while many ferritic alloys soften cycle-by-cycle [6]. These

effects, coupled with ageing phenomena mean that the

overall cyclic response of many power plant alloys

changes with service exposure.

Materials scientists and experimentalists generally use the

Ramberg – Osgood [33] power law equation for describing

the cyclic strain range as a function of the cyclic stress range.

There are 3 constants (Young’s modulus, a strength coeffi-

cient and a hardening exponent) which uniquely define the

stress and strain state, although the latter two may be allowed

to vary in order to describe strain rate effects. It is distin-

guished from true constitutive equations in that it is not

expressed in incremental form [6]. However, the equation

does not have a definite yield stress, which must therefore be

prescribed as a 0.2% proof stress, 0.1% proof stress etc. It is

possible in principle to identify the Ramberg – Osgood law

with the relevant Chaboche equation [6] but it can be shown

that Chaboche constants change with total strain range. It is

notable that the Ramberg – Osgood law by itself can also

account for the Bauschinger effect and accompanying back

stress [22].

Turning to the report, there are several instances in the text

requiring comment, owing to the passage of time. The

reference ‘Frederick and Armstrong, 1966’ i.e., report

RDyByN660 is one of the internal reports on the assump-

tions of plasticity theory discussed by these authors below,

and is not the external paper of Ref. [16]. In the Discussion

Section 8, we read: ‘‘The use of the proposed behaviour

model for creep will be the subject of a later report’’ and

also: ‘‘It is intended to resolve this question by incorporating

the proposed relationship, the Prager yield criterion and the

von Mises yield criterion as options in a stress analysis

computer program.’’ These projects were not carried out for

reasons explained below by the authors themselves. As to the

comment on the pij parameter, introduced as a microstress

and no action taken to relate it more closely with the actual

mechanisms of deformation, the authors remark: ‘‘An

attempt to do so by those more qualified than the present

authors would be very useful.’’ This has been covered to

some extent in this general preface.

It is also noteworthy that the authors end their Section 6

(i.e., before their summing up) with the remark: ‘‘. . . it

would indicate that the proposed behaviour model is on the

right lines.’’ This has turned out to be something of an

understatement.

The report is written in a refreshing and forthright style,

salient points being emphasised by use of short paragraphs. It

is clear from the following recollections that the authors have

not lost this trait. Let the principal players now take up the

story.

II MODELLING STRAIN-INDUCED ANISOTROPY –

C.O. FREDERICK AND P.J. ARMSTRONG

General background

The model of material behaviour which is now associated

with our names (the A– F strain hardening rule) was in part a

product of the research environment which existed in the

headquarters laboratories of the nationalised Central

Electricity Board (CEGB) during the 1960s. At that time

the demand for electricity was increasing at about 10% per

annum and the scale of capital investment, much of it in

nuclear plant, was said to have been sufficient to have bought

up the state-owned UK motor industry every three months.

Set against expenditures of this magnitude, it made sense for

the CEGB to make massive investments in research. Even a

small percentage reduction in operating or capital costs could

repay that investment many times over.

This basic policy orientation meant that salaries for the

600 or so graduate and postgraduate scientists and engineers

in the three headquarters research laboratories (Leatherhead,

Berkeley and Marchwood) were considerably in excess of

anything available in universities, with the added advantage

that there were no demands for teaching or administration. It

was also the policy of the CEGB directorate that research on

the more immediate problems of electricity generation and

supply would take place in a number of area establishments,

leaving the headquarters laboratories to concentrate on more

speculative fundamental research – though this still had to be

capable in principle of contributing to the generation and

supply of electricity. In that environment, the two of us at

Berkeley Nuclear Laboratories (Armstrong as a Research

Officer and Frederick as Section Leader) were free to devote

a large part of our time to the problems of representing the

inelastic behaviour of materials and structures for at least two

years before the issuing of RDyByN 731, the relevance to

the CEGB being the possibility of high-strain fatigue in large

steel pressure vessels subject to periodical variations in load

and temperature.

This period of preoccupation began when one of us

chanced on a 1950 paper by Symonds [34] which seemed

to say something useful about the way plastic strain would

disappear from structures subject to any load path for which

a purely elastic solution was possible – useful, that is, if we

could understand it. The problem was that neither of us was
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familiar with the tensor notation in which Symonds’ paper

was written, so we had to figure this out this using clues from

the paper itself. In this respect, the process had something in

common with the decipherment of ‘Linear-B’ [35]. Once it

had been achieved, a second problem presented itself: that

Symonds’ shakedown theorem was based on the highly

idealized von Mises yield criterion. This prompted us to

try the substitution of other yield criteria in Symonds’

equations, as a result of which we made the fortuitous

discovery that structures would also shake down in materials

which exhibited Prager kinematic hardening. A paper

demonstrating this was published in the first issue of the

Journal of Strain Analysis [16].

As that paper exemplified, our thinking about the beha-

viour of structures was intimately bound up with associated

behaviour in materials and both were combined in the

problem of how to represent structures in computer

programmes. By the mid 1960s computers were becoming

capable of handling fairly large arrays of equations; the

question of whether these would be generated by finite

difference or finite element methods was beginning to be

resolved in favour of the latter. Either way, it was clearly

important, particularly for the CEGB’s large pressure

vessels, that these equations should represent the inelastic

behaviour of the material as accurately as possible.

Reassured about the relevance of what we were doing, and

prodded into it by our Division Head, the late C.H.A.

Townley, we produced two internal CEGB reports which

reviewed existing representations of the inelastic behaviour

of materials and attempted to assess their merits, particularly

in respect of their representation of strain-induced aniso-

tropy.

Detailed background of the Report [1]

Of particular interest was Batdorf and Budiansky’s ‘slip

theory’ [36] which deduced a yield surface from a simplified

model of the behaviour of dislocations and a yield criterion

proposed by Edelman and Drucker [37] which related

anisotropy to the total vector of plastic strain. The problem

with the slip theory was that it predicted a yield surface

which would expand in the direction of strain but remain

unaltered otherwise, a prediction clearly inconsistent with

any Bauschinger effect. On the positive side, the physical

picture on which it was based, oversimplified though it was,

prompted us to think of the yield surface as displaced by

microstresses internal to the material itself, and thence to the

notion that these might shake down in the same way as a

structure. Thoughts along these lines were also encouraged

by conversations on the stress-induced movement of disloca-

tions with the UK editor of this journal with whom

Armstrong travelled to work at the time.

The problem with the Edelman – Drucker yield criterion

[37] was that it predicted a yield surface independent of the

path by which the current vector of plastic strain had been

reached. As it stood, this was not even adequate to the case

of uniaxial cycling in tension and compression, since it

implied a zero Bauschinger effect. It did suggest, however,

that strain was the crucial variable and that the Bauschinger

effect might be effectively modelled by allowing for a

disproportionate effect of more recent strain. We were

encouraged in these reflections by references in a paper by

Lensky [38] to a ‘principle of delay’ [39] whereby the vector

of internal stresses was related to a specified length of the

most recent part of the strain trajectory. Lensky had obtained

results consistent with this idea by twisting a thin-walled

tube then pulling it, keeping the twist constant. The resulting

decay of torsional stress made it clear that some such

principle of delay did indeed apply to strain-induced aniso-

tropy. The problem with assuming that the governing

parameter was a fixed length of the recent strain trajectory,

however, was that it clearly couldn’t handle cases in which

the direction of strain changed during that fixed length. This

pointed towards a relationship between the increment of

strain and the incremental decay of what, by this time we

were calling the ‘strength vector’. At the same time, in order

to represent the hardening effect of the increment of strain,

the strength vector had to increase in opposition to it.

Mindful of the 1960s limitations of computing power, the

strain hardening rule, as we proposed it, left it open as to

whether or not it was also worthwhile to model any isotropic

strain hardening which might occur. It is striking how

concerned we were at the time to limit both the complexity

of the model and the amount of testing required to determine

its parameters.

It wasn’t as easy as this perhaps makes it sound.

Armstrong can remember sitting in a public bar, drawing

strain and strength vectors on a beer-mat, to the point that a

young couple introduced themselves as psychologists and

enquired if he was suffering from depression.

There is a certain irony to the fate of RDyByN 731, the

internal CEGB report in which these ideas were definitively

set out [1]. The agreement between Armstrong and Frederick

was that Frederick would take first authorship of the

externally published paper, in recognition of his greater

contribution to its mathematical development, whilst

Armstrong would be first author of the internal CEGB

report. In the event the paper was rejected by the Journal

of Strain Analysis, apparently because a referee ‘could not

see the point of it.’ Re-reading the paper after all these years,

one would have thought the point was made very clearly

indeed. It is in recognition of the original agreement, mean-

while, that the paper has been reprinted in this journal with

the names of the authors reversed.

No further attempts were made to publish the paper in an

academic journal. It had been intended to test the A – F rule

in a computer programme for analysing the stresses in thick

tubes ‘in order to see whether the computer would come

unstuck.’ Since it is now a well-known weakness of the A – F

rule that it predicts ratchetting, this would probably have sent

us back to the drawing-board.

Subsequent career of C.O. Frederick

Even before the internal publication of the report, however,

Frederick had moved to the Central Electricity Research

Laboratories at Leatherhead (CERL) of the CEGB as head of

Structural Engineering Section. Amongst the new problems

competing for his attention were those of analysing stresses

in the anchorages of the steel reinforcing cables of concrete
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pressure vessels and the automatic generation of finite

element meshes for stress analysis.

When, in November 1965, three out of the eight cooling

towers at Ferrybridge C power station collapsed in winds of

only 70 kmyh, the detachment of the CEGB’s Headquarters

laboratories from the immediate problems of operation was

temporarily suspended. CERL’s Aerodynamics Section

discovered that the design had failed to allow for the

Venturi effect created by the proximity of the towers and

initiated wind tunnel experiments to measure mean and

dynamic wind pressure values. It was then the task of

Frederick and his team to analyse the consequent vibrational

stresses in the cooling tower shells, using finite elements and

modal analysis. Exciting the vibrations in normal non-windy

conditions (to quantify the damping coefficient) was

achieved by swinging against the tower some baulks of

timber suspended from a crane. This worked well but led

to a fracas with a local pigeon fancier. When the tower was

struck it acted like a loudspeaker and the noise was sufficient

to frighten the pigeons, preventing their arrival being

recorded. Work had to stop for a while!

In 1969, Frederick moved to British Rail as Assistant

Director of Research (Track and Structures, Soil Mechanics

and Field Trials Sections (the latter via track experiments

conducted impartial derailment investigations - was the cause

due to the track or the vehicle?). Though most of his time

was by now taken up with the management of 80 staff, he

still managed to produce papers on such topics as the impact

stresses due to ‘wheel flats’ and rail buckling. Subsequently,

Frederick became responsible for the Metallurgy and

Strength of Materials Sections. Now his earlier experience

with stress analysis and material behaviour became of value.

A problem for which there was no accepted explanation

was rail corrugation where waves (typical wavelength

~50 mm and depth ~0.1 mm) form on the ‘running table’

of the rail. The effect of these waves is (a) to create enhanced

and environmentally unacceptable noise and (b) to greatly

increase the pressure of wheel-rail contact, causing cracks to

form near the rail surface. It is customary to grind the rails to

remove the waves. Unfortunately, the waves may rapidly

return and often the grinding fails to remove the cracks.

These cracks grow deeper until they can bring about rail

fracture. A research contract showed that the corrugation

problem was one of periodic wear of the running table of the

rail. In this process, a small wave can deepen progressively.

After several years of running the project, Frederick consid-

ered writing a chapter on rail corrugation for a book on the

permanent way but was too immersed in the problem for this

to happen. He later realised that the process depended on

periodic creep (relative movement between wheel and rail)

having the right phase with respect to a very shallow pre-

existing wave. But how could you calculate the phase?

In between times, the differential equations governing the

interaction of wheels and track still found ways of intruding

on his leisure. As it stood, the problem was that the wear was

related to lateral creep of wheel against rail, but there seemed

to be no way of calculating the latter because there were two

unknowns but only one equation. During a fishing holiday,

he realised that that there was another equation - a dynamic

one relating the lateral force between wheel and rail to the

lateral creep. In 1986 he published ‘‘A Rail Corrugation

Theory’’ and presented at a conference on Contact

Mechanics and Wear in Rhode Island USA. Though an

entirely reliable prediction of this effect remains elusive,

this has been acknowledged as something of a breakthrough.

Rather less tenable was Frederick’s interest in the notion

of a propulsion system using laser-induced fusion pulsed at

high frequency. Having failed to get his ideas published

(once more!), this time in the journal Spaceflight, Frederick

took out a provisional patent on the concept whilst its

feasibility was explored. Eighteen months are allowed for

this process. In the patent assessment it had to be demon-

strated in a practical situation. Hence it was shown as part of

a flying saucer. When the deadline arrived it was realised that

there would be no commercial benefit in a patent but

publication would make the principle freely available.

Several papers meanwhile had given encouraging reports

on progress with laser fusion. It was decided to proceed with

the patent for 1 year in the UK. So it came about that British

Rail published a patent [40] for a flying saucer powered by

laser-induced fusion.

Though Frederick retired in 1994, he has been in demand

as a consultant especially on rail matters and was called upon

to give evidence at the Railtrack inquiry into the Hatfield

Crash (which was caused by a broken rail).

Subsequent career of P.J. Armstrong

In 1967, the year following the internal publication of

RDyByN 731, Armstrong left engineering altogether, prob-

ably influenced, it is now embarrassing to relate, by the low

opinion of engineering held by the literary persons with

whom he associated at that time. After an MSc in the

Sociology of Science and Technology, he worked as a

research assistant on a study of shop-floor industrial rela-

tions. The low point of his career was five years of teaching

general studies at a small and eccentrically-run college of

further education. Managing to scramble back into academic

life with another research assistantship at the age of 39 he

eventually produced a study which explained the low status

of engineering in the UK in terms of the ascendancy of

accountants. Simple as it seems, that study and the work

which flowed from it, established his reputation as a social

scientist and led, ironically, to a chair in accounting at the

University of Sheffield. Altogether he has published four

books and 35 refereed journal articles in the field of social

science, some of which are quite well known in their

particular areas, but none of them has been as consequential

as the unpublished CEGB report of forty years ago [1]. Now

aged 67, he is once again enjoying the freedom to pursue his

research, this time as a part-time Consultant Professor at the

University of Leicester.

Developments to date

Unknown to both Frederick and Armstrong, the internal

report RDyByN 731 and the A – F strain hardening rule

went on to enjoy lives of their own. Armstrong discovered

the continuing relevance of RDyByN731 by accident a few

years ago whilst searching the citation indices for other
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purposes. The discovery prompted him to get in touch with

Frederick and to mention the matter to the European editor of

this journal, who was also a colleague at CEGB Berkeley at

the time and with whom he had remained in contact over the

years. (He also suggested that Prof. J.-L. Chaboche be

contacted to obtain his side of the story.) This account of

our work at CEGB in the 1960s is a product of that accident.

III MY SIDE OF THE STORY – J.L. CHABOCHE

ONERA, DMSEyLCME, BP 72, 29 Av. De la Division

Leclerc, 92322 Chatillon Cedex, France

E-mail: Jean-Louis.Chaboche@onera.fr

Discovering the A– F Report

At the beginning of the seventies, at ONERA, in the

Laboratory of Jean Lemaı̂tre, we were mainly working

around viscoplastic constitutive equations based on isotropic

hardening, performing many different structure-like high

temperature tests with complex multiaxial loads, but essen-

tially under monotonic or quasi-repeated conditions. When

the first hydraulic fatigue machine for tension-compression

testing arrived, we literally re-discovered the importance of

Bauschinger effects and the non-isotropic nature of hard-

ening (in transient conditions, as well as in creep). After

some tentative steps to define updating rules, we were

obliged to accept the notion of an evolving back stress

(although not called as such), a concept not so well known

(at least by us) at that time, because we were more involved

in the field of creep rather than in plasticity.

If I remember well, I was trying several approaches

following an article by Malinin and Khadjinsky [41] in the

context of creep, that combined a hardening and a static

recovery term for the evolution equation of the so-called

additional stress. The paper also referred to the work by

Ilyushin [39] and the ‘‘delay trace hypothesis’’. At that time,

probably in the spring of 1974, I independently discovered

the basic Armstrong-Frederick rule, incorporating in the

simplest way the fundamental hardeningydynamic recovery

format for the additional stress. When doing so, writing this

equation in its 3D form for the first time, and discovering its

easy closed form integration for uniaxial tension-compres-

sion conditions, I recall that I was working on my hands and

knees on the living-room carpet, and I was very happy with

the result . . .

I do not remember exactly how I came to know about the

existence of the Armstrong – Frederick CEGB Report. Until

very recently, before the editor asked me to take part in this

preface, I was under the impression that I read the reference

in the Malinin and Khadjinsky [41] paper. In fact, it is not, as

checked recently. How I obtained it is a mystery to me now.

(Maybe a reader could help?) Anyway, I asked the ONERA

library to try to obtain this A– F report. At that time it was

not too difficult; I obtained the Report a few weeks later, and

discovered ‘‘my’’ equation in it, with many other good

things, published about 8 years before.

I presented my ‘‘viscoplastic constitutive equation’’,

mainly based on the A – F rule (applied in the context of

unified viscoplasticity, with some modifications and addi-

tions, together with some very good simulations on IN100

nickel base superalloy) at the XVIIth Polish Solid Mechanics

Conference which took place in Szczyrk in July or August

1975. At this conference, just after my lecture, I was asked

by Antoni Sawczuk (who shortly became President of the

Polish Academy of Sciences) to publish an extended version

in the Bulletin de l’Académie Polonaise des Sciences. I was

very happy to do so, and the paper appeared in 1977 [15].

This paper seems to be one of the first to reference the

unpublished Armstrong and Frederick report [1]. In my

subsequent papers in this domain, I have always indicated

this Report as the formative work, and I am gratified now to

realize over the past few years, that I have unwittingly

contributed to the recognition of this work and to the fact

that the ‘Armstrong – Frederick rule’ now appears to have

entered the general vocabulary.

Subsequent developments and career

After this initial investigation, with my 1977 paper [15] and

my PhD thesis completed, I continued working and

publishing along these lines, introducing several develop-

ments, couplings with isotropic hardening, including

multiple back-stresses obeying the A– F rule, adding some

‘‘strain range memory’’ effects etc. etc. Many other unified

cyclic viscoplastic theories were also under development in

the same period, using similar concepts, attempting to

reconcile cyclic plasticity and creep flow (e.g., refs [42 –

46]. One advantage of my own approach, mainly based on

the very simple structure of the A– F rule, was that it was

simple to integrate in closed form (for proportional cyclic

conditions) and easily incorporated into a more fundamental

thermodynamic framework.

Though involved in many other contexts such as

Continuum Thermodynamics, Finite Element (FE)

Analyses, Computational schemes, Continuum Damage

Mechanics, Fracture Mechanics, Multiscale Analysis etc.,

my whole career has remained with research in Solid

Mechanics but from time to time going back to my initial

interests in cyclic plasticity and viscoplasticity. I have been

publishing papers with some comparisons [47,48] between

various different plasticity and viscoplasticity theories,

showing similarities and differences, discussing drawbacks

and advantages, again acknowledging the contribution of this

unpublished but renowned Armstrong – Frederick Report [1].

Ratchetting conditions, presently applied equations and

FE codes

One of the difficulties associated with the A – F rule is the

fact that it predicts too much ratchetting under non-

symmetric loading conditions. At the end of the eighties, it

was decided to develop an improved rule, using a threshold

in the dynamic recovery term [49,50]. Such a solution has

subsequently served other researchers, e.g., Ref. [25]. It

seems that other modifications, developments, improve-

ments, which have taken place all defer to the A – F Report

as containing the ‘‘reference rule’’. It is surprising to observe

that this reference ‘‘A – F model’’ is most often taken in

order to mention its main defect, its poor capabilities under
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ratchetting conditions, so justifying some better (but more

complicated) modification.

In order to illustrate the above-mentioned complications of

the presently applied models compared to the initial version

by Armstrong and Frederick [1], referring to equation (33), I

am happy to write the set of equations:

Xij ¼
X

X
ðkÞ
ij

_XXij ¼
2

3
Ck_eepij � gkfðpÞ kX

ðkÞ
k � o

Ck

gk

� �
X
ðkÞ
ij

kXðkÞk
_pp

� rkfðpÞkX
ðkÞkm�1X

ðkÞ
ij

with the following correspondence between variables and

material parameters set out in Table 2. Identification is

possible with only one back stress (k ¼ 1Þ;o ¼ 0 and

m ¼ 1 in the above recent version:

Let us note that static recovery effect was already intro-

duced in the A– F Report, equation (33), but with a linear

dependency in the back stress.

Another aspect relates to the introduction of constitutive

equations in FE computer codes. It is now true that the A – F

model has been introduced as a basic rule in several

commercial FE codes, sometimes under my name. More

sophisticated versions like the one above are only available

as user-built constitutive models (UMAT or VMAT routines

in ABAQUS [14] for instance). Interesting is the present

availability of all such advanced models, and many others

through the Z-Mat library, a unique object-oriented library of

constitutive equations, used by the FE code ZéBuLoN, co-

developed by Ecole des Mines de Paris, ONERA and

NWNumerics (www.nwnumerics.com).This library is auto-

matically effective in the principal commercial codes through

interfaces like Z-Aba, Z-Ansys, Z-Marc, Z-Cosmos, Z-

Mecano.

In 2006, I was the first recipient of the Khan International

Medal (Akhtar Khan is the founder of both the International

Symposium on Plasticity and the International Journal of

Plasticity). I was very much honoured by this recognition of

my contributions by the plasticity community but, certainly, I

must recognize that at least one part of this success is related

to the impact of my first reference to the A – F Report.

IV EDITOR’S NOTE ON THE TEXT

The original report has been scanned and the type reset

exactly as in the original, but using the numerical system of

references as in the style of Materials at High Temperatures.

However, where appropriate, investigators names have been

retained in the text so as not to disturb the sentence structure.

The reference style in the listings has been left untouched.

Obvious minor spelling mistakes have been corrected. The

Figures similarly are scanned in from the originals, and so

reflect the style of the mid 1960s and the units in use at the

time.

Consulting with all authors, it seems that the line before

equation (25) should read: ‘‘Denoting the cumulative plastic

strain by ~ee, where ~ee ¼ n�ee, this may be written . . .’’ and

hence the term ~eey�ee in equation (25) itself is in fact an

exponent. It is difficult to judge from the typewritten

original. Again, in the ‘‘easily shown’’ equation (24),

Chaboche today can only obtain the result for the first two

half cycles. Matters have moved on, and it is hardly fair to

expect the original authors now to justify every aspect of

their initial formulation.
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REPRODUCTION OF THE ORIGINAL REPORT

SUMMARY

Inelastic stress analysis would be totally impractical without simplified mathematical models of

the behaviour of structural materials. Naturally these should be as accurate as possible; they

should, for instance, display a Bauschinger effect in time-independent plasticity.

Existing attempts to do this do not appear to be wholly adequate and a new material behaviour

model is proposed here. On the available evidence it appears to represent plasticity more

accurately than previous models.

The extension of the proposed behaviour model to include time dependent effects is discussed

briefly.

1. INTRODUCTION

In the interests of economy, it is necessary to reduce the sections employed in a structure as far as

safety considerations will allow. Reduced sections imply higher stresses and, in many structures,

e.g. pressure vessels, a certain amount of inelastic strain is tolerated. The current design codes for

such structures are based on a combination of service experience, experimental data and

approximate theory. Further design advances, that is, a further reduction in sections, can only

be achieved without reducing safety margins if stresses and strains are known more accurately. It

is true that component testing plays an indispensible part in this process, but the data obtained can

only be extrapolated to untested geometries if theoretical analyses are available. For this reason, it

is likely that inelastic stress analysis, using computer programs to deal with the complex

geometries encountered in practice, will play a vital part in formulating the design codes of the

future.

Any such computer program must incorporate some assumptions about the behaviour of the

material. At the outset the problem is simplified by treating the material as a continuum although it

will, in fact, have a granular structure. The actual behaviour of an element of this continuum

depends on the stress system acting on it, the temperature to which it is subjected and its previous

strain-temperature history. It is plainly impossible to obtain data appropriate to all the conditions

likely to arise in a structure. Furthermore, if such data were available, it would be a gigantic task to

feed it into a computer, even supposing the storage capacity were adequate.

The complexity of inelastic behaviour makes the use of approximate mathematical models

essential. It is usual to assume that inelastic strains can be separated into time-dependent creep

strains and instantaneous plastic strains. In reality, all inelastic strain is time-dependent [1] and

could, in theory, be treated as creep. In practice the strain rates are sometimes very high and the

computer program would have to re-calculate the stress distribution in the structure at very small

intervals of time. It is more convenient to treat inelastic strain occurring at large strain rates as if it

were instantaneous. In other words, the separation of creep and plastic strain is justified on

practical grounds. This is discussed more fully by Frederick and Armstrong [2].

Most existing computer programs for inelastic stress analysis assume that plastic strain takes

place according to elastic-perfectly plastic theory when the stresses satisfy the von Mises yield

criterion. For steady-state creep, the corresponding assumption is that there is a power-law

dependence of the equivalent creep strain rate on the equivalent stress. It is important to remember

that these and all such mathematical models of material behaviour are approximate.

One of the factors ignored by elastic-perfectly plastic theory is the well known fact that tensile

plastic strain increases the tensile yield stress of a metal above the compressive yield stress. This is

a particular case of the Bauschinger effect. Similar effects exist under multiaxial stress conditions

and there are analogous effects in creep. Creep recovery is the best-known instance of the latter.

If material behaviour laws which neglect these factors are used in stress analysis, the results

must be in error. The extent of this error is virtually impossible to estimate. Therefore, in order to

increase confidence in the results of stress analysis computer programs, more accurate models of

inelastic material behaviour must be found. At the same time, these models must remain fairly

simple and the data necessary to fit the models to a particular material must be readily obtainable.

www.scilet.com MATERIALS AT HIGH TEMPERATURES 24(1) 11



The behaviour model presented here is based on the concept of internal microstress. It is

concerned mainly with time-independent plasticity though a method of extending it to cover time-

dependent creep is also introduced. In particular, it is a more realistic re-presentation of the

multiaxial Bauschinger effect than any of the models hitherto proposed. The predictions of the

proposed model are compared with experimental data published by Lensky [3], Benham [4] and

Wood [5].

2. NOTATION

E Energy dissipation rate in the microstructure.

f(e*) Function defining the variation of K with e*.

gijðe*Þ Function defining the variation of epij with e*.

g 0ijðe*Þ Differential of gij with respect to e*.

Gij Constant value of g 0ij for a straight plastic strain path.

h(e*) Function defining the variation of p* with e*.

i, j Suffices taking the values 1, 2 or 3.

J2, J3 Second and third invariants of the deviatoric stress respectively.

K Yield stress in shear.

Ko Initial yield stress in shear.

k, l Suffices similar to i, j. See equation (32).

n Number of half strain cycles.

pij ‘Microstress’ component.

p 0ij ‘Microstress’ component. See equation (15).

poij Initial value of pij.

p 0oij Initial value of p 0ij. See equation (15).

P* Function of e*.

po* Initial value of p*.

p1 2y36axial component of pij.

p3

ffiffiffi
3
p

6torsional component of pij.

Sij Deviatoric stress component.

S 0ij Deviatoric stress component. See equation (15).

T Constant.

dt Small increment in time.

epij Plastic strain component.

e1 Axial plastic strain component.

e3 1y
ffiffiffi
3
p

6torsional plastic strain component.

ecij Creep strain component.

e* Length of the plastic or creep strain path.

e*o Initial value of e*.

êe Length of the plastic strain path prior to the current state.

�ee Amplitude of plastic strain cycle.

~ee Cumulative axial plastic strain.

eD ‘Delay trace’, see Section 4.4.

l Positive factor of proportionality.

r Constant.

s1 Axial stress.

s3
ffiffiffi
3
p

6torsional stress.

f Constant.

c Functional form for E.

3. FORMULATION OF THE NEW BEHAVIOUR MODEL

The von Mises yield criterion corresponds to the statement that plastic strain will occur when:

J2 ¼ SijSij ¼ 2K2
o ð1Þ

In the deviatoric plane of principal stress space, see Hill [6], this means that the yield function is a

circle of radius
ffiffiffi
2
p

Ko, centred on the stress origin. Equation (1) states that, as plastic strain

proceeds, this circle does not change either in size or position.

In fact, for isotropic materials, the initial yield function cannot be very different from

equation (1). This is so because the isotropy assumption leads to the fact that the yield locus in
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the deviatoric plane is symmetrical about six equally inclined axes [6]. Taken together with the

fact that the yield locus must be convex if certain assumptions are made about the stability of the

material [7 – 9], the influence of J3 on the yield function must be small. This is confirmed by

experiment [6,10].

If the material remains isotropic as plastic strain proceeds, equation (1) can only be modified by

the substitution of K for Ko. In the deviatoric plane of principal stress space, this means that the

yield circle changes in size but remains centred on the stress origin.

Experiments have shown however, that materials do not, in general, remain isotropic when

plastically strained (see refs [11 – 13] for example). These tests show that the yield locus changes

in shape and position as well as size.

In considering the work-hardening properties of isotropic materials, Hill [6] suggested that the

size of the yield locus could be assumed to be a function either of the plastic work or of the length

of the plastic strain path. There is probably little to choose between the two and it is convenient to

make the second assumption here (see equation (8)).

The changes in shape of the yield locus during plastic strain are complex and no clear-cut

picture has so far emerged from experimental data. For example, it is still a matter of controversy

whether ‘‘corners’’ can be induced on the yield surface or not [14]. For this reason, the behaviour

model presented here makes no allowance for possible changes in shape of the yield locus.

It has been known for many years that the yield locus changes its position during plastic strain.

In uniaxial tests, it is well known that tensile plastic strain raises the tensile yield stress above the

compressive yield stress. This is the Bauschinger effect and it is a particular case of the changes in

position of the yield locus reported by the workers referred to above.

Edelman and Drucker [15] presented several yield functions which incorporate a simulation of

the Bauschinger effect. One of these is equivalent to a postulate due to Prager [16] and may be

written:

Sij � fepij
� �

Sij � fepij
� �

¼ 2K2
o ð2Þ

Comparing this with equation (1), it can be seen that, in the deviatoric plane of principal stress

space, the yield locus is still a circle radius
ffiffiffi
2
p

Ko. The centre of the circle, however, is now

displaced by a vector proportional to the plastic strain vector.

This means that deformation in a certain direction increases the resistance of the material to

further deformation in that direction. Although equation (2) has its shortcomings, this idea is

plausible both on mechanical and metallurgical grounds and it will be used in what follows.

In the uniaxial case, equation (2) results in a linear strain hardening curve and the compressive

yield stress is reduced during tensile plastic strain by an amount equal to the increase in tensile

yield stress. Equation (2), therefore, is a step forward in the attempt to simulate the Bauschinger

effect. Clearly, equation (2) could be made more general by introducing K in place of Ko where K

as before, is a function of the length of the plastic strain path.

Equation (2) and the other yield functions introduced by Edelman and Drucker [15] have one

important feature in common. This is that the sole factor determining strain-induced anisotropy,

i.e. the displacement of the yield locus, is the current plastic strain. This means that the plastic

strain path by which the current plastic strain was reached, does not influence the current

behaviour of the material, except, perhaps, to modify the size of the yield locus. If the size of the

yield locus is assumed to depend only on the length of the plastic strain path, different strain paths

of equal length, if they result in the same total plastic strain, will result in identical material

behaviour. One implication of this is shown in Figure 1. O represents the strain origin and OP, the

plastic strain vector. P can reach strain point B by either of two semicircular strain paths, OAB and

OCB. Suppose, on reaching B, the strain vector tip, P, moves along the line BD, tangential to

circle OABC. If point P has followed path OCBD, the strain direction is unaltered at B. On the

other hand, if point P has followed the route OABD, the direction of plastic strain is reversed at B.

If strain-induced anisotropy is assumed to depend only on the current plastic strain, the resistance

to straining along line BD should be the same in the two cases. This scarcely seems plausible. The

yield locus at B must depend in some way on internal microstresses. These can scarcely be the

same when such different plastic strain paths have been followed.

This leads naturally to the representation of the internal microstress by a stress -pij. The net

stress causing plastic strain in the microstructure is then Sij � pij. The yield function corre-

sponding to equation (1) is:

Sij � pij
� �

Sij � pij
� �

¼ 2K2
o ð3Þ
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The displacement of the yield locus is then governed by pij. As with equations (1) and (2), changes

in size of the yield locus can be allowed for by replacing Ko in equation (3) by K, where K is a

function of the length of the plastic strain path. It then remains to find a plausible relationship

between pij and the plastic strain path.

Ilyushin [17] postulated that the material behaviour relationships at a point depend not on the

whole of the previous strain path but only on a certain length of the most recent part of it. The

postulate was concerned with total strain paths but, on physical grounds, it is plausible that similar

considerations apply to plastic strain paths. Suppose that the length of the prior strain path which

influences current conditions is eD (the ‘‘delay-trace’’) and that strain point P removes away from

strain point X as shown in Figure 2. When the distance between P and X is equal to or greater than

eD, the only prior strain history the material ‘‘sees’’ is the straight strain path XP. The stress vector

at P is then colinear with the strain path. During portion XP of the strain path, the stress vector

tends to become colinear with the strain path as in Figure 2. For total strain paths, this effect has

been demonstrated by Lensky [3].

In other words the delay trace hypothesis asserts that the material behaviour relationships at P

will be influenced by conditions at X until the arc-length between them is eD. The influence of

conditions at X has then disappeared. Two criticisms can be raised at the delay trace hypothesis in

this form.

Firstly, its use in computer programs would mean that conditions over a certain length of the

strain path would have to be ‘‘remembered’’ by the computer. Secondly it does not seem

physically plausible that referring to Figure 2, conditions at X will ever entirely cease to influence

conditions at P. It is more likely that the influence of conditions at X diminishes asymptotically to

zero as the arc length between points P and X increases. Using the idea behind Ilyushin’s postulate

and the Prager yield criterion together with the microstress concept, a hypothesis can be

formulated which meets these objections.

Consider a material in an initial state represented by poij which is then subjected to an increment

in plastic strain _eepijdt. It will be assumed that the plastic strain affects the material in two ways.

Firstly, the resistance to further strain in the direction of the plastic strain increment increases. This

can be simulated by adding to poij an increment in pij proportional to epijdt. Secondly, the plastic

strain increment diminishes the effect of poij on conditions after the plastic strain increment has

taken place. This can be simulated by reducing the components of poij by an amount proportional

to their initial value and the arc length of the plastic strain increment. In other words, poij is

decreased by an amount proportional to poij _ee*dt. These two effects may be written:

_ppij ¼ f _eepij �
pij

p*
_ee*

� �
ð4Þ
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where p* is some scalar function of the plastic strain path. As with K, it appears reasonable to

regard p* as a function of the arc length of the plastic strain path.

This hypothesis has the advantage that, in order to take account of the previous strain path, a

computer program need only ‘‘remember’’ the value of pij. Furthermore, the effect of increasing

arc length of strain is to reduce the value of pij in proportion to its current value. Subsequent strain,

therefore, can never entirely remove the influence of conditions at some specified strain point on

subsequent behaviour. This statement will be illustrated in the next section.

It only remains to choose a flow law to use in conjunction with the yield function. Drucker [7–

9] has shown, that a highly plausible assumption about the stability of the material leads to the

conclusion that the plastic strain rate must be normal to the yield surface. Hill [18] reached the

same conclusion by considering the slip processes which result in macroscopic yielding.

Using equation (3) the normality condition may be written:

_eepij ¼ l Sij � pij
� �

ð5Þ

4. SOME PROPERTIES OF THE PROPOSED BEHAVIOUR MODEL

4.1 Solutions for specified plastic strain paths

Equations (3) (with Ko replaced by K), (4) and (5) together with the dependence of K and p* on

the length of the plastic strain path, are the basic equations for the proposed behaviour model. In a

computer program they would be solved numerically. In order to gain some insight into the

properties of the proposed behaviour model it is useful to consider a few analytic solutions.

Replacing Ko by K in equation (3):

Sij � pij
� �

Sij � pij
� �

¼ 2K2
ð6Þ

From equations (3) and (5):

_eeij ¼
1ffiffiffi
2
p

K
_ee* Sij � pij
� �

ð7Þ
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The dependence of K on the length of the plastic strain path may be written:

K ¼ f e*
� �

ð8Þ

The dependence of p* on the length of the plastic strain path may be written:

p* ¼ h e*
� �

ð9Þ

If the plastic strain path is known:

epij ¼ gij e*
� �

ð10Þ

where the gij are known functions.

Using equations (9) and (10) in equation (4):

_ppij ¼ f_ee* g 0ij e*
� �
�

pij

h e*
� �

" #
ð11Þ

Equation (11) has the solution:

pij ¼ f exp �f
ðe*

0

de*

h e*
� �

" # ðe*
0

g 0ij e*
� �

exp f
ðe*

0

de*

h e*
� �

" #
de* ð12Þ

If initial conditions poij and e*o are introduced, it is easy to show, using equation (12) that

subsequent values of pij are given by:

pij ¼ poij exp �f
ðe*
e*o

de*

h e*
� �

" #
þ f exp �f

ðe*
e*o

de*

h e*
� �

" #
6
ðe*
e*o

g 0ij e*
� �

exp f
ðe*
e*o

de*

h e*
� �

" #
de*

ð13Þ

Since h(e*) is always positive, equation (13) shows that the effect of an initial value of pij on

subsequent values of pij decreases continuously with the length of the subsequent plastic strain

path. In particular, if h(e*) is a constant, the decrease is exponential.

From equations (7), (8) and (10), the deviatoric stresses are given by:

Sij ¼ pij þ
ffiffiffi
2
p

f e*
� �

g 0ij e*
� �

ð14Þ

Equation (14) in conjunction with equation (13) or (12) constitute the solution for the stress

variation during a specified plastic strain path.

4.2 Convergence property

Consider two elements of the same material subjected to the same plastic strain path. Suppose they

have different initial values of pij and denote quantities appertaining to one of the elements by a

prime. By writing equations (13) and (14) for the two elements and subtracting it can be shown

that:

Sij � S 0ij ¼ pij � p 0ij ¼ poij � p 0oij

� 	
exp �f

ðe*
e*o

de*

h e*
� �

" #
ð15Þ

Equation (15) shows that the values of Sij and pij in the two elements converge continuously with

the length of the imposed plastic path. If h(e*) is a constant, the convergence is exponential. This

is an expected result since the behaviour model was formulated with the idea that the initial state

exerts a steadily decreasing influence on current conditions.

4.3 Straight plastic strain paths

If the plastic strain path is straight, g 0ij e*
� �

becomes a constant in equations (12), (13) and (14), say

Gij. Using equations (12) and (14) for an initially unstrained state:

Sij ¼ Gij f exp �f
ðe*

0

de*

h e*
� �

" # ðe*
0

exp f
ðe*

0

de*

h e*
� �

" #
de* þ

ffiffiffi
2
p

f e*
� �( )

ð16Þ
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Since GijGij ¼ 1, it follows that, for a straight plastic strain path from an unstrained state, SijSij is a

function only of the length of the strain path. In other words, the equivalent stress – strain curve is

unique for proportional loadings, a fact which has been verified by many experiments.

4.4 Plastic strain paths of small curvature

Lensky [3] found that, if the radius of curvature of the strain path was larger than the ‘‘delay

trace’’ (see Figure 2), the relationship between the equivalent stress and the length of the strain

path deviated little from that obtained in proportional loading tests. The proposed behaviour

model exhibits a similar characteristic.

Referring to equation (13), the ‘‘delay trace’’, eD can be regarded as that value of (e* � e*o )

which makes the first term negligible. Introducing êe, the length of the plastic strain path, prior to

the point e*, equation (12) may be written:

pij ¼ f
ðe*

0

g 0ij e* � êe
� �

exp �f
ð êe

0

dêe
h e* � êe
� �

" #
dêe ð17Þ

If e* is greater than the delay trace, the upper limit of the left-hand integration sign can be taken as

eD. Thus the integration in equation (17) is always performed over a range of êe equal to or less

than eD. If the curvature of the strain path is small, g 0ij does not change much over this range.

Furthermore, the exponential term in equation (17) must diminish rapidly as êe increases. Therefore

equation (17) can be approximated by:

pij ¼ fg 0ij e*
� � ð êe

0

exp �f
ð êe

0

dêe
h e* � êe
� �

" #
dêe ð18Þ

Using equations (14) and (18), it is easy to show that SijSij is then a function only of the length of

the plastic strain path since g 0ij e*
� �

g 0ij e*
� �

¼ 1. This function is of course identical to that obtained

from equation (16).

4.5 Straight plastic strain paths for special forms of h(e*)

If h(e*) is a constant, po*, equation (13) can, in principle, be integrated for any specified plastic

strain path since, if gij e*
� �

is a Fourier series in e*, term by term integration is possible. For a

straight plastic strain path, equation (13) becomes:

pij ¼ poij exp �
f

p*
o

e* � e*o
� 	" #

þ p*
oGij 1� exp �

f

p*
o

e* � e*o
� 	 !" #

ð19Þ

For an initially isotropic state, remembering that GijGij ¼ 1, equation (19) results in:

ffiffiffiffiffiffiffiffiffi
pijpij

p
¼ p*

o 1� exp �
f

p*
o

e* � e*o
� 	 !" #

ð20Þ

Thus the magnitude of the pij vector increases exponentially to po*. In this case, therefore, po* can

be identified with the maximum magnitude of the pij vector.

For a straight plastic strain path, it is also possible to integrate equation (13) if h(e*) varies

linearly with e*. Suppose h e*
� �

¼ p*o þ re*. Equation (13) becomes:

pij ¼ poij
p*
o þ re*o

p*
o þ re*

 !
þ Gij

f
fþ r

� �
p*
o þ re*

� 	
1�

p*
o þ re*o

p*
o þ re*

 ! 1þf=rð Þ
2
4

3
5 ð21Þ

The stresses are obtained from equation (14) with g 0ij e*
� �

replaced by Gij in both cases.

In order to utilise equation (21), an extra constant r, must be obtained from test data as

compared with equation (19). From the practical point of view, it is advisable to use the simplest

material behaviour model which gives adequate accuracy. In what follows, attention will be

limited to the case p* ¼ p*o .

4.6 Specified stress and total strain paths

From the practical point of view it would be an advantage if similar solutions to the above could

be obtained for specified stress or total strain paths. An attempt to do this however, results in a set
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of six simultaneous differential equations which cannot be solved analytically. Lest this seem a

drawback of the proposed behaviour model, it should be pointed out that such solutions cannot be

obtained for the Prager yield criterion (equation (2)) or the von Mises yield criterion (equation

(1)). In a computer program the differential equations are solved numerically in all cases.

5. CYCLIC AXIAL LOADING

5.1 Properties of the proposed behaviour model

Multiaxial behaviour models of the type proposed are, in essence, hypotheses which define

multiaxial behaviour in terms of uniaxial behaviour. It is therefore essential to find ways of

determining the necessary constants from uniaxial tests. As a first step, the uniaxial properties of

the proposed behaviour model must be defined. It will also be useful to compare the

corresponding properties of the von Mises yield criterion (equation (1)) and the Prager yield

criterion (equation (2)).

Denoting tensile stress by s1, tensile plastic strain by e1 and the tensile component of pij by 3
2 p1,

equation (19) in the uniaxial case becomes:

p1 ¼ p10 exp �

ffiffiffi
3

2

r
f

p*
o

e1 � e10


 � !
þ

ffiffiffi
3

2

r
p*
o 1� exp �

ffiffiffi
3

2

r
f

p*
o

e1 � e10


 � !" #
ð22Þ

Equation (14) becomes:

s1 ¼ p1+
ffiffiffi
3
p

f

ffiffiffi
3

2

r
~ee

 !
ð23Þ

where, in equations (22) and (23), the plus sign applies for tensile loading and the minus sign for

compressive loading. In equation (23), ~ee is the sum of the magnitudes of all the changes in e1.

Suppose that an initially isotropic specimen is subject to a plastic strain cycle with upper and

lower limits �ee and zero respectively. Using equations (22) and (23), it can easily be shown that the

magnitude of the stress at the end of the nth half-cycle of strain is:

s1

�� �� ¼
ffiffiffi
3

2

r
p*
o 1� exp �

ffiffiffi
3

2

r
f

p*
o

�ee

 !" #n

þ
ffiffiffi
3
p

f

ffiffiffi
3

2

r
n�ee

 !
ð24Þ

Denoting the cumulative plastic strain by ~ee, where ~ee ¼ �ee, this may be written:

s1

�� �� ¼
ffiffiffi
3

2

r
p*
o 1� exp �

ffiffiffi
3

2

r
f

p*
o

�ee

 !" #
~ee
�ee
þ

ffiffiffi
3
p

f

ffiffiffi
3

2

r
�ee

 !
ð25Þ

For the present purpose, the variation of the endpoint stress magnitudes with the cumulative

plastic strain will be called the cyclic stress – strain curve. It will be noticed that, for a given plastic

strain amplitude, �ee, the first term of equation (25) approaches zero as ~ee becomes large. This means

that for large cumulative strains, the cyclic stress– strain curve becomes independent of the plastic

strain amplitude. Thus, the proposed behaviour model predicts that a family of cyclic stress– strain

curves for various plastic strain amplitudes will converge onto a unique line at large cumulative

strains. It is also interesting to note that this convergence is slowest when the ‘‘delay trace’’ is

short. This is because, the exponential term in equation (25) is small, if the ‘‘delay trace’’ is short.

As convergence takes place, the stress-plastic strain hysteresis loops become more or less

rectangular since it is unlikely that f(e*) changes quickly at large cumulative strains.

Regarding ~ee as a constant in equation (25), it can easily be shown that the first term increases

as �ee increases from zero to ~ee. This means that cyclic stress – strain curves for large strain

amplitudes lie above those for small strain amplitudes. In the limiting case where �ee ¼ ~ee,
equation (25) defines the monotonic stress– strain curve. It follows that all cyclic stress – strain

curves lie below the monotonic stress– strain curve. It will also be noticed that, at large

cumulative strains, the monotonic stress – strain curve becomes parallel to the cyclic stress –

strain curves.

It can be shown that, for any given value of ~ee, the first term of equation (25) has the limiting

value zero when the plastic strain amplitude tends to zero. This is an obvious result since the

second term of equation (25) is the radius of the yield surface in axial stress-space.
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5.2 Comparison with experimental data

Unfortunately there are few, if any, tests at constant plastic strain range in the literature. Figures 3

and 4 show cyclic stress– strain curves obtained from constant total strain amplitude tests by

Benham [4] and Wood and Davies [5]. The material was annealed copper in both cases. Since the

strain amplitudes were fairly large in both series of tests, the error due to the increase in elastic

strain as the material hardens should be small.

By and large, the results conform to the predictions of the proposed behaviour model. All the

cyclic stress – strain curves lie below the corresponding monotonic stress – strain curves. In Figure

4, it can be seen that the cyclic stress – strain curve for the smaller strain amplitude lies below that

for the larger. It is possible that scatter has partly marked this effect in Figure 3. Figure 3 shows that

the cyclic stress – strain curves tend to converge and become parallel to the monotonic stress– strain

curve. Bearing in mind that similar materials were used, it seems reasonable to suppose that the

curves of Figure 4 were not extended to large enough cumulative strains for this effect to appear.

It is worthwhile comparing the data of Figures 3 and 4 with the properties of the von Mises and

Prager yield criteria.

The von Mises yield criterion predicts that the cyclic stress – strain curve coincides with the

monotonic stress – strain curve for all strain ranges. This is clearly contradicted by the evidence.

If the strain cycle is symmetrical about zero, the Prager yield criterion predicts that all cyclic

stress – strain curves coincide and diverge linearly from the monotonic stress – strain curve. This is

clearly at variance with the evidence of Figure 4. In the case of Figure 3 the cyclic stress– strain

curves more or less coincide but appear to become parallel to the monotonic stress – strain curve

rather than continue to diverge from it.

If the strain cycle is not symmetrical about zero, the Prager yield criterion predicts that the

cyclic stress– strain curves oscillate about a mean line with a constant amplitude depending

linearly on the strain amplitude. After the first few strain cycles at most, this does not occur in

practice. In other words, an initial mean stress due to an applied mean strain quickly disappears

when the material is subjected to plastic strain cycles.
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5.3 Numerical data from uniaxial tests

In order to utilise the proposed behaviour model, the constants po* and the function f must be

determined. From the practical point of view, anything other than uniaxial tests are out of the

question for this purpose.

Putting n ¼ 1 and �ee ¼ e1 in equation (24), the tensile stress– strain curve may be obtained:

s1 ¼

ffiffiffi
3

2

r
p*
o 1� exp �

ffiffiffi
3

2

r
f

p*
o

e1

 !" #
þ

ffiffiffi
3
p

f

ffiffiffi
3

2

r
e1

 !
ð26Þ

The constants po* and f and function f must now be chosen to obtain a good fit to the true stress –

strain curve of the material. It is important to use the true stress – strain curve. Many practical

problems involving cyclic or near-cyclic loading will result in large cumulative strains without

necking taking place.

In practice, many combinations of po*, f and f can be chosen to fit the tensile stress– strain

curve. Further information is required.

The most obvious procedure is to use the fact that f is proportional to the ‘‘diameter’’ of the

yield surface in stress space. More specifically, from equation (23), the difference between tensile

and compressive yield stresses is 2
ffiffiffi
3
p

f e*
� �

. It would not be too difficult to define the function f

by measuring the difference between tensile and compressive yield stresses at various values of

cumulative strain. Perhaps the best practical way of doing this would be to plot the cyclic stress –

strain curve of the material for a small plastic strain range. As remarked in Section 5.1, this should

coincide with a plot of f(e*) against cumulative strain.

Stress-strain hysteresis loops do not, in practice, exhibit well defined yield points and the

magnitude of the small plastic strain range used to find f(e*) is to some extent a matter of choice.

What matters is that, having defined f(e*) in this way, it should then be possible to obtain a good

fit to the tensile stress – strain curve by choosing values of po* and f in equation (26).

After the first few loading cycles, the cyclic stress – strain curve should become more or less

parallel to the tensile stress – strain curve if the proposed behaviour model is reasonably accurate.

The distance apart of the curves then fixes po*. By plotting the distance between the curve:ffiffiffi
3

2

r
p*
o þ

ffiffiffi
3
p

f

ffiffiffi
3

2

r
e1

 !
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Figure 4 Axial cyclic stress-strain curves for annealed copper. (Data after Wood [5]).



and the tensile stress – strain curve against log e1 it is a simple matter to fix f to give a best fit to

the tensile stress – strain curve.

It is possible to refine this procedure but in view of the crudity of the assumption that p* is

constant, the added complexity would hardly be worthwhile. Even so, carrying out an axial

loading test at a small constant plastic strain range, though not impossible, is difficult. Perhaps it is

pertinent to point out that the use of the Prager yield criterion involves similar difficulties. By

contrast, the necessary data for the von Mises yield criterion can be obtained simply and directly

from the tensile stress – strain curve.

6. TORSION TENSION OF A THIN TUBE

The predictions of the proposed behaviour model will be compared with experimental data

published by Lensky [3] on the torsion-tension behaviour of a thin tube. At the same time it will

be useful to compare the predictions of the von Mises and Prager yield criteria.

Denoting torsional stress by 1ffiffi
3
p s3, torsional plastic strain by

ffiffiffi
3
p

e3 and the torsional

component of pij by 1ffiffi
3
p p3, using the notation of the previous section for axial components

and assuming that p* ¼ po*, equation (13) becomes:

p ¼ po exp �
f

p*
o

e* � e*o
h i !

þ

ffiffiffi
3

2

r
f exp �

f

p*
o

e* � e*o
h i !ðe*

e*o

_eeffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ee2

1 þ _ee2
2

p exp
f

p*
o

e* � e*o
h i !

de*

ð27Þ

and equation (14) becomes:

s ¼ pþ
ffiffiffi
3
p

f e*
� � _eeffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_ee2
1 þ _ee2

3

p ð28Þ

where, in equations (27) and (28), p, po, _ee and s have the suffix value 1 for axial components and 3

for torsional components. _ee* is given by:

_ee* ¼

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ee2

1 þ _ee2
3

� �q
ð29Þ

Unfortunately, Lensky’s paper does not include any reverse-loading data for the material. The

constants for the proposed behaviour model and the Prager yield criterion were therefore

evaluated from the tensile stress– strain curve by assuming that f(e*) was constant. In the case

of the von Mises yield criterion, f(e*) was evaluated directly from the tensile stress – strain curve.

Lensky’s experiment consisted of twisting a thin tube and then pulling it with the torsional total

strain held constant. The total strain path used, is shown in heavy line in Figure 5. At intervals

during tensile straining, the stress components were measured. From these stress components, the

plastic strain path has been computed and is shown as a dotted line in Figure 5. Unfortunately this
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Figure 5 Total strain path used in torsion-tension test after Lensky [3].



plastic strain path deviates too far from linearity to use the simple formulae of Section 4.3,

particularly since the term:

_eeffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ee2

1 þ _ee2
3

p
is a function of its gradient. Using the constants determined from the tensile stress– strain curves,

equations (27) and (28) were solved graphically using the plastic strain path of Figure 5. A similar

procedure was followed in the case of the von Mises and Prager yield criteria.

The predicted torsional stresses are compared with experimental values in Figure 6. Figure 7

shows the corresponding comparison for tensile stresses. The result needs little comment except

that the proposed behaviour model gives rather better results than either the von Mises or Prager

yield criterion.

A more crucial test would be to pull the tube at constant torsional plastic strain rather than

constant torsional total strain. The expected variations of torsional stress during tensile strain are

then as shown schematically in Figure 8. Notice that, at the commencement of tensile plastic

strain, the torsional stress falls instantaneously with respect to tensile plastic strain. This is simply

because, in order to achieve an instantaneous change in direction of plastic strain, the stress vector

must move from one point on the yield surface to another, without causing plastic strain. This

makes the test difficult to carry out. While the plastic strains are changing, it should be possible to

specify the plastic strain paths by using servomechanisms to control the imposed loads. This,

however is not possible where the plastic strains are not changing. The load changes during the

transition from torsional to tensile plastic strain must be set by hand. Trial and error methods

would be necessary to establish the correct value of the stress components to initiate plastic strain

in the tensile direction.

Despite this difficulty, the test would be a valuable one. Whatever the actual form of the fall-off

in torsional stress with tensile plastic strain, provided it does not fall immediately to zero or remain

constant after the initial drop, it would indicate that the proposed behaviour model is on the right

lines.
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Figure 6 Fall off in torsional stress with tensile plastic strain after prior torsional overstrain.



7. CREEP

The most obvious way in which to extend the proposed behaviour model to include the case of

creep is simply to replace the yield surface by surfaces of constant energy dissipation rate in the

foregoing discussion. Indeed, it is possible to regard plasticity as very fast creep and the yield

surface as a surface of infinite energy dissipation rate. On this view, plasticity is regarded as a
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Figure 7 Increase in tensile stress with tensile plastic strain after prior torsional overstrain.

Figure 8 Schematic variations of torsional stress during longitudinal plastic strain of a specimen subjected to

prior torsional overstrain.



limiting case of creep. In the case of creep, the nesting surfaces of constant energy dissipation rate

move in stress space. This movement is governed by the creep strains in exactly the same way as

the movement of the yield surface is governed by plastic strains (equation (4)). As before, the net

stress causing creep in the microstructure is Sij � pij. The energy dissipation rate is then assumed

to be a function of the second invariant of this stress. An equation analogous to equation (3) is

obtained:

E ¼ c Sij � pij
� �

Sij � pij
� �

; e*

 �

ð30Þ

As with plasticity, it is usual to assume that the creep strain rates are normal to the surface of

constant energy dissipation rate:

_eecij ¼ l Sij � pij

 �

ð31Þ

From equation (31), the rate of energy dissipation in the microstructure is:

E ¼ Sij � pij

 �

_eecij ¼ l Sij � pij

 �

Sij � pij

 �

So that, using equation (30), the creep strain rates are:

_eecij ¼ c
skl � pkl

 �

skl � pkl

 �

sklpkl

 �

sklpkl

 � ; e*

( )
Sij � pij
� �

ð32Þ

where the pij can be obtained from an equation similar to equation (12) written in terms of creep

strains. In equation (32), the creep rates are defined in terms of the stresses and the strain history as

represented by pij. This is therefore a strain hardening type of creep law.

Notice that equation (32) gives non-zero creep rates under zero stress if the material has

previously crept. Since pij, roughly speaking, tends to be in the same direction as Sij, this

corresponds to creep recovery behaviour.

If pij is defined by an equation similar to equation (4), it depends only on the strain history. It

follows that creep recovery rates defined by equation (32) also depend only on the strain history.

This contradicts the observed fact that the rate of creep recovery depends not only on the strain

history but also on the stress under which creep was taking place before unloading. (e.g., ref.

[19]). In general, creep recovery rates increase with the previously applied stress. An equivalent

statement is that the rate of creep recovery increases with the strain rate prior to recovery. In order

to simulate this behaviour using equation (32), pij must depend in some way on the creep rates.

Consider the modification to equation (4):

_ppij ¼ f _eecij �
pij

p*
_ee* þ T

 �� �

ð33Þ

The constant term T in equation (33), other things being equal, results in a continual decrease of pij
with time. For a given strain path therefore, the final value of pij is greatest when the strain rates

are large. Consequently, the creep recovery rates given by equation (32) are largest when the

previous creep rates are large.

A fuller discussion of the implications of this creep hypothesis will be left to a later date. At the

moment, it seems reasonable to hope that creep, creep recovery and, perhaps, cyclically induced

creep can be treated on this basis. Naturally, the inclusion of the extra term in equation (33) may

have repercussions on the behaviour model for plasticity which, in any case, is not truly time

independent, as pointed out in the Introduction.

8. DISCUSSION

The behaviour model described here is designed to simulate the multiaxial Bauschinger effect

(movement of the yield surface in stress space). In Section 3, it is shown that, in certain situations,

previous behaviour models proposed for this purpose, such as the Prager yield criterion, predict

that there is no Bauschinger effect where intuitively one would be expected. The present proposal

does not suffer from this defect.

The experimental evidence discussed in Sections 5 and 6, while not conclusive, indicates that

the proposed behaviour model simulates the actual behaviour of materials rather better than the

Prager yield criterion. Both are better than the von Mises yield criterion.

A test which would quickly decide the merits of the proposed behaviour model consists of

pulling a previously twisted tube at constant torsional plastic strain. If the torsional stress falls

gradually to a small value as tensile strain proceeds, the proposal is substantially correct.
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The tests necessary to obtain the data necessary to fit the proposed behaviour model to a

particular material are difficult but no more so than those necessary to fit the Prager yield criterion.

In both cases, however, if it is assumed that the yield surface is of constant size, only the true

tensile stress – strain curve is necessary.

The use of the proposed behaviour model in computer programs should not present great

difficulties. The subroutine for calculating strain increments from stresses and stress increments

will be a little more complex than if the von Mises yield criterion were used. It will also be

necessary to store the value of pij at every node point of the calculation. Since these stores would

be overwritten at every computational step, this is not a very stringent requirement.

The use of the proposed behaviour model for creep will be the subject of a later report. At

present it appears that there is a possibility of accounting for creep, creep recovery and perhaps

cyclically induced creep in a unified theory.

Though pij was introduced as a microstress little attempt has been made to relate it more closely

to the actual mechanisms of deformation. An attempt to do so by those more qualified than the

present authors would be very useful. For instance, it may be possible to find a less crude

alternative to the assumption p*¼ constant in equation (4) without, at the same time, demanding

extra data to evaluate additional constants.

In practical terms, a new material behaviour relationship is an improvement on existing

relationships only if it leads to a better estimate of the stresses and strains in structures. Though it

is possible to devise loading situations in which the relationship proposed here gives substantially

different results from the von Mises or Prager yield criteria, such situations may not arise in

practical structures. If this is the case, the use of the proposed relationship will not lead to a

noticeable improvement in the accuracy of stress analysis.

It is intended to resolve this question by incorporating the proposed relationship, the Prager

yield criterion and the von Mises yield criterion as options in a stress analysis computer program.

The program to be used deals with the stress analysis of a thick tube under pressure and thermal

transient loading [20]. The same stress – strain curve will be fitted by each of the three

relationships and the results for identical pressure-temperature histories compared. This should

give some indication as to how far it is worthwhile seeking an accurate representation of the

Bauschinger effect.

9. CONCLUSIONS

9.1 A new method of representing the multiaxial Bauschinger effect has been proposed. It is

based on the assumption that the most recent part of the strain history of a material exerts a

dominant influence on its mechanical behaviour. Previous representations (the Prager yield

criterion, for instance) have all assumed that mechanical behaviour is a function only of

current plastic strain. In fact, it is much more likely that the manner in which the current

plastic strain was reached is also important. The present proposal results in an allowance for

this factor.

9.2 The predictions of the proposed behaviour model, the Prager yield criterion and the von

Mises yield criterion have been compared with test data on the torsion-tension behaviour of

thin tubes. The results indicate that the present proposal is more accurate than the Prager

yield criterion which, in turn, is more accurate than the von Mises yield criterion.

This evidence cannot be regarded as conclusive. An experiment which distinguishes

sharply between the predictions of the proposed behaviour model, the Prager yield criterion

and the von Mises yield criterion has been proposed. This consists of twisting a thin tube and

then pulling it at constant torsional plastic strain. All three behaviour models predict an

initial drop in torsional stress. The von Mises yield criterion predicts that the torsional stress

initially drops to zero and remains at zero as tensile strain proceeds. The Prager yield

criterion predicts that, after the initial drop, the torsional stress remains constant as tensile

strain takes place. If, on the other hand, the torsional stress, after the initial drop, falls

gradually towards zero as tensile strain proceeds, the present proposal is substantially

correct.

9.3 It does not necessarily follow that an improvement in the representation of the Bauschinger

effect would greatly modify the estimate of stresses and strains in a typical structure. It is

intended to investigate this by incorporating the proposed behaviour model, the Prager yield

criterion and the von Mises yield criterion as options in a computer program for inelastic

stress analysis. Each behaviour model will be fitted to the same stress – strain curve and the
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same problem will then be analysed. This will give some insight into the possible gain in

accuracy of stress analysis if the new behaviour model were to be used in place of previous

models.
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