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The question of the stress distribution in a neck formed under tension is 
complicated and has not been fully solved. Since it is important to know the 
magnitudes of the stresses at the instant preceding rupture, approximate solutions 
have been constructed which are based on various assumptions stimulated by 
experimental data. We consider one of these solutions, put forward by Davidenkov 
and Spiridonova [105]. 

When the neck appears the stress distribution ceases to be uniaxial and uniform. 
The difficulty of the analysis is compounded by the fact that the shape of the neck is 
unknown, the approximate solution utilizes the experimentally observed fact that in 
the minimum section of the neck the natural strains in the radial and tangential 
directions are equal and uniformly distributed. Hence is follows that on the section 

0z   

 const.r     

at the given instant of time. 
Since the elastic deformations in the neck are negligibly small compared with the 

plastic deformations , the incompressibility equation gives 2 const.z r    , and 

from the Saint Venant-von Mises relations it follows that 

 r    (61.1) 

In the section 0z  . Further, we have from the symmetry condition that 0rz   

when 0z  . In this section the differential equations of equilibrium (58.1) take the 
form 
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and the yield criterion is 

 .z r s     (61.3) 

We take a meridional plane and consider in it the trajectories of the principal 

stresses 3 , 1  (fig. 187) close to the plane 0z  . The angle ω of inclination of the 

tangent to the trajectory of the stress 3  is small, and formulae (58.7), with indices 1, 

2 replaced by 1, 3 respectively, take the simple form 

 3 1 3 1,     ,     ( ) .z r rz             

In consequence we have near the plane 0z   

 3 1 s s,     rz         (61.4) 

and  
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where ρ is the radius of curvature of the trajectory of the principal stress for 0z  . 

The contour of the neck is one of these trajectories; let R   for the contour. From 

the differential equation (61.2) we obtain 
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since 0r   when r a . 

When 0,  r     and when ,  r a R  ; on the basis of observations we 

assume that  

 .Ra r   

Then 
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This stress distribution in the neck is shown on the left-hand side of fig. 187. to 
calculate the stresses it is necessary to have experimental measurements of the 
qualities a, R. 
 

           
Fig.187                           Fig.188 

The maximum stresses arise in the central portion of the neck and for this reason 
rupture begins at the centre. Fig. 188 shows an X-ray photograph (taken from Nadai’s 
book [25]) of the neck of a specimen directly before rupture; it supports the above 
remark. 
 
(摘自专著 L. M. Kachanov, Fundamentals of the Theory of Plasticity, Dover 
Publications, 2004, §61. Stress distribution in the neck of a tension specimen, 
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