
(i) Method of solution. The plane surface of a semi-infinite block of plastic-rigid 
material is penetrated normally by a smooth rigid wedge of total angle 2. In Fig. 54 
(right hand half) ABDEC is the region of plastically deforming material; AC is the 
displaced surface (whose shape is to be determined); AB is the line of contact with the 
wedge, and BDEC is a slip-line. The most convenient starting slip-line is BD. When 
its position has been assumed, the condition that slip-lines meet the wedge at 45º 
defines the field ABD uniquely (third boundary-value problem). Since the free surface 
will not necessarily meet the wedge orthogonally, the point A must be a stress 
singularity. This, with the slip-line AD, defines the field ADE, which may be 
continued round A through any desired angle (first boundary-value problem, special 
case). The slip-line AE, together with the requirement that AC must be a free surface, 
defines the field AEC and, incidentally, the shape of AC (converse of second 
boundary-value problem). Now the point C must lie on the original plane surface; this 
determines the angular span ψ of the field ADE. We have next to examine whether, 
with our initial choice of BD, the velocity boundary conditions are satisfied. Along AB 
the component of velocity normal to the wedge is equal to the normal component of 
the speed of penetration; along BDEC the normal component of velocity is zero since 
the material underneath is rigid. The velocity solution may therefore be begun in ABD 
(third boundary-value problem), and extended successively to ADE and AEC (first 
boundary-value problem). The calculated velocities of elements on the free surface 
must be such that the surface is continually displaced in such a way that geometric 
singularity is preserved. This is the condition which controls the shape of the starting 
slip-line BD. In the unit diagram the curve corresponding to the free surface must be 
the trajectory for surface elements. Hence, according to the interpretation of (1), the 
tangent at any point on this curve must pass through the associated focus with position 
vector v. if the tentative solution has this property, similarity is maintained.  

 

 
（ii）Position of the displaced surface. We now verify that there is a possible 

solution when BD is straight and has a certain specific length. The displaced surface 
AC and the slip-line in ABD and AEC are then also straight, while ADE is a field of 
radii and circular arcs. For a given choice of the length of BD, the magnitude ψ of the 
angle DAE is determined by the condition that C should fall on the original surface. 
This is so if the height of C above B is equal to c; that is, if 

 cos sin( ) ,AB AC OB      



or                    [cos sin( )] .h c                           (2) 

Since v is zero on the plastic-rigid boundary BDEC, it is zero everywhere by 
Geiringer’s equation for the variation of v along the straight -lines. It follows that u 
is constant on each α-line, and hence, by the boundary condition on AB, it is 

universally equal to 2 sin  (the downward speed of the wedge is unity on the 

scale c). thus, at any moment, all elements are moving with the same speed along the 
α-lines. The surface AC is therefore displaced to a parallel position, and the new 
configuration can be made geometrically similar by a suitable choice of the length of 
BD or, equivalently, the position of A. 

…… 
The mean compressive stress has the value k on the free surface in compression, 

and hence, by Hencky’s theorem, its value on the wedge face AB is (1 2 )k  . The 

pressure P on the wedge is therefore distributed uniformly, and is of amount 

2 (1 )P k                               (5) 

The load per unit width is 2 sinPh  , and the work expended per unit volume of the 

impression below OC is sinPh c . The relation between P and   is shown in Fig. 

56; P rises steadily from 2k to 1
22 (1 )k   as the angle increases. This should be 

contrasted with the experimental observation by Bishop, Hill, and Mott [Proc. Phys. 
Soc. 57 (1945), 147] that, when cold-worked copper is indented by a lubricated cone, 

the mean resistive pressure decrease as the cone becomes less pointed; for 30    

the decrease is slight and the pressure has an approximately constant value of 2 3Y . 
 

 

 
The distribution of stresses in rigid material is not known, but there is no reason 

to suppose that the material is incapable of supporting the calculated stresses along 



BDEC. It is observed in the indentation of hard materials by a smooth wedge that the 
plastic region extends a little way below the tip (more if the wedge is rough or the 
material is annealed), but that the strains are small; this corresponds to the rigid part 
of the plastic region (sketched diagrammatically in Fig. 54) for our hypothetical 
plastic-rigid body. The present solution would continue to hold even for a block of 
finite dimensions, provided it could be associated with a non-plastic state of stress in 
the rigid material. In other words, to the approximation achieved by the hypothetical 
material, the state of stress in the plastically deforming region can remain similar even 
if the block is finite, though the non-plastic stress distribution, of course, can not. As 
the penetration increased, however, a stage would be reached where a possible state of 
stress in the rigid material could not be found; this would imply that plastic 
deformation had begun elsewhere.  
 
(摘自专著 R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, 
1998, Section VIII.2 Wedge-indentation, Pages.215-219) 
 


